
Citation: Kim, K.-H.; Jeong, C.-S

Optimizing Single DGX-A100

System: Overcoming GPU

Limitations via Efficient Parallelism

and Scheduling for Large Language

Models. Appl. Sci. 2023, 13, 9306.

https://doi.org/10.3390/app13169306

Academic Editors: Andres

Alvarez-Meza and David

Cárdenas-Peña

Received: 18 July 2023

Revised: 11 August 2023

Accepted: 14 August 2023

Published: 16 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Optimizing Single DGX-A100 System: Overcoming GPU
Limitations via Efficient Parallelism and Scheduling for Large
Language Models
Kyeong-Hwan Kim and Chang-Sung Jeong *

Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea; kyunghwan@korea.ac.kr
* Correspondence: csjeong@korea.ac.kr

Abstract: In this study, we introduce a novel training algorithm specifically designed to overcome
the limitations of GPU memory on a single DGX-A100 system. By utilizing the CPU and main
memory in the training process and applying a strategy of division and parallelization, our algorithm
enhances the size of the trainable language model and the batch size. In addition, we developed
a comprehensive management system to effectively manage the execution of the algorithm. This
system systematically controls the training process and resource usage, while also enabling the
asynchronous deployment of tasks. Finally, we proposed a scheduling technique integrated into
the management system, promoting efficient task scheduling in a complex, heterogeneous training
environment. These advancements equip researchers with the ability to work with larger models and
batch sizes, even when faced with limited GPU memory.

Keywords: heterogeneous systems; natural language processing; model parallelism

1. Introduction

Artificial intelligence natural language processing models have developed rapidly
based on the transformer-based model [1–3]. The transformer model is an artificial intelli-
gence model that can understand and generate text like a human. These models perform
well when more parameters are included [4,5]. In order to train a model with many param-
eters, an AI supercomputer is required. NVIDIA DGX-A100 system [6] is a widely used
AI supercomputer, consisting of 8 A100 Tensor Core GPUs with 40 GB of GPU memory.
Recently, the size of language models has become very large, and in order to secure the
GPU memory required for learning, dozens to hundreds of DGX-A100 clusters are used
for training.

However, obtaining a substantial number of these supercomputers is challenging
for many researchers. This barrier often results in an inability to procure the ample GPU
memory necessary for language model training.

In this paper, we introduce a novel training algorithm designed to overcome GPU
memory constraints in a single DGX-A100 system. This enhancement facilitates the train-
ing of larger language models and enables the expansion of batch sizes. Our approach
manages the entire model by dividing it into sequential sub-models on the CPU and main
memory [7,8]. Each sub-model is then composed of parallel tasks, which are transmitted to
a multi-GPU environment, executed simultaneously, and the results returned to the CPU.

The proposed algorithm operates in an environment where frequent communication
and computation between various resource types are essential. The asynchronous manage-
ment and deployment of resources and tasks are crucial for efficient functioning. Processing
performance is further optimized via strategic task placement across multiple execution
streams (GPU, CPU, and IO).

We have developed a comprehensive management system to effectively organize,
synchronize, and execute complex tasks in this intricate environment. Additionally, we

Appl. Sci. 2023, 13, 9306. https://doi.org/10.3390/app13169306 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13169306
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0004-2051-994X
https://doi.org/10.3390/app13169306
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13169306?type=check_update&version=1

Appl. Sci. 2023, 13, 9306 2 of 17

present a scheduling technique that organizes the workflow within the management system.
This approach allows the training algorithm to utilize heterogeneous resources more
efficiently, enabling the training of larger language models.

Our methodology significantly reduces the GPU memory required for large-scale
model training. It has been specifically optimized for the DGX-A100 system, allowing
researchers to train more extensive models and larger batch sizes even within limited
resources. The major contributions of this study are threefold.

First, we focus on developing a training algorithm tailored to the heterogeneous
environment of the DGX-A100 system. A core technology was implemented to enhance the
system’s overall efficiency, overcoming GPU memory limitations via a novel method of
model division and parallelization using CPU and memory.

Second, we have crafted a high-performance management system that ensures the
smooth execution of our newly developed algorithm. This system orchestrates the training
process and resources, managing and deploying computational tasks asynchronously. The
result is not only optimized learning task efficacy but also a substantial enhancement in the
overall learning process performance.

Lastly, we introduce a strategic scheduling technique for the training algorithm within
our management system. This method places tasks effectively across multiple execution
streams and coordinates communication and computational tasks between heterogeneous
resources. The coordination leads to a maximized overall training efficiency, aligning the
process with the optimal resource usage [9].

The rest of this paper unfolds as follows: Section 2 establishes the need and uniqueness
of our study by exploring the previous efforts to overcome GPU memory constraints
and enable large-scale parallel learning. Section 3 meticulously details our methodology,
encompassing the training algorithm with strategies for parallel processing across GPUs
and CPUs, a management system to oversee parallel tasks and heterogeneous resources,
and a workflow section that explains the task allocation within various execution flows.
Section 4 focuses on the experimental design, where we test models of varying sizes
and batch sizes to validate our methodology’s performance, with a special emphasis on
measuring scalability on a single DGX-A100 node.

2. Related Works

Language models based on transformers show good results in NLP. These language
models record better performances as the number of model parameters increases. Recently
proposed large-scale language models require multiple GPU nodes for training. However,
these GPU nodes are expensive and difficult to acquire. Research in various directions is
being conducted to solve the shortage of GPU nodes.

To increase the size of the training model, it is very important to secure the GPU
memory. The most intuitive way is to use less GPU memory or use it efficiently to free up
memory. To use less memory, there is a model that effectively uses parameters compared to
the existing model or reduces the memory used in the calculation process [10–13]. First, an
effective model structure and hyperparameters must be set to achieve this. We will adopt
the previously studied architecture [14] and hyperparameter block structure and provide
use cases for them.

Recently, a method of securing multiple GPU nodes to train a large language model
and effectively utilizing these nodes to organize training has been mainly researched.
A large model must be divided and trained on multiple GPUs to configure effective
training with the corresponding nodes. Splitting the model means dividing and loading
the parameters across multiple GPUs, and when the parameters are split, the calculation
results and communication overhead must be considered. The strategy for dividing the
model comprises layer-level model parallelism and tensor-level model parallelism. In
general, layer-level model parallelism divides and distributes layers to each GPU and
executes them sequentially. This constitutes a pipeline and is called pipeline parallelism.
To effectively implement pipeline parallelism, it is essential to consider how to divide

Appl. Sci. 2023, 13, 9306 3 of 17

models and pipeline scheduling effectively, and research is being conducted regarding
them [15–18].

However, GPU idle time inevitably occurs because the pipeline necessarily accompa-
nies the pipeline bubble. Tensor-level model parallelization divides and distributes the
basic tensor operations (Matmul, Conv) constituting the layer to multiple GPUs [19–21].
This calculates the parameters for one operation by dividing them into several GPUs, then
collects the results between them. Communication takes place in this process. Recently, in
order to eliminate the complexity of model parallelism, Auto Parallelism is being studied.
Auto Parallelism automatically implements model parallelism by considering the hardware
and model structure at the system level [22]. This shows novel parallelism performance in
all general-purpose deep-learning models, but it is necessary to design model parallelism
directly to secure resource use efficiency in large-scale artificial intelligence models.

To effectively scale up the size of a trained model, it is necessary to partition or
parallelize the model effectively, but there is a limit to the models that can be trained when
there are not enough GPU nodes. To solve this problem, research is being conducted on CPU
and main memory techniques for training [23,24]. Utilizing CPU and GPU simultaneously
can be implemented simply via heterogeneous frameworks or platforms [25]. However,
specific implementations must consider the structure of the model and the parallelism
technique. The CPU and main memory technique for learning is largely implemented in
two contexts: Out-of-Core (OoC) computation and Model Swapping. Ooc is a method
of using CPU memory to provide virtual memory that can be used when GPU memory
is insufficient [26]. When necessary calculations are performed on the GPU, the data
are transferred from the CPU memory to the GPU memory, and when the calculation is
complete, it is moved back to the CPU memory [27]. Model Swapping is a method of
moving the model parameters to the CPU memory. Both technologies can expand the
memory, but this must be implemented carefully considering the communication overhead.

Recently, several studies construct large-scale deep learning training or inference
environments by utilizing Model Swapping strategies to solve memory shortages. Har-
mony [28] proposes using scheduling and data communication techniques to increase the
limits of training deep-learning models on a single commercial server. Computron [29]
implements a model parallel swap design that accelerates model parameter transfers by
utilizing the cluster’s aggregate CPU-GPU link bandwidth. This design can make the
swapping of large models feasible and improve resource utilization. These frameworks can
serve the deep-learning models of various structures.

This study developed a large-scale language model learning system optimized for the
DGX-A100 environment by reflecting the reviewed research trends. Utilizing the model
structure [30] and model configuration hyperparameters [14] that have been verified in pre-
vious studies, the learning process is efficiently conducted, and memory usage is minimized.
In this study, the existing language model parallelism methods such as Layer Parallelism
and Tensor Parallelism were adopted to efficiently parallelize the model. Previous studies
have shown that transformer models can be split into multiple layers, and these split
layers can be further split via Tensor Parallelism. Studies have proven that communication
overhead can be minimized while maintaining the original calculation results [19–21]. As a
way to solve the GPU memory shortage problem, recent studies suggest a model swapping
method [27,29,31]. This method frees up GPU memory by moving model parameters to
CPU memory. In this study, this existing method was expanded and optimized in the
direction of minimizing the communication overhead between the CPU and GPU during
language model training on the DGX-A100 system. Therefore, this study proposed a new
method to enable the efficient learning of large-scale language models by optimizing the
DGX-A100 environment and minimizing communication overhead while using the parallel
processing method and model swapping technique suggested in previous studies.

Appl. Sci. 2023, 13, 9306 4 of 17

3. Methods
3.1. Training Algorithm

We introduce an algorithm to overcome the GPU memory limitations when training
transformer-based models such as BERT or GPT-2 on a DGX-A100 system. The proposed
approach manages the entire model within the CPU and main memory. The entire model is
divided into several sequential sub-models, and each sub-model is transferred to multi-GPU
to be processed in parallel, performing partial forward, and backward propagation. The
computed results on the GPU are then transferred back to the CPU, and the GPU memory
is initialized. This method resolves the memory constraints of the GPU in large-scale
language training.

3.1.1. Dividing and Parallelizing Transformer-Based Models

Transformer-based models are mainly composed of three types of layers: embedding
layer, transformer layer, and unembedding layer. The model performs sequential computa-
tions in order, starting with one embedding layer, followed by multiple transformer layers
and, finally, one unembedding layer. Each layer consists of a large number of parameters,
and the count of these parameters can be further expanded using hyperparameters. Addi-
tionally, transformer layers can have longer sequence lengths. We manage individual layer
types as sub-models, enabling flexible training with variable sequence lengths and focusing
on multi-GPU parallelization optimized for individual layers. This makes it possible to
respond flexibly to the expansion of layer parameters.

Each sub-model is composed of large-scale parameters that perform various roles.
As the size of the parameters maintained for large-scale training expands, the capacity
required to hold the parameters and the size of the intermediate computation results
increase, making it impossible to maintain one sub-model within a single GPU memory.
To solve this, we employ Tensor Parallelism. Tensor Parallelism equally divides all the
parameters that constitute the sub-model among m GPUs. The set of parameters Wi that
constitute the i-th sub-model is defined as follows:

Wi = {wi1, wi2, wi3, . . .}

where wi1, wi2, wi3, . . . are evenly divided into m components corresponding to the row or
column of the GPU. Each parameter’s divided set is denoted as follows:

wik =
m⋃

j=1

wj
ik

where wj
ik is the portion allocated to the j-th GPU of the k-th parameter of the i-th sub-

model. Finally, the set of parameters Wij allocated to the j-th GPU of the i-th sub-model is
expressed as follows:

Wij = {w
j
i1, wj

i2, wj
i3, . . .}

Figure 1 illustrates the way the model is divided and parallelized as described above.
To apply parallel computation for the evenly divided individual parameters, we

utilize the Tensor Parallelism technique used in Megatron-LM [32]. GPUs carry out com-
putations on the divided parameters in parallel across the multi-GPU environment, and
the final results can be obtained, identical to those without parallelization, via reduce or
gather operations. During this process, communication overhead between GPUs may
occur. The DGX-A100 is connected via NVLink and NVSwitch, enabling the rapid transfer
of intermediate results generated during the reduce and gather processes, thereby mini-
mizing communication overhead. Therefore, Tensor Parallelism allows for the easy and
efficient expansion of the model by simply dividing the existing sub-model parameters and
transmitting them to multi-GPU, without altering the original results.

Appl. Sci. 2023, 13, 9306 5 of 17

Figure 1. Division of the transformer-based model according to main components.

3.1.2. Heterogeneous Language Model Training

The proposed heterogeneous training consists of three major steps: forward prop-
agation, backward propagation, and optimization. Each step proceeds sequentially for
the divided sub-model. Forward propagation takes data batches as input and finally
obtains a loss function. Backward propagation calculates the gradient for each parame-
ter via backpropagation with the acquired loss value. Optimization uses a gradient to
update parameters.

1. Forward Propagation
Forward propagation propagates data input to sequential sub-models in order and
acquires the final loss value. One sub-model is forward propagated across multiple
GPUs. The context for forward propagation of the sub-model in the GPU consists
of parameters and inputs. Before executing the sub-model, the context on the CPU
side is requested and sent to the GPU. When the context is ready, it forwards and
sends the sub-model result to the CPU. Sub-model results are reused in the backward
propagation process. When the result is sent to the CPU, all memory allocated to the
GPU is initialized. The purpose is to repeat this process to obtain the final loss value.
If the given model has N sub-models, and we define the i-th sub-model as Si, the
output of the i-th sub-model as Oi, and the entire parameter set corresponding to the
i-th sub-model as Wi. Then, the process of calculating the total loss value is as follows.
(Here, O0 is the initial input to the network, and Y is the label.)

Oi = Si(Oi−1; Wi), f or i = 1, 2, . . . , N

Loss = CrossEntropy(Y, ON)

2. Backward Propagation
Backward propagation obtains the gradient for each model’s parameters by back-
propagating the loss value in the reverse order of the previously defined sub-models.
One sub-model is backpropagated on multiple GPUs. The context needed to perform
backward propagation of the sub-model in the GPU consists of the gradient computed

Appl. Sci. 2023, 13, 9306 6 of 17

from the previous sub-model and the parameters of the current sub-model. Using the
conditions utilized earlier in the forward propagation, the gradient with respect to
the parameter set Wi corresponding to the i-th sub-model Si is computed as follows:

δLoss
δWi

=
δLoss
δON

δON
δON−1

· · · δOi+1

δOi

δOi
δOWi

The sub-model requests a context on the CPU side to backpropagate the gradient
and sends it to the GPU. To perform backpropagation, forward propagation must be
conducted once for a given context to generate a computational graph. Therefore,
in this process, when the context is transmitted to the GPU, forward propagation
is performed once, and the gradient of the parameter is obtained by providing the
gradient of the previous sub-model as an input to the generated computation graph.
The calculated gradient is sent back to the CPU, and when the transfer is complete, all
memory allocated to run the sub-model is released.

3. Optimization
Optimization proceeds using the AdamW optimizer with the i-th sub-model’s pa-
rameters Wi and the computed gradient δLoss

δWi
. Optimization is performed using

CPU multithreading for the AdamW operation [33,34]. Compared to forward or
backward propagation, which have a computational complexity of O(n3), AdamW
has a significantly lower computational complexity of O(n2). Therefore, even in a
CPU multi-thread environment, computations can be completed in a shorter time
compared to propagation operations. Moreover, by conducting optimization oper-
ations on the CPU and main memory, the GPU can focus on allocating memory for
computation-intensive propagation operations.

Figure 2 summarizes the entire training process.

Figure 2. Overview of the three main phases in the training process.

Appl. Sci. 2023, 13, 9306 7 of 17

3.2. Heterogeneous Training Management System (HTMS)

HTMS is a system that effectively manages the previously proposed heterogeneous
training. The system manages the training process in four layers, and managers of various
roles are placed in each layer to achieve the goal. The Supervision Layer initializes and
manages manager objects of all layers [35]. It also monitors the status of all training
processes and responds to errors. The context Management Layer manages resources
and data for learning. The Task Management Layer requests Context Manager to execute
tasks related to Context IO, composes tasks related to learning, and creates and executes
Worker. The Worker Layer is a process group layer executed by the Task Management
Layer. Figure 3 is a diagram of the layers and layer components that make up the entire
training system.

Figure 3. All layers and components of the Heterogeneous Training Management System (HTMS).

3.2.1. Supervision Layer

It is the layer that oversees the entire system. It is responsible for initialization,
monitoring the training process, and responding to problems when they arise. This layer
supports recording learning from a holistic view, managing to keep things normal, and
communicating with users.

1. Global Training Status Manager
The Manager initializes other Manager objects based on the user’s initial settings to
manage and monitor global training state information. Specifically, it includes two
functions: logging and monitoring. Through logging, the Manager contributes to
recording abnormal entries or outliers in a separate log file during the training process.
It also systematically documents performance metrics such as loss values and model
evaluations.
The monitoring process supplies the user with real-time information, including trends
in loss values, the scale of tensor values, and the probability distribution of feature
values and output vectors. This process enables the user to either halt the training
process as needed or to apply new hyperparameters during intermediate stages of
training, allowing for the continuation of the training process.
Furthermore, the Global Status Manager works in conjunction with the Fault Tolerance
Manager to re-save the entire status for irrecoverable faults and enable subsequent
training to be restored.

2. Fault Tolerance Manager
The proposed system proceeds with a complex parallelized training process and can

Appl. Sci. 2023, 13, 9306 8 of 17

cause various faults. We largely solve faults by dividing them into resource and
algorithm aspects. Regarding resources, it responds when CPU, GPU, and memory
computer resources are insufficient or unstable. The most common case is when other
programs run on the system, and the available resources are low. The system detects a
lack of resources and gradually reduces the batches of input sizes constituting training
until normal training is possible. Alternatively, when some CPU cores or GPUs are
outdated, overall system performance may be degraded. Computational resources
that exceed the allowable time are excluded from the calculation. Regarding the
algorithm, if the system diverges during the training process, the divergence point is
identified and logged, and the current state is saved and terminated.

3.2.2. Context Management Layer

This is the layer that manages the learning context to proceed with training. The
training context is divided into parameter, resource, and graph data, and a manager is
placed to manage each. Corresponding managers manage all contexts in the CPU and
sometimes issue a transfer task that transfers CPU data to the GPU to progress training on
the GPU.

1. Parameter Manager
Parameter Manager manages all parameters of the model in the CPU. When the
manager receives a context request from the Task Management Layer, it divides the
parameters corresponding to one sub-model. It issues an IO task that transmits to
the multi-GPU. Furthermore, when the gradient optimization process is finished, the
contents are reflected in the current parameters. Parameter updates are thread-safe
against other asynchronous operations or calculations.

2. Resource Manager
Resource Manager provides resources (CPU, GPU, main memory, and GPU mem-
ory) to execute tasks issued by various managers. The manager identifies available
resources by referring to Global Training Status. It considers the currently requested
and available resources, provides the resources if available, and only tasks that have
received them can be executed. In particular, GPU memory is frequently allocated
and deallocated due to the nature of the training algorithm, resulting in a large over-
head. When memory of the same size is requested for performance optimization, the
previously allocated memory is induced to be reused.

3. Data Manager
Data Manager manages the input data for the model’s forward propagation or back-
propagation. The Manager has an input dataset for initial forward propagation input
and issues IO tasks that organize them in batches and transfer them from the CPU to
the GPU. To make transmission efficient, data are divided according to the number
of GPUs, and the divided data are transmitted to multi-GPU parallelly. After that,
the entire data are collected by gathering operation on multi-GPU. Through this,
the overhead generated via input data transmission is minimized. In addition, the
forward propagation result for the model is required to backpropagate the same data
to multi-GPU or sequential partial models on the GPU. The Manager issues an IO
task that stores the results from forward propagation and sends them to the GPU
upon request.

3.2.3. Task Management Layer

Algorithms related to training are executed in units of sub-models, and the results are
received and transmitted to the managers of the Context Management Layer.

1. Task Manager
Task Manager issues one task among forward propagation, backward propagation,
and optimization for one sub-model. Propagation runs on multi-GPU, and optimiza-
tion runs on multi-thread. Since an execution context is required to execute a task, it is
requested in the Context Management Layer. When the execution context is ready, the

Appl. Sci. 2023, 13, 9306 9 of 17

manager places parallelized tasks and waits until all the arranged tasks are finished.
When all tasks are executed, task completion is notified via the Result Manager, the
result is transmitted to the CPU, and no longer needed resources are returned.

2. Result Manager
The Result Manager issues an IO task that transfers the results generated using the
results of each sub-model from the GPU to the CPU. Furthermore, it operates a Result
Queue that stores results asynchronously, calculates information in the Queue, and
transmits it to the Context Management Layer.

3. Worker Layer
In the Worker Layer, training tasks related to the assigned execution are arranged
and executed. In this layer, only one propagation and optimization task can run
concurrently. One task consists of several parallelized jobs running in multi-process
or multi-thread. Several jobs work by forming a group, and the jobs within the group
exchange or collect calculation results via MPI.

3.3. Management System Workflow

Management system managers are involved in various execution flows and compose
the execution workflow. Workflow belongs to one of the two states of forward, backward,
and optimization at execution time. Forward, backward, and optimization states proceed
iteratively. The two states carry out actual training tasks, which are placed in three streams
(IO, GPU Execution, and CPU Execution) according to the resource type. In the IO stream,
communication tasks between the CPU and GPU are arranged; in the GPU execution
stream, multi-GPU propagation tasks; and in the CPU, optimization tasks executed in
multi-thread are arranged. The management system asynchronously arranges tasks in each
stream using managers of each layer and synchronizes each task by events. Furthermore,
we utilize the Double-Buffering Concept to minimize the waiting time of GPU resources
due to IO tasks. We introduce how the managers of the system place tasks in the stream
according to the state and how the corresponding tasks are synchronized.

3.3.1. Doubled Context Buffer

In large-scale language learning, large-capacity communication occurs between CPU
and GPU. The computationally intensive GPU can become idle if the context transfer is
incomplete, causing training inefficiency. Therefore, to minimize the idle time of the GPU,
the Doubled Context Buffer technique is used for learning. The technique is used to declare
two context buffers in the GPU in advance. The IO task that receives the context necessary
for the next GPU calculation is simultaneously executed during the GPU calculation process.
GPU execution and IO tasks can proceed independently, and the technique can minimize
idle time. Through experiments, we suggest that idle time can be minimized and buffer
space can be used effectively when two buffers are maintained.

3.3.2. Forward State

Forward State is a state in which sub-models are sequentially executed, and the loss
value is finally acquired. To this end, three tasks (Context Preparation, Sub-model Forward
Propagation, and Result Transfer) are sequentially performed on sub-models and repeated
for each sub-model.

Context Preparation requests context transfer to GPU to execute sub-model on CPU on
multi-GPU. The Resource Manager allocates a memory buffer to the multi-GPU to transfer
the context to the GPU. There are two types of GPU memory buffers: parameter buffers and
model input buffers. After the buffer allocation, Parameter Manager and Data Manager
transfer parameters and inputs to the GPU buffer space. Context Preparation refers to all
of these tasks, and when the task is finished, it enters a ready-to-execute state. Context
Preparation is placed in IO stream. When ready for execution, an execution request event
is sent to the system.

Appl. Sci. 2023, 13, 9306 10 of 17

Sub-model Forward Propagation is a task executed via the execution request event
issued after Context Preparation is completed. It executes tasks on context deployed on
multi-GPU. This is placed in the GPU Execution Stream, which is the execution flow of
multi-GPU. Task Manager executes worker process tasks parallelized on multi-GPU, and
each process collects the generated results. At this time, only one forward execution is
always in progress at the same time. A job completion event is sent to the system when the
job is complete.

Result Transfer sends the execution results of workers to the Result Manager. Result
Manager processes the data of Queue and updates other Manager objects. Furthermore, if
necessary, recover deployed resources. In the forward state, the output of the sub-model
is used as the input of backward propagation, so the calculation result of the sub-model
is transmitted to the Result Manager. Since Result Manager receives input from multiple
GPUs, it receives data via an asynchronous Result Queue. The transfer operation is placed
on the IO Stream. Furthermore, if the next sub-model to be executed is a model with the
same structure as the previous one, the previously allocated buffer space is reused without
initialization. Through this, overhead due to allocation can be minimized. Figure 4 shows
the schedule in which tasks are placed in the IO stream and GPU stream when the system
enters the forward state.

Figure 4. Forward state execution workflow.

3.3.3. Backward and Optimization State

The Backward State can proceed if the loss value is acquired in the Forward State.
Gradient, a parameter update index for each sub-model, is acquired when proceeding with
Backward State. When the gradient is transferred to the CPU, the optimization operation
is performed independently of the next backward operation using multi-threads in the
CPU. Through this, Backward work and Optimization work proceed simultaneously. State
includes 3-task-type Forward State and additional sub-model optimization execution task.

Context Preparation work proceeds in the same way as Forward State. However, for
backward operation, Data Manager additionally transmits the results generated in the
forward process. As a result, the context transmission time in the backward process is
greatly increased.

Sub-model backward execution performs backward propagation for a given sub-
model. To perform backpropagation on a sub-model, forward calculation results for the
model’s computation nodes are required. Therefore, it is necessary to move forward
again using the sub-model and the forward input result of the previous step and form
an intermediate calculation context. When the result of the intermediate operation node
is completed, the backward process proceeds. The system is notified via an event when
the backward process is completed. Result Transfer proceeds in the same way as in
Forward State.

Sub-model optimization is executed via the transmission completion event that occurs
when the backward process is finished, and the gradient is transmitted to the CPU. When
the task is executed, the gradient is taken from the Result Queue in the Result Manager,
and the AdamW optimization calculation, which calculates how many parameters need to
be updated, is executed. This is divided and executed on multi-thread and is carried out in
CPU Execution Stream, which is a multi-thread workflow. When the calculation is complete,

Appl. Sci. 2023, 13, 9306 11 of 17

Parameter Manager reflects it. Figure 5 shows the schedule in which tasks are placed in IO,
GPU, and CPU streams when the system enters the backward and optimization state.

Figure 5. Backward state execution workflow.

4. Experiments
4.1. Experiment Setup

The proposed system divides a transformer-based language model into sub-models,
declares them on the CPU, and sequentially loads and divides them onto multi-GPU for
execution. At this time, the transformer layer is the core part of the language model, having
more parameters and a higher computational complexity than other layers. We provide a
scalability experiment that measures the size of the transformer layer that the proposed
system can load onto the GPU and, accordingly, the maximum batch size that can be trained.
Table 1 defines four sizes to be used in experiments to measure the scalability and time of
transformer layers of various sizes.

Table 1. Transformer layer size criteria.

Hidden Nlayers Dhead Nheads

Base 768 12 96 8

Large 1536 24 96 16

XLarge 4096 32 128 32

XXLarge 8192 32 128 64

Additionally, we show that the scheduling method we provide hardly generates
any GPU idle time. Conventional methods inevitably enter the GPU into an idle state
in the process of loading contexts onto the GPU. However, by utilizing our proposed
Doubled Context Buffer method and asynchronous scheduling, the context transfer can be
completed before performing propagation operations on the GPU. We measure various
types of compute time and communication time that constitute the entire training and
analyze and provide the occurrence of idle time under the previously proposed transformer
layer and batch size configuration.

The proposed experiments were performed on the C4 dataset [36] (Colossal Clean
Crawled Corpus), and the individual texts inside were composed into 512-long token
sequences using the Tokenizer used in Megatron-LM. The C4 dataset, collected from
various web sources and preprocessed and refined, provides noise-minimized data that
can be directly used for model training. Furthermore, the entire experiment was conducted
on the DGX-A100 system, loaded with 8 NVIDIA-A100 Tensor Core GPU 40 GB.

The training parameters were set as follows to guide the training process. The learning
rate was initialized at 0.001 and gradually reduced to 0.00005. The learning scheduling
was executed in 20 stages throughout the entire training process, employing the StepLR
technique to linearly decrease the learning rate. Each training stage consisted of randomly

Appl. Sci. 2023, 13, 9306 12 of 17

extracting one million samples from the C4 corpus and iterating through three epochs. The
optimization algorithm was implemented using AdamW, with the hyperparameters set to
beta1 = 0.9 and beta2 = 0.999.

4.2. Scalability Test

The proposed system can train a language model of a size that could not be trained
in the past or can train a very large batch size for a small language model. Figure 6
illustrates a comparison between our proposed method and the existing layer-based Model
Parallelism, highlighting the maximum configurable batch sizes for different layer sizes
(Base = 2048, Large = 1024, XLarge = 378, and XXLarge = 128 for our proposed layer;
Base = 168, Large = 32, XLarge = 12, and XXLarge = 4 for layer-based Model Parallelism).
This approach allows for greater flexibility in configuring the Double-Buffered Context
and provides a detailed measure of how the new method performs in comparison to
existing techniques.

Figure 6. Comparison of maximum configurable batch sizes for proposed layer sizes and layer-based
Model Parallelism.

Our experimental results demonstrate a model scalability exceeding tenfold than
of the traditional layer-based Model Parallelism. Furthermore, our approach allows for
the training of XLarge and XXLarge models, which were untrainable with the existing
layer-based Model Parallelism. The batch sizes per layer proposed in our method reserve
approximately 35 GB of GPU memory space, and the remaining space is sufficient to
adequately store the next context for double buffering.

4.3. Computation and Communication Analysis

We accurately measure various computation and communication times needed to
train a configured language model with specific batch sizes and proposed layer sizes. This
measurement serves as a benchmark for calculating the total time required for training.
Additionally, by aggregating the measured computation and communication times for
each block size and the proposed batch size, we demonstrate that the proposed scheduling
scheme has almost no GPU idle time due to waiting for context transfers. First of all,
forward propagation, backward propagation, and optimization time, which are the main
computational tasks in the training process, are measured for the batch size for the major
layer size presented above and presented in Figure 7.

Appl. Sci. 2023, 13, 9306 13 of 17

Figure 7. Time measurement for each proposed layer size calculation type.

In terms of computation, we observed that as the layer size increases, the time for for-
ward computation, backward computation, and optimization all increase for the same input
and output capacity. Specifically, the forward and backward computations substantially
increase the computation time as the layer size grows. This is because the self-attention
mechanism, a significant component of the transformer-based model, causes the com-
putation volume to increase quadratically with the length of the input vector. In other
words, if the length of the input vector doubles, the number of relationships that need to be
processed increases fourfold. This is due to the necessity of computing the attention score
for all pairs of input vectors. Therefore, we can observe that the computational complexity
of the transformer models increases quadratically with the length of the input vector. In
particular, the backward computation is more computationally intensive than the forward,
thus increasing at a greater rate, while optimization is computed using multi-threading
on the CPU side, it proceeds faster than computation on the multi-GPU. This is because
its computational complexity is significantly lower compared to GPU computation, and
there is no computational overhead due to communication. Additionally, we conducted
computation experiments to predict the total computation time when composing various
batch sizes, and we present the results. Figure 8 shows the calculation time measurement
results for each batch size for the major layer sizes.

Figure 8. Time measurement for each batch size of the proposed layer size (Base (top left), Large (top
right), XLarge (bottom left), and XXLarge (bottom right)).

Appl. Sci. 2023, 13, 9306 14 of 17

The GPU computation task we propose can proceed once the context is prepared
from the CPU to the GPU. The context preparation time mainly consists of three tasks:
input transfer time, parameter transfer time, and buffer allocation time. We measured
the total context preparation time and the times for the individual tasks that compose
it. For the input transfer time, because the transfer time is very short in the forward
operation, we measured it based on the hidden state transfer time required to construct the
backward context.

According to Figure 9, the most time-consuming task in preparing the context is Buffer
Allocation Time. This is realized using memory allocation operations in CUDA, which take
a significant amount of time. Our proposed Management System is designed to reuse the
existing memory when conducting the same type of computation as the previous layer.
Additionally, the time taken to transfer parameters increases only slightly, even as the
model size grows. This is because the bandwidth performance of the DGX-A100 System
is high compared to the capacity of the parameters that need to be transferred, and the
parameters to be transferred are distributed to multiple GPUs. Consequently, as the model
size increases, the time to prepare the context does not significantly increase compared
to computation time. Therefore, the time it takes to perform the forward and backward
computations determines the system’s overall performance.

Figure 9. Time measurement for each proposed layer size communication type.

Considering the computation aspects of Figures 7–9 presented above and the commu-
nication time measurement results, our proposed schedule method hardly generates GPU
idle time. The proposed training schedule batches Context Preparation and Result Transfer
operations in the IO stream. It repeats Forward or Backward operations in the GPU Stream
once it enters the Steady State. GPU idle time occurs when the sum of the execution times
of Context Prepare and Result Transfer exceeds the sum of the execution times of Forward
or Backward operations. The proposed layer and batch sizes hardly result in idle time
during Forward and Backward operations. However, composing a massive batch in a base
model or smaller leads to GPU idle time. Finally, under the conditions of implementing
the existing 8-Way Tensor Parallelism, we can implement the existing training at a similar
level, with several times fewer nodes than the existing ones.

5. Conclusions

In this study, we proposed a new training algorithm that partitions and parallelizes
models using heterogeneous resources. This algorithm overcomes the GPU resource limi-
tations of a single DGX-A100 system, contributing to the increase in the size of trainable
language models and the growth of batch sizes. We also designed and implemented a man-

Appl. Sci. 2023, 13, 9306 15 of 17

agement system to efficiently run this algorithm. This system can systematically manage
the parallelized training process, resource usage, and batch tasks asynchronously. Lastly,
we proposed a technique that enables effective job scheduling in a complex heterogeneous
learning environment. This approach has been validated using performance measurements
and demonstrates that training can be conducted with larger models and batch sizes even
within limited resources.

As a result of this study, we showed that we can overcome the limitations of GPU
resources by partitioning and parallelizing models using heterogeneous resources. Further-
more, the management system that we designed and implemented for this purpose has
demonstrated its ability to systematically manage the parallelized learning process and
resource usage and to batch tasks asynchronously.

Additionally, by introducing techniques that enable effective job scheduling in a
complex heterogeneous learning environment, we confirmed that the efficiency and effec-
tiveness of model training could be enhanced. These findings enable researchers to proceed
with training tasks with larger models and batch sizes even with limited resources.

This study has been validated using performance measurements, and the results
demonstrate how the management system and scheduling techniques effectively work.
This shows how our algorithm and management system enhance large-scale language
model training in a heterogeneous computing environment. Through this, the researchers
confirmed the ability to effectively conduct training tasks with larger models and batch
sizes with limited resources.

This study presents a new methodology that maximizes the use of heterogeneous
computing resources to overcome the constraints of model training on a single DGX-A100
system. Our management system and scheduling techniques systematically manage the
parallelized learning process and enable job scheduling in complex learning environments
using heterogeneous resources. This methodology allows researchers to efficiently use
limited resources to proceed with training larger models and batch sizes.

In conclusion, our research has pioneered the use of heterogeneous computing re-
sources to significantly expand the feasible layer size within a single DGX-A100 system. As
we look to the future, we intend to further our research by implementing a system capable
of universally applying to various AI models, allowing automatic optimization for paral-
lelization and scheduling. Additionally, we aim to explore additional learning techniques
that enable the expansion of horizontal layer sizes, further unlocking scalability for more
complex models. These forward-looking strategies mark a substantial step towards a more
versatile and efficient paradigm for large-scale AI model training.

Author Contributions: Conceptualization, K.-H.K. and C.-S.J.; methodology, K.-H.K. and C.-S.J.;
software, K.-H.K.; validation, K.-H.K. and C.-S.J.; formal analysis, K.-H.K. and C.-S.J.; investigation,
K.-H.K.; resources, K.-H.K.; data curation, K.-H.K.; writing—original draft preparation, K.-H.K.;
writing—review and editing, K.-H.K. and C.-S.J.; visualization, K.-H.K.; supervision, C.-S.J.; project
administration, K.-H.K. and C.-S.J.; funding acquisition, C.-S.J. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Acknowledgments: This work was supported by Artificial intelligence industrial convergence clus-
ter development project funded by the Ministry of Science and ICT (MSIT, Korea) & Gwangju
Metropolitan City.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2023, 13, 9306 16 of 17

References
1. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

Adv. Neural Inf. Process. Syst. 2017, 2017, 5999–6009.
2. Mars, M. From Word Embeddings to Pre-Trained Language Models: A State-of-the-Art Walkthrough. Appl. Sci. 2022, 12, 8805.

[CrossRef]
3. Garrido-Muñoz, I.; Montejo-Ráez, A.; Martínez-Santiago, F.; Ureña-López, L.A. A survey on bias in deep NLP. Appl. Sci. 2021,

11, 3184. [CrossRef]
4. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving language understanding by generative pre-training. OpenAI,

2018. Available online: https://www.mikecaptain.com/resources/pdf/GPT-1.pdf (accessed on 10 August 2023).
5. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.

Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901.
6. Nvidia Corporation. NVIDIA DGX A100|DATA SHEET; Nvidia Corporation: Santa Clara, CA, USA, 20 May 2020.
7. Rajbhandari, S.; Ruwase, O.; Rasley, J.; Smith, S.; He, Y. Zero-infinity: Breaking the gpu memory wall for extreme scale deep

learning. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis,
St. Louis, MO, USA, 14–19 November 2021; pp. 1–14.

8. Ren, J.; Rajbhandari, S.; Aminabadi, R.Y.; Ruwase, O.; Yang, S.; Zhang, M.; Li, D.; He, Y. {ZeRO-Offload}: Democratizing
{Billion-Scale} model training. In Proceedings of the 2021 USENIX Annual Technical Conference (USENIX ATC 21), Virtual,
14–16 July 2021; pp. 551–564.

9. Weng, J.; Lin, M.; Huang, S.; Liu, B.; Makoviichuk, D.; Makoviychuk, V.; Liu, Z.; Song, Y.; Luo, T.; Jiang, Y.; et al. Envpool: A
highly parallel reinforcement learning environment execution engine. Adv. Neural Inf. Process. Syst. 2022, 35, 22409–22421.

10. Chen, T.; Xu, B.; Zhang, C.; Guestrin, C. Training deep nets with sublinear memory cost. arXiv 2016, arXiv:1604.06174.
11. Gupta, A.; Berant, J. Gmat: Global memory augmentation for transformers. arXiv 2020, arXiv:2006.03274.
12. Rajbhandari, S.; Rasley, J.; Ruwase, O.; He, Y. Zero: Memory optimizations toward training trillion parameter models. IEEE

Comput. Soc. 2020, 2020, 11. [CrossRef]
13. Choi, H.; Lee, J. Efficient use of gpu memory for large-scale deep learning model training. Appl. Sci. 2021, 11, 377. [CrossRef]
14. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly

optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.
15. Harlap, A.; Narayanan, D.; Phanishayee, A.; Seshadri, V.; Devanur, N.; Ganger, G.; Gibbons, P. Pipedream: Fast and efficient

pipeline parallel dnn training. arXiv 2018, arXiv:1806.03377
16. Narayanan, D.; Shoeybi, M.; Casper, J.; LeGresley, P.; Patwary, M.; Korthikanti, V.; Vainbrand, D.; Kashinkunti, P.; Bernauer, J.;

Catanzaro, B.; et al. Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM. IEEE Comput. Soc.
2021, 11, 1–15. [CrossRef]

17. Huang, Y.; Cheng, Y.; Bapna, A.; Firat, O.; Chen, D.; Chen, M.; Lee, H.; Ngiam, J.; Le, Q.V.; Wu, Y.; et al. Gpipe: Efficient training
of giant neural networks using pipeline parallelism. In Proceedings of the 33rd International Conference on Neural Information
Processing Systems (NIPS’19), Vancouver, BC, Canada, 8–14 December 2019.

18. Li, Z.; Zhuang, S.; Guo, S.; Zhuo, D.; Zhang, H.; Song, D.; Stoica, I. Terapipe: Token-level pipeline parallelism for training
large-scale language models. In Proceedings of the International Conference on Machine Learning. PMLR, Online, 18–24 July
2021; pp. 6543–6552.

19. Bian, Z.; Xu, Q.; Wang, B.; You, Y. Maximizing parallelism in distributed training for huge neural networks. arXiv 2021,
arXiv:2105.14450.

20. Shazeer, N.; Cheng, Y.; Parmar, N.; Tran, D.; Vaswani, A.; Koanantakool, P.; Hawkins, P.; Lee, H.; Hong, M.; Young, C.; et al.
Mesh-tensorflow: Deep learning for supercomputers. In Proceedings of the 32rd International Conference on Neural Information
Processing Systems (NIPS’18), Montréal, BC, Canada, 13–16 December 2018.

21. Song, L.; Chen, F.; Zhuo, Y.; Qian, X.; Li, H.; Chen, Y. AccPar: Tensor partitioning for heterogeneous deep learning accelerators.
In Proceedings of the 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA), San Diego, CA,
USA, 22–26 February 2020. [CrossRef]

22. Liang, P.; Tang, Y.; Zhang, X.; Bai, Y.; Su, T.; Lai, Z.; Qiao, L.; Li, D. A Survey on Auto-Parallelism of Large-Scale Deep Learning
Training. IEEE Trans. Parallel Distrib. Syst. 2023, 34, 2377–2390. [CrossRef]

23. Fu, Q.; Chukka, R.; Achorn, K.; Atta-fosu, T.; Canchi, D.R.; Teng, Z.; White, J.; Schmidt, D.C. Deep Learning Models on CPUs: A
Methodology for Efficient Training. arXiv 2022, arXiv:2206.10034.

24. Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.; Mao, M.; Ranzato, M.; Senior, A.; Tucker, P.; Yang, K.; et al. Large scale
distributed deep networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems
(NIPS’12), New Orleans, LA, USA, 3–6 December 2012.

25. Zhang, H.; Huang, H.; Han, H. A novel heterogeneous parallel convolution Bi-LSTM for speech emotion recognition. Appl. Sci.
2021, 11, 9897. [CrossRef]

26. Shin, W.; Yoo, K.H.; Baek, N. Large-Scale data computing performance comparisons on sycl heterogeneous parallel processing
layer implementations. Appl. Sci. 2020, 10, 1656. [CrossRef]

http://doi.org/10.3390/app12178805
http://dx.doi.org/10.3390/app11073184
https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
http://dx.doi.org/10.1109/SC41405.2020.00024
http://dx.doi.org/10.3390/app112110377
http://dx.doi.org/10.1145/3458817.3476209
http://dx.doi.org/10.1109/HPCA47549.2020.00036
http://dx.doi.org/10.1109/TPDS.2023.3281931
http://dx.doi.org/10.3390/app11219897
http://dx.doi.org/10.3390/app10051656

Appl. Sci. 2023, 13, 9306 17 of 17

27. Choukse, E.; Sullivan, M.B.; O’connor, M.; Erez, M.; Pool, J.; Nellans, D.; Keckler, S.W. Buddy Compression: Enabling Larger
Memory for Deep Learning and HPC Workloads on GPUs. In Proceedings of the 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), Valencia, Spain, 30 May–3 June 2020; pp. 926–939. [CrossRef]

28. Li, Y.; Phanishayee, A.; Murray, D.; Tarnawski, J.; Kim, N.S. Harmony: Overcoming the Hurdles of GPU Memory Capacity to
Train Massive DNN Models on Commodity Servers. VLDB Endow. 2022, 15, 2747–2760. [CrossRef]

29. Zou, D.; Jin, X.; Yu, X.; Zhang, H.; Demmel, J. Computron: Serving Distributed Deep Learning Models with Model Parallel
Swapping. arXiv 2023, arXiv:2306.13835.

30. Shoeybi, M.; Patwary, M.; Puri, R.; LeGresley, P.; Casper, J.; Catanzaro, B. Megatron-LM: Training Multi-Billion Parameter
Language Models Using Model Parallelism. arXiv 2019, arXiv:1909.08053.

31. Liu, J.; Wu, Z.; Feng, D.; Zhang, M.; Wu, X.; Yao, X.; Yu, D.; Ma, Y.; Zhao, F.; Dou, D. HeterPS: Distributed deep learning
with reinforcement learning based scheduling in heterogeneous environments. Future Gener. Comput. Syst. 2023, 148, 106–117.
[CrossRef]

32. Jain, A.; Moon, T.; Benson, T.; Subramoni, H.; Jacobs, S.A.; Panda, D.K.; Essen, B.V. SUPER: SUb-graph parallelism for
TransformERs. In Proceedings of the 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Portland,
OR, USA, 17–21 May 2021; pp. 629–638. [CrossRef]

33. Zinkevich, M.; Weimer, M.; Li, L.; Smola, A. Parallelized stochastic gradient descent. In Proceedings of the 23th International
Conference on Neural Information Processing Systems (NIPS’10), Vancouver, BC, Canada, 6–9 December 2010.

34. Kennedy, R.K.; Khoshgoftaar, T.M.; Villanustre, F.; Humphrey, T. A parallel and distributed stochastic gradient descent
implementation using commodity clusters. J. Big Data 2019, 6. [CrossRef]

35. Kim, Y.K.; Kim, Y.; Jeong, C.S. RIDE: Real-time massive image processing platform on distributed environment. EURASIP J.
Image Video Process. 2018, 2018, 39. [CrossRef]

36. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer
learning with a unified text-to-text transformer. J. Mach. Learn. Res. 2020, 21, 5485–5551.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ISCA45697.2020.00080
http://dx.doi.org/10.14778/3551793.3551828
http://dx.doi.org/10.1016/j.future.2023.05.032
http://dx.doi.org/10.1109/IPDPS49936.2021.00071
http://dx.doi.org/10.1186/s40537-019-0179-2
http://dx.doi.org/10.1186/s13640-018-0279-5

	Introduction
	Related Works
	Methods
	Training Algorithm
	Dividing and Parallelizing Transformer-Based Models
	Heterogeneous Language Model Training

	Heterogeneous Training Management System (HTMS)
	Supervision Layer
	Context Management Layer
	Task Management Layer

	Management System Workflow
	Doubled Context Buffer
	Forward State
	Backward and Optimization State

	Experiments
	Experiment Setup
	Scalability Test
	Computation and Communication Analysis

	Conclusions
	References

