
Citation: Reis, B.R.d.; Nguyen, T.;

Sujani, S.; White, R.R. Open-Source

Wearable Sensors for Behavioral

Analysis of Sheep Undergoing Heat

Stress. Appl. Sci. 2023, 13, 9281.

https://doi.org/10.3390/

app13169281

Academic Editors: Nunzio Cennamo,

Naveen Kumar and César

Pascual García

Received: 3 July 2023

Revised: 1 August 2023

Accepted: 14 August 2023

Published: 16 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Open-Source Wearable Sensors for Behavioral Analysis of
Sheep Undergoing Heat Stress
Barbara Roqueto dos Reis, Tien Nguyen, Sathya Sujani and Robin R. White *

School of Animal Sciences, Virginia Tech, Blacksburg, VA 24060, USA
* Correspondence: rrwhite@vt.edu

Abstract: Heat stress (HS) negatively affects animal productivity and welfare. The usage of wearable
sensors to detect behavioral changes in ruminants undergoing HS has not been well studied. This
study aimed to investigate changes in sheep’s behavior using a wearable sensor and explore how
ambient temperature influenced the algorithm’s capacity to classify behaviors. Six sheep (Suffolk,
Dorset, or Suffolk × Dorset) were assigned to 1 of 2 groups in a cross-over experimental design.
Groups were assigned to one of two rooms where they were housed for 20d prior to switching
rooms. The thermal environment within the rooms was altered five times per period. In the first
room, the temperature began at a thermoneutral level and gradually increased before decreasing.
Simultaneously, in the second room, the temperature began at hot temperatures and gradually
decreased before increasing again. Physiological responses (respiratory rate, heart rate, and rectal
temperature) were analyzed using a linear mixed-effects model. A random forest algorithm was
developed to classify lying, standing, eating, and ruminating (while lying and standing). Thermal
stress shifted daily animal behavior budgets, increasing total time spent standing in hot conditions
(p = 0.036). Although models had a similar capacity to classify behaviors within a temperature
range, their accuracy decreased when applied outside that range. Although wearable sensors may
help classify behavioral shifts indicative of thermal stress, algorithms must be robustly derived
across environments.

Keywords: individual monitoring; heat stress; behavior

1. Introduction

Livestock welfare and production are notably affected by the thermal environment.
High ambient temperature compromises animals’ efficiency because maintaining body tem-
perature becomes the highest priority instead of using nutrients for production purposes,
e.g., milk and meat production [1]. Although advancements in management systems such
as cooling systems and modern barn construction alleviate some negative effects of heat
stress (HS), globally, it is estimated that livestock producers may face a financial loss of
$40 billion annually by the end of the 21st century [2]. Physiological adaptations such as
increased respiration rate [3] and sweating [4] are employed as heat abatement mechanisms
by domestic animals intended to reduce heat loads and increase heat dissipation.

Traditionally, measurements of body temperature are the most widely used to assess
or predict HS in livestock [5]. With the advancement of technology, the ability to monitor
and predict physiological responses like body temperature automatically is progressing
rapidly [6]. However, these automated temperature monitoring technologies may miss
opportunities to identify changes within heat-stressed environments (i.e., before severe
shifts in productivity occur) because deviation in temperature will only reflect when animals
have exceeded the homeothermic limits. Nevertheless, these technologies aim to reduce
human intervention, decrease the costs associated with management, and increase animal
welfare through an improved understanding of stress exposure. In this context, methods
used to measure body temperature and physiological responses to HS using remote sensing
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include vaginal and rectal probes [7], rumen boluses [8], thermal imaging [9], and ear
canal sensors [10] as an alternative to monitoring temperature directly, monitoring animal
behaviors during exposure to heat stress may allow for a more precise understanding of
stress levels and adaptation across a temperature gradient, rather than signaling only when
animals have exceeded their thermoregulatory mechanisms.

Animals in HS environments tend to alter their natural behavior in order to maintain
euthermia in comparison with animals in thermoneutral conditions. Rumination is reduced
in cows [11] with shifts in rumination patterns, with more than 60% of the daily rumination
occurring at night [12]. Moreover, standing bouts have been demonstrated to increase in
hot temperatures [13] as an attempt to enhance the body surface area and support cooling.
Although previous studies have characterized some of these changes related to HS, e.g., a
decrease in feed intake and its effects on production being the most studied [14,15], other
behavioral changes in ruminants undergoing HS, such as the frequency and duration of
activities including grazing, eating, lying, and standing behaviors have not been well
studied. Moreover, there is limited information available regarding measurements of HS in
sheep when compared to other species, such as dairy cattle. Enhancing our understanding
of HS in sheep could significantly benefit the sheep industry once sheep serve as a cost-
effective animal for extensive systems. A challenge with using behavior to evaluate animal
stress responses induced by climate is that behavioral adaptations may differ considerably
between scenarios with gradual versus extreme shifts in the environment. For example,
during extreme temperature changes, animals may show much more obvious behavioral
adaptations, whereas those employed during gradual temperature shifts may be more
challenging to observe and detect. Previously, inertial measurement units (IMU) to monitor
and classify animal behaviors have been used in thermoneutral environments [16–18].
However, the robustness of the behavior classification algorithms used in these sensors
within thermoneutral environments has not been well characterized. As such, the explo-
ration of the robustness of these sensors for use in heat stress behavior monitoring is critical
before use in studying behavioral shifts associated with different ambient temperatures
and with different patterns of temperature change.

To investigate the role of HS on behavior, the objective of this study was to evaluate
the usage of an open-source wearable sensor equipped with a three-axis accelerometer,
gyroscope, and magnetometer to classify behaviors of interest in sheep exposed to different
patterns of ambient temperature fluctuation. We hypothesized that animals experiencing
HS would shift daily time bouts relative to those housed in thermoneutral conditions. In
addition, we expected that algorithms for behavior classification derived within thermoneu-
tral environments would be insufficient for accurate and precise behavioral classification in
heat-stressed environments.

2. Materials and Methods
2.1. Animals Experimental Design

The animals and procedures in this study were approved by the Virginia Tech Institu-
tional Animal Care and Use Committee (Protocol #20-200). Six commercial wethers (Suffolk,
Dorset, or Suffolk × Dorset) were used in the study. Wethers were approximately 5.5 years
of age and averaged 90.2 ± 13.4 kg body weight at the beginning of the experiment. The ex-
periment consisted of a crossover design with wethers randomly assigned to 1 of 2 groups
exposed to different patterns of thermal stress. The groups were randomly assigned to
1 of 2 identical rooms (2.71 m) where they were housed for 27 days. The room’s floor
was layered with rubber flooring and lined with sawdust bedding. After completing the
27-day period, animals were moved between rooms to initiate the cross-over component of
the design. The animals were adapted in each room for a period of 7 days. The thermal
environment in each room changed 5 times per period (once every 4 days). In one room, the
temperature started at thermoneutral before increasing and decreasing gradually (20 ◦C,
27 ◦C, 35 ◦C, 27 ◦C, 20 ◦C), and in the other room, the animals were immediately exposed
to a hot temperature before gradually decreasing and increasing again (35 ◦C, 27 ◦C, 20 ◦C,
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27 ◦C, 35 ◦C). The room temperature was adjusted and maintained under the control of a
computer system (Siemens Building Automation System, Siemens Industry Inc., Alpharetta,
GA, USA). Animals were fed Timothy (Phleum pratense L.) hay ad libitum, replenished
twice daily at 08:00 and 17:30 h for the entire experiment in order to mimic continuous feed
access as would be experienced in a variety of production environments.

2.2. Collar Instrumentation

Four animals were fitted with an inertial measurement unit for behavior classification.
The behavior monitoring collars fitted to the wethers included an open-source, low-cost,
low-power sensor. A generic HiLetgo® MPU-9250 motion sensor (Shenzhen Hiletgo Co.,
Ltd., Shenzhen, Guangdong, China) which included a 3-axis accelerometer, gyroscope, mag-
netometer, an Arduino-compatible microprocessor, and a data storage module (SD Card
16 GB). The sensors were powered using a rechargeable lithium-ion battery (6700 mAh) con-
nected to the microcontroller by a micro-USB cord. The microprocessor was programmed
using the open-source Arduino Development Environment (IDE) software version 1.0
(https://www.arduino.cc/en/Main/Software (accessed on 6 October 2021) and configured
to record the data onto the SD card at 100 Hz. All electronic components were connected
and affixed to a collar. The collar was positioned around the animal’s neck.

2.3. Physiological and Behavioral Measurements

Throughout the experimental period, respiration rate, heart rate, and rectal temper-
ature were measured twice daily at 7:00 and 17:00 h. Respiration rate (breaths/minute
[BrPM]) was measured by visual inspection for 10 flank movements and converted to
breaths per minute. Heart rate (beats/minute [BPM]) was measured using a stethoscope
for 10 s and multiplied by six to obtain the beats per minute. Rectal temperature (◦C) was
recorded by a clinical thermometer inserted into the rectum. Animal behavior was video
recorded over the experimental period. Two cameras were utilized per room. The cameras
provided continuous observation of the entire room, ensuring continuous monitoring of
the animals at all times.

The timing of the video recording extended from morning to the next day (~24 h)
with the time stamp from the video analysis used to match the inertial measurement unit
data. Activity (eating, laying, standing, and ruminating) was determined for each minute
for the four animals fitted with sensor collars. Video-recorded activities were classified
using the criteria: (1) eating: feed intake from the feed bucket, chewing and swallowing
the feed; (2) standing: static standing, with minor head movement and no jaw movements;
(3) laying: laying down in a rest position without rumination; and (4) ruminating: the
animal was standing or laying down while regurgitating rumen bolus, chewing and
then re-swallowing.

2.4. Statistical Analysis

Statistical analyses were conducted using R Statistical Software v4.1.2 [19]. For the
physiological measurements, the lme4 package [20] was used to derive the model. Before
the experiment, a power analysis was conducted to determine the required sample size per
treatment group to achieve a type error probability of 0.05 with a power superior of 0.90
based on a power t-test. Normality was tested for the model derivation process through the
evaluation of residual plots. Relationships were analyzed as a linear mixed-effect model
with period and group as a random effect. Response variables included respiration rate (RR)
(breaths/minute [BrPM]), heartbeat (HR) (beats/minute [BPM]), and rectal temperature (RT,
◦C). Because of the temperature pattern used, there were several explanatory variables used
to dissect aspects of the thermal environment for their influence on animal vital signs. The
primary response of interest was the temperature experienced during a 4-day monitoring
period. However, because that temperature could be experienced following a higher or
a lower temperature, we also included a continuous variable to indicate the change in
temperature from the previous period. Furthermore, temperatures could be experienced in
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the gradual (low temperature, to high temperature, back to low temperature) sequence or
in the drastic (high temperature immediately) sequence. These sequence differences were
also accounted for, as were the 2- and 3-way interactions among the thermal environment
variables. Formally, the response variables were analyzed using the following model:

Yijklm = µ+ αi + β j + γk + αβγijk + cl + dm + εijklm

where µ represents the overall mean, αi is the effect of the ith ambient temperature, β j
is the effect of jth overall trend in the temperature changes (representing whether the
gradual or drastic temperature pattern was used), γk is the effect of the kth difference in the
temperature from the current period to the previous period, αβγijk represents the 2- and 3-
way interactions of ambient temperature i, temperature trend j, and temperature lag k, cl is
the random effect of period l, dm is the random effect of group m, and εijklm is the residual
error associated with temperature i, temperature trend j, temperature lag k, and period l,
and group m.

For the behavior classification, the random forest (RF) algorithm from the package
randomForest [21] was derived for each temperature of interest. To investigate the predictive
capacity of the algorithm, 70% of the IMU sensing data were randomly selected to build a
training dataset, and 30% of the dataset was randomly selected to build the test dataset. A
set of four models were derived, using data either from all thermal environments together
or using data from each thermal environment. In addition to evaluating against the 30% of
each dataset that was held out during derivation, we also evaluated the individual thermal
environment algorithms against the data obtained under the other thermal conditions to
explore the transferability of these algorithms among thermal conditions. Irrespective of the
derivation dataset, models were derived using the 9-axis data from the IMU as explanatory
variables and the behaviors of interest as the response variable. During each evaluation
task (i.e., using either held-out data or data from other thermal environments), the con-
fusionMatrix function of the package caret [19] was used to compute accuracy, precision,
sensitivity, and specificity metrics. The evaluation metrics were computed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Speci f icity =
TN

TN + FP

Sensitivity =
TP

TP + FN

Precision =
TP

TP + FP
where TP (true positives) is the number of occurrences where behavior was appropriately
classified by the model as the behavior that was observed (video analysis observation-
golden standard). TN (true negatives) is the number of occurrences where behavior was
correctly classified as not being detected. FP (false positives) is the number of occurrences
where the model incorrectly classified a behavior that was not detected. FN (false negatives)
is the number of occurrences where the algorithm classifies a specific observed behavior as
some other behavior.

3. Results
3.1. Physiological Measurements

Results for physiological variables are presented in Table 1. Ambient temperature,
temperature trend, temperature lag, and their interaction had a significant effect (p < 0.05)
on respiration rate, with wethers having a significant increase in RR [BrPM] at 35 ◦C in
comparison to 20 ◦C in both the gradual and rapid change temperature patterns. How-
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ever, the RR [BrPM] was higher when the temperature was drastically changed to 35 ◦C
rapidly. The effect of temperature lag and its interaction with ambient temperature was
also significant (p < 0.05) for HR [BPM], and animals showed lower HR [BPM] at 35 ◦C,
particularly during the drastic temperature shift pattern. Finally, ambient temperature
and its interaction with temperature trend and temperature lag and the interaction of
temperature trend with temperature lag also had a significant effect (p < 0.05) on RT (◦C).
In this case, rectal temperatures were highest among animals at 35 ◦C after the drastic shift
in temperature.

Table 1. LS means for physiological measurements as differentiated along with p-values for the effects
of temperature. Temperature trend (gradual or drastic), temperature lag (reflecting the difference in
temperature from the previous period), and their interaction.

Respiration Rate, BrPM Heart Rate, BPM Rectal Temperature, ◦C

Temperature ◦C Gradual Drastic Gradual Drastic Gradual Drastic

20 17.9 (6.66) 16.4 (8.71) 56.3 (2.57) 57.6 (2.95) 38.3 (0.09) 38.2 (0.12)
27 23.1 (6.01) 22.3 (6.01) 55.9 (2.46) 55.1 (2.46) 38.4 (0.08) 38.4 (0.08)
35 66.0 (7.66) 90.2 (7.66) 54.8 (2.67) 52.8 (2.75) 38.6 (0.1) 38.8 (0.1)

p-Values Respiration Rate Heart Rate Rectal Temperature

Ambient
Temperature <0.0001 0.07 <0.001

Temperature
Trend <0.0001 0.55 0.78

Temperature Lag <0.0001 <0.001 0.51
Ambient
Temperature *
Temperature
Trend

<0.0001 0.23 <0.001

Ambient
Temperature *
Temperature Lag

<0.0001 <0.001 <0.001

Temperature
Trend *
Temperature Lag

0.92 0.26 <0.001

Figures 1–3 display the response of the RR [BrPM], HR [BPM], and RT (◦C). Means for
the three different ambient temperatures when shifts in temperature occurred gradually
(low to high temperature) and drastically (high temperature immediately with gradual
decline). The RR [BrPM] was higher when the temperature was drastically changed to
35 ◦C, and the same pattern was observed for RT (◦C). The opposite was observed for HR
[BPM], with lower HR [BPM] for high temperatures under rapid temperature shifts but
with higher rates when the temperature gradually changed.
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3.2. Behavior Classification

The classification performance metrics using the RF algorithm for identifying eating,
lying, lying and ruminating, standing, and standing and ruminating are presented in
Tables 2–4, representing a model fit across data obtained from all temperatures versus
models fit from data within each temperature. When derived and evaluated across all
data, the RF had moderate accuracy for behavioral classification (67 to 78%; Table 2). This
range of accuracy was similar to those fits obtained from evaluating models derived within
each temperature range (Table 3). Although the specificity of models for most behaviors
was generally high (69 to 100%), the sensitivity was lower for some behaviors, particularly
standing and standing/ruminating behaviors (28 to 43%; Table 3). Crucially, those models
derived within individual temperature ranges did not achieve similar performance when
evaluated against data obtained from other temperature ranges, resulting in marked drops
in precision and somewhat lower accuracy (Table 4).
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Table 2. Random forest algorithm performance for behavior classification of the four animals fitted
with the wearable sensor across all temperatures throughout the experiment.

Model Performance Indicators Specificity Sensitivity Accuracy

Behavior Classifier
Eating 94% 61% 78%
Lying 71% 83% 77%
Lying and Ruminating 89% 63% 76%
Standing 97% 36% 67%
Standing and Ruminating 100% 34% 67%

Table 3. Random forest algorithm performance for behavior classififcation of the four animals
fitted with the wearable sensor at ambient temperatures of 20 ◦C, 27 ◦C, and 35 ◦C throughout
the experiment.

Model Performance Indicators Specificity Sensitivity Accuracy

Behavior Classifier
20 ◦C Eating 93% 59% 76%

Lying 69% 84% 76%
Lying and Ruminating 89% 56% 73%
Standing 96% 31% 64%
Standing and Ruminating 100% 28% 64%

27 ◦C Eating 93% 70% 82%
Lying 75% 82% 78%
Lying and Ruminating 89% 64% 76%
Standing 97% 40% 68%
Standing and Ruminating 100% 37% 68%

35 ◦C Eating 94% 57% 75%
Lying 75% 80% 78%
Lying and Ruminating 87% 68% 77%
Standing 96% 43% 70%
Standing and Ruminating 100% 35% 67%

To explore shifts in the data structure that may have contributed to the poor translata-
bility across thermal ranges, Table 5 shows the influence of temperature range on measured
behavior characteristics. Time per bout of eating, lying, and lying and ruminating was
significantly affected by the thermal environment. Total time standing was significantly
affected by the thermal environment, and as a reflection of that, the animals spent more
time standing in the hot condition.
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Table 4. Accuracy and precision of the random forest algorithm fit in each temperature across the temperature ranges throughout the experiment period on the four
animals fitted with the wearable sensors.

Temperature Range Used to Derive Model Evaluated at 20 ◦C Evaluated at 27 ◦C Evaluated at 35 ◦C

Accuracy Precision Accuracy Precision Accuracy Precision

20 ◦C Eating 76 61 Eating 50 4 Eating 52 18
Lying 76 85 Lying 52 83 Lying 50 56
Lying and
Ruminating 73 37 Lying and

Ruminating 49 10 Lying and
Ruminating 51 21

Standing 64 34 Standing 49 5.2 Standing 50 8.6
Standing and
Ruminating 64 29 Standing and

Ruminating 50 0 Standing and
Ruminating 50 0

27 ◦C Eating 50 10 Eating 82 72 Eating 48 7.2
Lying 50 52 Lying 78 81 Lying 50 50
Lying and
Ruminating 51 40 Lying and

Ruminating 76 64 Lying and
Ruminating 49 40

Standing 49 0 Standing 68 39 Standing 50 1.4
Standing and
Ruminating 50 0 Standing and

Ruminating 68 32 Standing and
Ruminating 50 0

35 ◦C Eating 50 4.7 Eating 48 5 Eating 75 60
Lying 50 35 Lying 48 34 Lying 78 79
Lying and
Ruminating 50 48 Lying and

Ruminating 49 50 Lying and
Ruminating 77 68

Standing 50 6.5 Standing 51 8.5 Standing 70 44
Standing and
Ruminating 50 0 Standing and

Ruminating 50 0 Standing and
Ruminating 67 17
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Table 5. Total of bouts, time per bout, and total time spent in each behavior for different temperatures of the total six animals throughout the experiment.

Eating Lying Lying and Ruminating Standing Standing and Ruminating

Temperature ◦C Bouts Time per
Bout

Total
Time Bouts Time per

Bout
Total
Time Bouts Time per

Bout
Total
Time Bouts Time per

Bout
Total
Time Bouts Time per

Bout Total Time

20 34.7 78.6 932 69 43.9 1336 54.4 50.3 1180 62.1 13.4 355 2.85 5.66 22
27 34.4 47.6 836 70.4 32.7 1417 51.3 35.6 1127 65.4 10.2 416 3.64 7.26 26.2
35 34 12.1 727 72.1 19.9 1511 47.8 18.9 1066 69.1 6.6 486 4.54 9.1 31.1

Eating Lying Lying and Ruminating Standing Standing and Ruminating

p-Values Bouts Time per
Bout

Total
Time Bouts Time per

Bout
Total
Time Bouts Time per

Bout
Total
Time Bouts Time per

Bout
Total
Time Bouts Time per

Bout Total Time

Ambient Temperature 0.993 0.001 0.114 0.87 0.021 0.514 0.248 0.003 0.417 0.177 0.064 0.036 0.801 0.254 0.736
Temperature Trend 0.784 0.421 0.182 0.174 0.501 0.412 0.14 0.425 0.673 0.994 0.983 0.466 0.976 0.412 0.644
Temperature Lag 0.635 0.596 0.134 0.393 0.833 0.213 0.262 0.458 0.752 0.211 0.219 0.157 0.68 0.162 0.777
Ambient Temperature *
Temperature Trend 0.796 0.451 0.194 0.923 0.471 0.367 0.223 0.45 0.854 0.897 0.93 0.586 0.979 0.525 0.69

Ambient Temperature *
Temperature Lag 0.737 0.672 0.149 0.349 0.978 0.184 0.226 0.542 0.846 0.267 0.262 0.157 0.668 0.183 0.729

Temperature Trend * Temperature
Lag 0.929 0.046 0.094 0.271 0.161 0.789 0.829 0.134 0.145 0.411 0.078 0.372 0.163 0.479 0.344

*: interaction.
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4. Discussion
4.1. Physiological Responses

As a response to heat increment, livestock reveals thermoregulatory adaptations such
as behavioral, physiological, neuroendocrine, and molecular shifts designed to support
the maintenance of body temperature within survivable limits [22]. The physiological
responses categorized as respiratory rate, heart rate, rectal temperature, skin temperature,
and sweating rate are usually exhibited following behavioral responses [23]. In the present
study, an assessment of animal responses such as behavior (lying, standing, eating, ru-
minating responses), respiration, heart rate, and rectal temperature of sheep undergoing
heat stress were collected. The animals showed higher RR and RT when the temperature
was drastically changed to 35 ◦C in comparison with gradually changing temperature,
suggesting that the effect of HS on RR and RT is amplified during extreme weather events.
When developing management strategies to support climate-smart agriculture, specific
mitigation approaches for extreme weather events may be necessary.

Despite thermo-regulatory responses, animals’ productivity tends to decrease during
summertime [24]. In the United States, both large and small sheep farms rely heavily on
pasture-based systems, with the large scale typically operating on pasturelands and the
smaller farms maintained on pastures and feedlots [25]. The outdoor housing systems used
in the sheep industry increase the susceptibility to climate-related stress, specifically heat
stress, thereby increasing their vulnerability to such impacts [26–28]. Therefore, mitigation
strategies and technologies to help minimize the negative impact of heat stress on sheep
will be necessary to maintain the resilience of this industry as the climate changes.

Increased RR is a very sensitive and widely used indicator of heat stress [3]. In
ruminants, RR can be influenced by several factors, including the level of production, body
condition, housing, cooling systems, and prior exposure to high temperatures [3]. Sweating
and evaporation through the respiratory tract are the most important mechanisms of heat
exchange between the sheep and its environment, with sweating being secondary due
to the presence of wool [29]. In sheep, the normal respiratory rate is typically between
20 and 38 BrPM [30]. In this study, mean respiratory rates increased when the ambient
temperature was gradually increased (17.9 vs. 66.0 BrPM), and there was a marked increase
when the temperature underwent drastic changes (90.2 BrPM). However, the respiratory
mean at 27 ◦C was similar, suggesting that sheep leverage changes in RR at temperatures
higher than 27 ◦C.

Similar results for RR in Suffolk sheep were demonstrated by [31], who evaluated the
effects of HS in different sheep breeds in tropical regions. Because RR changes were not
observed at intermediate temperatures, this physiological indicator may be an insensitive
strategy to identify low-to-moderate stress instances associated with elevated but not
excessive ambient temperatures. For reference, a RR of 60 to 80 BPM is typically considered
medium to high stress [32].

High environmental temperatures also increase pulse rates, reflecting altered circula-
tion as a response to the increase in blood flow from the core to the periphery [29]. However,
at extremely high temperatures, due to the decrease in the metabolic rate, the pulse rate
might drop [33]. Moreover, heart rate is influenced by other factors such as age, metabolism,
and biological activity [27]. The authors in [34] evaluated the responses of Merino sheep
(average age of 12 months) under HS conditions and found an increase in HR up to 109 BPM
when animals were exposed to 30 ◦C in an environmentally controlled experimental room.
In this study, the animals’ HR decreased during both gradual and drastic changes in tem-
perature, with significantly lower HR for drastic change (52.8 beats/minute), suggesting
that the decrease in metabolic rate during extreme weather events might have a stronger
influence on HR. The HS heart rate identified is lower than those identified in previous
studies [35,36], and these differences might be attributed to the influence of breed and age
on HR. The animals from this study averaged 5.5 years of age, which would be considered
quite old for wethers. Therefore, it is not surprising that the maximal HR observed in this
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study was lower than in previous studies using growing animals because maximal heart
rates tend to decline with age.

A representative assessment of animal core temperature is the rectal temperature. Even
under unfavorable climatic conditions, sheep, as strict homeotherms, leverage numerous
physiological mechanisms to maintain their body temperature within a relatively narrow
range [29]. Previous work has demonstrated that a rise of 1 ◦C or less in RT is sufficient to
diminish the performance of most livestock [37], especially sheep. Under thermoneutral
conditions, sheep have a normal RT range between 38.3 and 39.9 ◦C [29], with temperatures
exceeding 42 ◦C considered dangerous [38]. It has been stated that the rise in RT in sheep
starts at an ambient temperature of 32 ◦C, with mouth panting beginning at an RT of
40 ◦C [39]. In this work, ambient temperature had a significant effect (p < 0.05) on the RT
with an increase of 0.3 ◦C as animals were gradually adjusted from 20 to 35 ◦C. During
drastic changes in temperature, the RT increased by nearly twice that (0.6 ◦C). These values
are still within the normal range for sheep considered to be in the thermoneutral zone.
Our findings are consistent with the findings from [39], where HS effects in Merino and
Omani sheep in an extensive system were evaluated. Similar results for RT were also found
by [40] in Merino sheep under HS conditions in an extensive system. Despite the fact that
the mean rectal temperatures observed within the present study were within the normal
range, the increase in rectal temperature associated with 35 ◦C does suggest animals were
experiencing HS conditions.

Although the physiological responses of sheep to elevated ambient temperatures are
well documented within the literature, these values represent practical challenges because,
in extensive production systems, their measurement as a means of determining thermal
stress is not practical. In order to monitor HR and RT, in particular, the animal would
need to be restrained and often separated from the remainder of the herd, which in and
of itself can be a source of stress. As such, practical reliance on HT and RT as a means
of diagnosing heat stress will be limited until better technologies for remote monitoring
of these physiological parameters becomes available. An alternative to monitoring these
physiological parameters is to monitor animal behaviors. Indeed, animals may begin to
adapt daily behavioral budgets well before measurable changes in physiological indicators
of heat stress are detectable. Therefore, monitoring behavioral characteristics might help
to characterize animals experiencing early HS, which may help inform when and where
mitigation-related management should be applied.

4.2. Effects of Temperature on Animal Behavior

An animal’s physical state can be inferred from its action, which allows using animal
behavior as an indicator of welfare [41]. The variability in behavior, the length of behav-
ioral bouts, and the transition frequencies between activities and rest can be altered by
HS [41]. To quantify those changes, behavior can be recorded continuously or sampled at
regular intervals and can be characterized by metrics on individual activities or a complete
ethogram of an individual or group [42]. The number of bouts, time per bout, and total
time that animals spent in each behavior are presented in Table 5.

Behavioral responses to HS have been previously investigated in ruminants, mainly in
cattle. Generally, the behaviors of interest involve dry matter intake (DMI) measurements.
Even a slight rise in ambient temperature from 25 to 27 ◦C has been shown to decrease DMI
in dairy cattle [43]. Collectively, the DMI responses to HS support the notable negative
impact on health and production [23]. This influence of the thermal environment on HS
exemplifies the challenge of waiting until clinical HS symptoms appear to apply stress
abatement. Although the decrease in DMI is important for modulating the depressed
productivity of HS animals, studies involving pair-fed thermal neutral controls reveal that
the reduced DMI contributed to only ~50% of the decrease in productivity related to milk
production in dairy cows [44]. Residual changes in productivity could be due to shifts
in pre- or post-absorptive metabolism [45]. Measuring DMI was not an objective of this
study. However, bouts, time per bout, and length of eating were lower in high ambient



Appl. Sci. 2023, 13, 9281 12 of 16

temperatures (Table 5), which is consistent with impaired eating behavior and reduced
DMI in heat-stressed animals.

Measures of lying and standing behaviors are indicators of animal welfare and how
animals interact with the environment [46–48]. Increased standing time was believed to be a
response to heat stress in cattle driven by the need to expose more surface area and enhance
cooling [13,49,50] with decreasing lying bouts as a consequence. Despite the fact that
an increase in the total time standing was significantly associated with elevated ambient
temperatures in this study, animals spent the majority of their time lying down. This large
daily time budget for lying behavior is in contradiction with the literature. For example, [51]
evaluated lying time and frequency as a behavioral response of HS in Holstein bull calves
using an accelerometer and found that an increase in lying time and frequency during the
daytime was possibly caused by acute HS. A possible explanation for the notable difference
in daily time budgets measured in this study may reflect the age of animals and their
comfort with experimental procedures. The sheep used in this work have been involved
in numerous intensive research projects since their cannulation at 15 to 17 months of age.
Their old age in the present study, coupled with habituation to experimentation, may have
supported improved comfort with the experimental procedures supporting elevated lying
time budgets observed herein. The fact that animals increased total standing time with
elevated temperatures is likely the best reflection within the behavioral observations of
animals’ behavioral adaptation to heat stress.

4.3. Ability of an Open-Source Sensing System to Classify Behaviors

The analysis of animal behavior has been extensively explored with the advancement
of precision technologies, which allow for automatically monitoring animal behaviors with
a degree of detail not possible previously. However, such technologies for monitoring
behavior have not been widely used in heat-stressed animals, and it is not clear whether
traditional behavioral classification algorithms need to be updated to reflect the distri-
bution of behaviors expected during HS. In sheep, the use of wearable sensors, mainly
accelerometers, has been explored to detect behaviors such as lying, ruminating, walking,
and grazing [52–54] and more specific applications for health monitoring such as lameness
detection [55]. Nevertheless, these technologies can also be applied to understand the
physiological state of an animal by monitoring its responses in a specific environment.
Therefore, sensing technologies to distinguish the activities of animals under thermoneutral
and stressed conditions that are more sensitive across the true distribution of behaviors
during exposure to heat load is critical for more precise management of HS conditions.

Before sensing technologies can be used to understand behaviors, machine learning
algorithms are needed to translate sensed data into meaningful output. The RF algorithm
in this study could differentiate between behaviors with medium-high accuracy (Table 2)
when derived and evaluated across all data from all temperature ranges. The eating
activity was the most accurately (78%) classified behavior, followed by laying, laying, and
ruminating (77% and 76%, respectively). These accuracies were lower in comparison with
the 95% performance for standing and laying classification in sheep found by [56] and
for standing and lying (87% and 84% accuracy, respectively) classification in cows found
by [57]. The authors in [58] evaluated the use of an accelerometer to classify seven behaviors
of interest in cows and found similar accuracy (80%) and lower sensitivity (52%) for feeding
behavior in comparison with the present study even though a different algorithm was
used. Overall, developing an approach that maintains satisfactory levels of accuracy while
minimizing the amount of data analyzed is considered a main obstacle in using IMU [59].
Several factors can influence the accuracy of algorithms used in classifying behaviors,
including the placement and orientations of the sensors, appropriate sampling frequency,
number of animals, and the accelerometer itself [60]. Despite the significant progress of
technologies, there is a gap in the use of those technologies to measure the behavior and
adaptations of livestock to environmental challenges. Specifically, the lack of appropriate
algorithms that are robust across climate conditions.
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In this context, to evaluate the robustness of the algorithm in different temperatures,
the accuracy and precision of the random forest algorithm across the different temperature
ranges were also tested (Table 3). In general, the results show a similar range of accuracies
when evaluated within the temperature range used for derivation. Interestingly, the
accuracy of eating behavior classification was highest in the 27 ◦C environment, while the
lower accuracies for standing and ruminating while standing behaviors were consistent
among all environments. Although lying behavior was the most frequent among all thermal
environments, it was not always the best classified, which suggests that the imbalance
of data associated with normal time budget differences among behaviors was not solely
responsible for creating deviations in the accuracy of the models. When models derived
under specific thermal environments were evaluated based on data obtained from different
temperatures, there were notable shifts in model performance (Table 4). The models derived
based on thermoneutral data only (20 ◦C) had notable reductions in accuracy and extremely
poor precision for nearly all behaviors when evaluated on data obtained from 27 ◦C and
35 ◦C. Lying behavior was the most resilient, with marginally improved accuracy and
acceptable precision when evaluated against data from 27 ◦C, likely due to the fact that the
time budgets for lying behavior were similar between 20 ◦C and 27 ◦C. The models derived
from data at 27 ◦C and 35 ◦C also performed poorly when compared against data obtained
from other thermal environments, with several behavioral evaluations yielding accuracies
of ≤50% and precision of 0.

Collectively, this exploration shows a critical limitation of precision technologies
leveraging machine learning to translate sensor data to behavioral classification. The
training data for these algorithms requires the demonstration of a wide array of expected
production conditions to help ensure adequate behavioral classification among those
conditions. For example, many evaluations of accelerometers explain details about the
animals, their housing, the time of day, and other important methodological aspects of data
collection, but they rarely refer to other environmental descriptors, such as the temperature.
Similarly, longitudinal analyses of precision technologies focus predominantly on overall
classification performance and fail to specifically investigate systematic errors in prediction,
such as those which may be driven by failing to properly account for behavioral budget
shifts during altered thermal environments. As the body of the literature leveraging
commercial and open-source behavioral sensing technologies expands and matures, efforts
to collate data among tools, and associated meta-data, may be essential to help better
understand how methodological and environmental factors (such as age, breed, housing
system, thermal environment, feeding schedules, group size, etc.) can be controlled for help
develop robust behavioral classification techniques which are applicable across a broader
array of potential production contexts.

5. Conclusions

Heat stress is a well-documented factor that can negatively impact livestock produc-
tivity. Traditionally, monitoring heat-stressed animals has relied on visual observations of
behaviors or conventional methods such as manual recording of body temperature and
respiration rate. In this study, we sought to address this challenge by employing open-
source IMU sensors to detect changes in sheep’s behavior occurring in response to heat
stress. Our findings demonstrate an acceptable level of accuracy in differentiating between
animals’ behaviors in hot and thermoneutral environments when using algorithms trained
on data from all thermal conditions studied. However, we observed a significant decline
in algorithm performance when tested outside the thermal range used for the derivation
data. This highlights the importance of carefully considering the experimental contexts
when training IMU algorithms for behavioral classification. Given the diverse production
contexts, environments, and animal types in which these sensors may be applied, data
sharing among research teams studying similar technologies is crucial. Moreover, sharing
data facilitates the validation and reproducibility of results, which can enhance the capacity
to generate accurate and reliable classification approaches. However, such an effort would
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require considerable expansion in the meta-data recorded and considered with traditional
behavioral classification studies. Overall, the utilization of open-source IMU sensors of-
fers a promising approach for monitoring heat-stressed livestock and enhancing livestock
management practices.
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