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Abstract: The fluctuation of normal leakage current has a great influence on the fixed-threshold
leakage protector. To address this issue, this paper proposes an adaptive leakage protection method
based on the sparrow search algorithm (SSA)-backpropagation (BP) neural network. Based on the
analysis of the normal leakage current generation mechanism, this method uses the SSA optimized
BP neural network to construct a prediction model of normal leakage current. By dividing the
normal leakage range into several intervals and setting the corresponding action threshold, the action
threshold of the interval is automatically selected in advance, based on the predicted value of the
model, so as to realize the adaptive protection of the leakage current faults. Experiments have proved
that the leakage protector can identify the leakage fault more sensitively and increase the ratio of the
protector put into operation by predicting the development of normal leakage current and adjusting
the protection action threshold in advance.

Keywords: leakage protection; adaptive adjustment; SSA-BP neural network; normal leakage current
prediction; leakage fault

1. Introduction

Most of the low-voltage power grids in China are directly grounded at neutral points,
and the consequences of leakage accidents are thus very serious [1,2]. Leakage protection
is crucial to preventing the leakage fires and personal electric shock casualties in low-
voltage distribution networks [3–5]. According to IEC 60947-2 (circuit breaker incorporating
residual current protection) and IEC 60755 (general requirements for residual current
operated protective devices), residual current devices (RCDs) should react to leakage
currents from 30 mA to tens of amperes [6,7]. There is a certain amount of normal leakage
current (residual current) that exists when the low-voltage distribution line is operating
regularly [8]. In order to ensure the leakage protector operates normally, the current action
setting of the leakage protector should be selected as low as possible under the premise
of avoiding the normal leakage current of the line [9,10]. In practice, the normal leakage
currents of low-voltage distribution lines have a large numerical fluctuation affected by
the external environment, power grid structure, and load size, and has obvious regional,
climatic, and seasonal characteristics. For example, in the southern region of China, there
is often a problem that the normal leakage current of the line increases during the rainy
season, resulting in the failure of the leakage protection to be put into operation [11,12].
Therefore, ensuring the practical operational proportion of the leakage protector without
reducing its sensitivity has become an urgent problem to be solved.

In recent years, in order to improve the reliability of leakage protection, a variety of
residual leakage protection technologies have been developed by researchers [13–15]. A
method in [8] takes the leakage current variation in addition to the instantaneous root-
mean-square (rms) value of the leakage current as the indicator of leakage fault. Although
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it solves the problem of a protection dead zone to a certain extent, the application effect is
less than perfect because there are still protection misoperation and rejection phenomena.
Ref. [16] proposed a method for detecting and identifying the earth leakage current among
a group of electrical appliances using frequency domain analysis. Although it somewhat
increases the device’s action reliability, the issue of circuit tripping and power failures still
remains unsolved. The enterprise standard of the China Southern Power Grid puts forward
the regulations and references for the use of different currents for leakage protection in
rainy and non-rainy seasons. The standard considers the influence of humidity on leakage
current, but not the temperature, load current, and line aging. In addition, with the devel-
opment of modern signal processing techniques, some related techniques, such as variable
mode decomposition (VMD), big data analysis, neural network algorithms, and machine
learning approaches [17–21], have been applied to the detection of residual current. In [17],
an adaptive residual current detection method based on VMD and a dynamic fuzzy neural
network (DFNN) was proposed. A residual current warning technique based on big data
analysis was proposed in [18]. The combination of wavelet transform (WT) and backprop-
agation neural network (BPNN) was proposed to preprocess the signal with multiscale
wavelets, and then to use the processed signal as a sample for detection and analysis by
BPNN, in [19]. The WT must predetermine the fundamental wave, decomposition layer,
threshold, and threshold function, which reduces the algorithm’s adaptability [20]. In [21],
a residual current detection method was proposed, based on machine learning approaches.
Although these methods have improved the residual current detection accuracy to a certain
extent, they cannot predict normal leakage current and cannot set the protection action
threshold in advance, which means some application limits.

To solve those problems, this paper proposes an adaptive leakage protection method
that uses the SSA-BP neural network to predict the normal leakage current of the line
and adjust the protection action threshold in advance. By setting multi-level action gears,
the method selects the action threshold based on the predicted leakage after a specific
period of time. The switching of gears effectively solves the problem when the normal
leakage current changes greatly, and meets the dynamic demand of leakage protection.
This research is not only applied to household leakage protection, but can also be used for
microgrid leakage prediction [22–24]. The method’s concepts can also be used in short-term
prediction fields such as short-term wind power prediction and advance perception of
energy storage charge and discharge [25].

The rest of this article is organized as follows. Section 2 analyzes the generation
mechanism of normal leakage current. The framework of adaptive leakage protection,
construction and training of the prediction model are introduced in Section 3. In Section 4,
adaptive leakage protection strategies are introduced in detail. The experimental results and
the comparative study are presented in Section 5. This article concludes with a summary
in Section 6.

2. Principle of Normal Leakage Current Variation

The International Electrotechnical Commission (IEC) classifies low-voltage distribu-
tion systems as the TN system, TT system, and IT system, according to whether the neutral
point of the system and the load shell are effectively grounded [26]. Since the TN-C-S sys-
tem is safer and more reliable, it is progressively replacing the TN-C system, and is widely
used for low-voltage distribution systems in industrial and urban civil buildings. Therefore,
this paper proposes a leakage protection method for the TN-C-S system. In the low-voltage
distribution network, due to the distributed capacitance and ground conductance between
the line and the ground, a small amount of current flows into the ground during normal
operation, namely the normal leakage current. Figure 1 shows the generation of normal
leakage current of a three-phase line and the principle of leakage protection. A, B, C, and
PEN are the three-phase and PEN lines. IA, IB, IC, and IPEN are the three-phase and PEN
line currents. ZAload, ZBload, and ZCload are the three-phase loads. ZPEN and ZPE are the
PEN and PE line impedances. ZAG, ZBG, and ZCG are the three-phase ground impedances,
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ZG0 and ZG1 are the impedance of the neutral point and the repeated ground point to
ground, respectively. IAG, IBG, and ICG are the three-phase leakage currents. When a
single-phase leakage fault occurs, the leakage current of TA (current transformer) is higher
than the protection action set threshold, and switch KM is opened.
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Figure 1. Normal leakage current generation mechanism.

The leakage current can be divided into capacitive leakage current and conductance
leakage current according to the cause, which can be expressed by the following equation
(taking the A-phase as an example):

IAG = IC_A + IG_A, (1)

where IC_A is the capacitive leakage current of the A-phase, and IG_A is the conductance
leakage current of the A-phase.

Figure 2 shows the highest leakage current recorded by the leakage protector at the
main switch of a 200 kVA distribution transformer somewhere at a certain period of time.
The normal leakage current has a wide range of fluctuations, which are the result of a
combination of factors.
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Figure 2. Highest normal leakage current change curve in a year.

Specifically, the capacitive leakage is generated by the distributed capacitance between
the line and the ground. The capacitive leakage current is given by (2).

IC_A = 2π f CUA =
f εrSUA

2kd
, (2)
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where f is the frequency of the system voltage and εr is the atmospheric dielectric constant,
and its value is affected by environmental humidity, temperature, and insulation aging. S is
the effective direct area of the line to the ground, which is determined by the outer diameter
and length of the line. UA is the A-phase voltage, and its influence is mainly reflected in
the line voltage drop caused by the load current. For rural power lines and power lines
with long transmission distances and excessive loads, this voltage-drop value should be
considered. k is the electrostatic force constant, and d is the height of the line.

In addition to the capacitance to the ground, there is a certain conductance between
the line and the ground, and the conductance current generated is:

IG_A =
KS
d

UA, (3)

where IG_A is the conductance leakage current, and K is the conductivity.
Considering the large changes in atmospheric humidity, temperature, line aging,

and line voltage, the normal leakage current may change greatly or even double, so it is
necessary to adaptively adjust the protection action threshold, by establishing a prediction
model of normal leakage current and training it with the collected data. After the training
is completed, the prediction of normal leakage current can be obtained according to the
input data and the corresponding protection action threshold can be adjusted.

3. Normal Leakage Current Prediction Model
3.1. Principle of Adaptive Action Threshold Adjustment

Figure 3 shows the schematic diagram of the leakage current prediction model consid-
ering the environmental humidity, temperature, and load current. By adding temperature,
humidity, and current sensors to the existing leakage protector, the feature collection of the
leakage current influencing factors of the system is realized. The leakage current after time
T (predictive time length) is predicted using the actual leakage current of the system and its
influencing factors as inputs for the prediction model. In order to rectify and optimize the
system coefficient, the actual measured leakage after time T is compared with the predicted
leakage. The optimal modeling is achieved after learning and correcting a certain number
of samples.
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The flow chart of adaptive protection action threshold adjustment based on leakage
prediction is shown as Figure 4. After preprocessing the collected characteristic data,
they are sent to the leakage prediction model to train the unknown system to obtain the
predicted leakage current. The measured leakage current is used as the expected value to
correct the system parameters. After a period of multi-sample data learning and training,
the model parameters are gradually improved, and the predicted leakage current gradually
approaches the real leakage current.
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3.2. Sparrow Algorithm Optimizes BP Neural Network Prediction

As the most typical deep learning method, the BP neural network [27–29] is widely
used by many scholars to predict temperature, current, passenger flow, and so on. Therefore,
this paper uses the BP neural network to construct a normal leakage current prediction
model, taking the feature vector at the current moment as the input, and the prediction as
the output. Figure 5 is a schematic diagram of the structure of the three-layer BP neural
network model, where xn

i represents the i (i = 1, 2, . . ., j) input of the n-th group of samples
in the input layer, yn represents the predicted value corresponding to the n-th group
of samples in the output layer, mn represents the actual measured value, en is the error
between the predicted value and the actual value, wip is the weight coefficient between the
input layer and the hidden layer, and wp is the weight coefficient between the hidden layer
and the output layer. The unipolar S function is selected as the activation function of the
neural network.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 15 
 

Train leakage 
current model  pre-process data

Measure data

Predict leakage 
current

Adjust the 
action gear

Leakage current 
prediction model

 complete 
training

End of gear 
adjustment

No adjustment 
required

Update

Satisfy adjustment 
conditions?

 Calculate 
error

Modify

Y

N

Start

 

Figure 4. Flow chart of adaptive action threshold adjustment. 

3.2. Sparrow Algorithm Optimizes BP Neural Network Prediction 

As the most typical deep learning method, the BP neural network [27–29] is widely 

used by many scholars to predict temperature, current, passenger flow, and so on. There-

fore, this paper uses the BP neural network to construct a normal leakage current predic-

tion model, taking the feature vector at the current moment as the input, and the predic-

tion as the output. Figure 5 is a schematic diagram of the structure of the three-layer BP 

neural network model, where n
ix  represents the i (i = 1, 2, ..., j) input of the n-th group of 

samples in the input layer, ny  represents the predicted value corresponding to the n-th 

group of samples in the output layer, nm  represents the actual measured value, ne  is 

the error between the predicted value and the actual value, ipw  is the weight coefficient 

between the input layer and the hidden layer, and pw  is the weight coefficient between 

the hidden layer and the output layer. The unipolar S function is selected as the activation 

function of the neural network. 

Input layer Hidden layer Output layer

n

1x

n

2x

n

jx
Modify weight

ny

nm

ne

ipw pw

 

Figure 5. Structure of BP neural network model. 

For the prediction model, the characteristic phasors  t t t At Bt CtI ,T ,H ,I ,I ,I  are used 

as input, which represent the measured leakage current, temperature, humidity, and 3-

phase load current at time t, respectively. The prediction of leakage current should be 

accurate and real-time. Thus, this method uses recursive prediction to input the 

Figure 5. Structure of BP neural network model.

For the prediction model, the characteristic phasors {It , Tt, Ht, IAt, IBt, ICt} are used as
input, which represent the measured leakage current, temperature, humidity, and 3-phase
load current at time t, respectively. The prediction of leakage current should be accurate and
real-time. Thus, this method uses recursive prediction to input the characteristic quantity at
time t and output the predicted leakage current at time t + 1, so as to obtain the prediction
of leakage current.



Appl. Sci. 2023, 13, 9273 6 of 14

The number of nodes in the hidden layer of the neural network will affect the accuracy
of the prediction. By comparing different numbers of nodes, it is found that the prediction
effect is the best when the number of nodes in the hidden layer is 12. Therefore, the
structure of the BP neural network is determined to be 6–12–1, while setting the learning
rate to 0.2.

Since the neural network optimizes the weight and threshold according to the negative
gradient direction of the error function, convergence is slow, and it is easy to fall into the
local optimum, which affects the performance of the BP neural network. In order to improve
the prediction accuracy, SSA [30,31] is used to iteratively update the weight and threshold
of the BP network. The fitness function of SSA is the minimum error value of the neural
network. The optimal weight and threshold are obtained through SSA optimization, and
the weight and threshold are assigned to the BP neural network. After several iterations,
the nonlinear dynamic mapping ability of the BP network is improved.

The sparrow search algorithm is a bionic intelligent algorithm proposed based on the
influence of two different behaviors of sparrows in the process of finding food. It has the
characteristics of strong optimization ability, fast convergence, and high stability. Sparrows
are separated into two groups when looking for food: the finders and the followers. The
finder’s behavioral strategy is to find food for the whole sparrow population by providing
the foraging area and direction of the population, and the follower’s behavioral strategy
is to obtain food by observing and following the finder. All sparrows in the population
can complete the search for food by performing both strategies. Moreover, sparrows in
peripheral locations are vulnerable to attack and need to constantly update their locations
to obtain optimal locations. In a sparrow population, once a sparrow finds a predator, a
warning message is sent, and the group immediately flies away from the danger area.

Supposing there are M sparrows in N-dimensional space; each sparrow’s position is
Pi = [pi1, pi2, . . ., piN] (i = 1, 2, . . ., M) and the fitness value is F = f [P1, P2, . . ., PM]. The SSA
consists of three core parts, which will be introduced in the following paragraphs.

In the SSA, finders with the best fitness value preferentially access food and provide
foraging direction for followers. Therefore, the finders acquired a higher foraging range
than the followers. As the individual fitness values change, the sparrow role also changes,
and during each such iteration the position of the finder changes, as shown as below:

pt+1
id =

{
pt

id × exp
(

−i
α×itermax

)
, Ralam < Rsa f e

pt
id + Q× L, Ralam ≥ Rsa f e

, (4)

where pt+1
id is the d-th dimension position information of the i-th sparrow individual after

the t-th iteration, itermax is the maximum number of iterations, α is a uniform random
number between (0, 1], Ralam means the alert value between [0, 1], and Rsa f e is the safe
value between [0.5, 1]. Q is a random number following a normal distribution. When
Ralam < Rsa f e, it means that there is no danger nearby at this time, so the sparrows with
higher fitness can obtain a supply of more abundant food. In other cases, it indicates
that some sparrows sense danger signals and give a warning, while the rest seek food
in new locations.

The update of the follower’s position is shown in Equation (5).

pt+1
in =

Q× exp
(

pwt
n−pt

in
i2

)
, i > M/2

pbt+1
n +

∣∣pt
in − pbt+1

n
∣∣× A+ × L, i ≤ M/2

, (5)

where t is the number of iterations, pbt+1
n is the current best position of the finder, and pwt

n
is the worst position. A is a 1 × d matrix (element values are random numbers of 1 and
−1), and A+ = AT(AAT)−1. When i > M/2, it means that the i-th sparrow did not obtain
food, and needed to change strategy and fly to other areas for the food search; in another
case, it represents that the i-th sparrow is foraging near the ideal position.
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The number of alert sparrows is usually 10% to 20% of the total; the initial position of
sparrow individuals is random, and its mathematical expression is as follows:

pt+1
in =

pbt
n + β

(
pt

in − pbt
n
)
, fi 6= fbest

pt
in + Kd

(
|pt

in−pwt
n|

( fi− fbad)+e

)
, fi = fbest

, (6)

where pbt
n is the best position for sparrows in the current population. β is a random number

obeying normal distribution (the mean value of β is 0, and the variance is 1), and the
function of β parameter is to control the step size. Kd is a random number between [−1, 1],
indicating the direction of sparrow movement, and also the step size control parameter.
fi is the fitness value of the i-th sparrow. fbest and fbad represent the global highest and
lowest fitness values of the current sparrow population, respectively. e is a constant to
avoid a denominator of 0. When fi 6= fbest, the sparrows at the edge of the population
are very vulnerable to being hunted by predators. If fi = fbest, the sparrows have already
sensed that the danger is approaching, and they will reduce the risk of being hunted by
approaching other sparrows.

3.3. Data Pre-Processing

The input feature vector includes the environmental temperature, humidity, leakage
current, and 3-phase current. In order to ensure the validity and typicality of the sample
data, it is necessary to preprocess the input, which specifically includes two aspects:

(1) Make sure that the leakage current measured is normal leakage current rather than
fault current. The influence of environmental factors on the normal leakage current of the
line is a slow-changing process that takes tens of minutes or even several hours, so the
adjacent cycle currents have a high degree of similarity. Unlike the normal leakage current,
there is a short transient state when the leakage fault occurs, and its duration ranges from
several milliseconds to several cycles. Therefore, the similarity coefficient of two adjacent
cycle waveforms can be used to distinguish the two types of leakage current. When the
leakage current is identified as the fault leakage current, the subsequent data will no longer
be used as training data. In this paper, the Pearson similarity coefficient is used, and the
leakage current similarity coefficient of the n-th adjacent cycle is defined as follows:

rk(n) =
∑ M

j=1

[(
xk−j − xk

)(
xk−n−j − xk−n

)]
√[

∑M
j=1

(
xk−j − xk

)2
][

∑M
k=1

(
xk−n−j − xk−n

)2
] =

xkxk−n − xk × xk−n√(
x2

k − xk
2
)(

x2
k−n − xk−n

2
) , (7)

where xk is the leakage current, M is the number of sampling points in one cycle, and xk is
the average value of xk one cycle.

In practice, since the signal measured by the leakage sensor is an alternating current
signal, both xk and xk−n are 0, and Equation (7) is simplified as:

rk(n) =
xkxk−n√(
x2

k

)(
x2

k−n

) , (8)

(2) Ensure the typicality of the training data. The collected environmental temperature,
humidity, and load current are all continuous data. It is not necessary to use all the sampled
data when selecting the training samples, and the method of sampling every other time
period can be adopted. The method in this paper acquires sampling data every 1 min. In
addition, due to the different units of the input parameters and the large difference in range,
in order to ensure the convergence speed of the neural network and improve the prediction
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accuracy, the data needs to be normalized. In order to normalize the input data into [0, 1],
the specific Equation is:

xn
i =

dn
i − dn

min
dn

max − dn
min

, (9)

where xn
i is the normalized data, dn

i is the measured data, dn
max and dn

min are the maximum
and minimum values in the n-th input sample data, respectively.

3.4. Prediction Model Training

The sparrow algorithm is used to iteratively update the weight and threshold of the BP
neural network, and the minimum error value of the neural network is the fitness function
of the sparrow algorithm. The sparrow algorithm obtains the ideal weight and threshold,
and it assigns the weight and threshold to the BP neural network. The specific training
steps are as follows:

Step 1: Initialize the weights and biases of each layer and set the basic parameters of
the BP neural network.

Step 2: Initialize the parameters of the sparrow search algorithm, including the number
of sparrow populations, the maximum number of iterations, the upper and lower limit of
the independent variable, the dimension, and the sample data.

Step 3: According to the input parameters, calculate the output of node p (p = 1, 2, . . ., j)
in the input layer.

hidn
p =

j

∑
i=1

wipxn
i + ap. (10)

Step 4: Calculate the output of hidden layer node p as

outn
p = f

(
hidp

)
=

1

1 + exp

(
−

j
∑

i=1
wipxn

i − ap

) . (11)

Step 5: Similarly, the output of the output layer is

yn = f
(

outn
p

)
=

1

1 + exp

(
−

z
∑

p=1
wpoutn

p − b

) . (12)

In (11) and (12), ap and b are the thresholds.
Step 6: The error of the predicted value can be expressed by the following Equation:

en = yn −mn. (13)

Step 7: The error in the training result is taken as the fitness value, and the current
position of the sparrow is obtained according to the fitness value.

Step 8: The SSA fitness value is updated according to the better position obtained
above. Update the values of wip and wp using Equations (14) and (15).

wip = wip + ηxn
i outn

p

(
1− outn

p

) z

∑
p=1

wpen. (14)

wp = wp + ηoutn
pen. (15)

In (14), η is the learning rate.
Step 9: The thresholds of the hidden and the output layers will also be updated as

ap = ap + en. (16)
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b = b + ηoutn
p

(
1− outn

p

) z

∑
p=1

wpen. (17)

Step 10: If the newly obtained fitness value is less than the original value, it means
the new position is better, and the value is updated; otherwise, the current value is
kept unchanged.

Step 11: If the fitness value is less than the set threshold, the termination condition is
satisfied. At the same time, the optimal fitness value satisfying the condition is output, as
well as the corresponding weight and threshold, in this case. Otherwise, the number of
iterations is increased by 1, and the execution jumps to Step 7.

Step 12: According to the optimal weight and threshold, the network model parame-
ters are obtained, and the BP network architecture is determined by using the parameters.

Step 13: The data that needs to be predicted are input to the optimized model for
normal leakage current prediction.

Step 14: Output the prediction results in the form of curves.
The overall fitness showed a downward trend, and reached the minimum value

of 0.0168 at 18 times after 50 iterations of evolution, which demonstrated that the SSA
algorithm can optimize the initial value of the weight and threshold of the BP neural
network algorithm with low overhead.

Table 1 shows the minimum relative error value, maximum relative error value, and
mean squared error value between the SSA-BP algorithm and the traditional BP neural
network algorithm. ‘MIRE’ represents the minimum relative error, ‘MARE’ represents the
maximum relative error, ‘MSE’ represents the mean squared error. The MSE of the SSA-BP
algorithm is 0.0095, the MIRE is 0.0017, and the MARE is 0.1852. According to the error
theory principle of the evaluation algorithm in econometrics, controlling the error within
the range of 20% is a better prediction algorithm. Through the comparison, it can be seen
that the prediction algorithm in this paper has a better effect.

Table 1. Results of the error assessment for the different prediction models.

Algorithm MIRE MARE MSE

BP 0.0086 1.0053 0.0411
SSA-BP 0.0017 0.1852 0.0095

4. Adaptive Leakage Protection Strategy

Adaptive leakage protection is the process of adjusting the action threshold of protec-
tion adaptively, according to the change in normal leakage. For the leakage protectors of
the amplitude comparison method and the phase detection method widely used in China
at present, under the premise of ensuring the normal operation of the leakage protector,
reducing the action setting of the current can improve the protection sensitivity.

The basic principle of realizing adaptive leakage protection is that when the leakage
current is higher than the leakage action threshold, the leakage protection is performed;
when the leakage current is within the limit range, the leakage action threshold remains
unchanged; and when the leakage current exceeds the specified limit range, and the
duration is longer than a certain time, the leakage action threshold is adjusted.

The operating range of the leakage protector is divided into n + 1 intervals, and the
leakage protection action threshold I∆d is determined according to the predicted normal
leakage current I∆. The setting is adjusted according to Equation (18).

I∆d =


I∆d0, I∆ < I∆H0
I∆dk, I∆ ∈ [I∆Lk, I∆Hk]
I∆dn, I∆ > I∆Ln

, (18)
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where k = 1, 2, . . ., n, I∆d0 and I∆dn are the lowest and highest gears, respectively, I∆Hk and
I∆Lk are the upper and lower limits of the current in the k-th interval, respectively.

Leakage interval switching rules should meet

I∆d =


I∆d(v−1), I∆ < I∆Lv and t > ∆t
I∆dv, I∆Lv < I∆ < I∆Hv, or I∆ < I∆Lv and t ≤ ∆t, or I∆dv > I∆ > I∆Hv and t ≤ ∆t
I∆d(v+1), I∆dv > I∆ > I∆Hv and t > ∆t

, (19)

where v = 0, 1, . . ., n, t is the duration, when I∆ ≥ I∆dv, the leakage protector triggered.
When the leakage action threshold is in the maximum or minimum value range, the

action threshold can only be adjusted to one side or remain unchanged; that is, when
the leakage action threshold is I∆d0, the action threshold can only be increased or remain
unchanged, and when the action threshold is I∆dn, the action threshold can only decrease
or remain unchanged. When the action threshold is in the non-maximum or non-minimum
interval, the action threshold has three possibilities: increasing, decreasing, or remaining
unchanged. In order to avoid frequent switching of leakage current action intervals caused
by the leakage current floating near the critical point of the interval, a partial overlapping
area between adjacent intervals is set. The duration of the transient process of leakage faults
is short, and they will reach a steady state within a few milliseconds. However, considering
that the duration of very few faults is relatively long, without loss of generality, ∆t is more
appropriate to take 1 min as the duration.

5. Experimental Verification
5.1. Leakage Current Prediction Experiment

To verify the feasibility of the method, the closed experimental system depicted
in Figure 6 was constructed. The experiment selects 100 m of polyvinyl chloride insu-
lated line with an inner diameter of 1.5 mm2, using 1000 nF capacitance and 100 kΩ
resistor-equivalent line-to-ground capacitance and resistance, and using a high- and low-
temperature-alternating humidity and heat test chamber to change the environmental
temperature and humidity. A combination of 100~2000 W incandescent lamps is used as
a load to generate different load currents. The test chamber is controlled to generate a
temperature of −40~40 ◦C and a humidity environment of 20~100%. The load is changed
so that the line carries a load current of 0.5~10 A, and the current of the transformer, and
the current of the current transformer, the temperature, and humidity of the test chamber
are recorded. The data sampling interval time was 1 min and the comparison of the pre-
dicted leakage with the actual leakage is shown in Figure 7. Figure 7 demonstrates that the
trajectory of the prediction is in good agreement with the normal leakage current, which
can accurately show the trend of the normal leakage. The prediction error is less than 5%,
which satisfies the accuracy requirements of adaptive adjustment of the action threshold.
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5.2. Adaptive Protection Test

If the fluctuation range of the normal leakage current is large and the interval is
small, the gears will be switched frequently; if the fluctuation range of the normal leakage
current is small and the interval is large, the effect of adaptive adjustment will not be
obvious. Therefore, the normal leakage current division interval should comprehensively
consider the fluctuation range of the normal leakage current and the complexity of gear
adjustment. Taking the maximum normal leakage current range of 200 mA as an example,
it is appropriate to divide it into five intervals: [0, 40], [30, 80], [70, 120], [110, 160],
and [150, 200]. The action thresholds of the corresponding leakage intervals are set to
60 mA, 120 mA, 180 mA, 240 mA, and 300 mA, respectively. Figure 7 depicts the adjustment
curve of the protection action threshold. The brown, purple, orange, and green dashed
lines represent 1, 2, 3, and 4 intervals of gear adjustment, respectively.

In general, the normal leakage current changes relatively slowly. Although the inte-
gration of the SSA-BP neural network has a higher computational complexity than that
of a single BP neural network, the efficiency of this model will not be affected, due to the
lower real-time requirement of leakage current prediction. In most cases, the method of
gear adjustment is to switch between two adjacent gears. If the leakage current changes
greatly, it can also be switched across intervals. Figure 8 shows the comparison between
the predicted leakage current and the actual leakage current in a certain period of time, and
the gear switching process. The specific process of gear switching will be described below,
in conjunction with Figure 7.
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(1) The leakage action threshold automatically selects the highest level at the beginning
of the algorithm running, that is, the 300 mA gear. However, the leakage current at
this time is 83 mA, which is less than the lower limit of the highest gear (150 mA), and
there is no situation exceeding [70, 120] within the next 1 min, so the leakage action
threshold is lowered to the 180 mA gear after 1 min.
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(2) During the period of 1~23 min, the predicted leakage current does not exceed the
leakage interval of [70, 120], and the protection action threshold remains unchanged.

(3) At 23 min, the leakage current was 121 mA, which was greater than the upper limit
of the original leakage interval (120 mA), and did not return to the original interval
within 1 min. In this case, the gear upward adjustment condition is met, and the
action gear is adjusted to the fourth gear, which corresponds to a change in the action
threshold to 240 mA.

(4) In the period of 24~32 min, the predicted leakage current does not exceed the interval
of [110, 160], and the protection action threshold remains unchanged.

(5) At 32 min, the leakage current value was 109 mA, which was less than the lower
limit of the original interval of 110 mA, and did not return to the original interval
within 1 min. In this instance, the action gear was adjusted to the third gear. That is,
the action threshold is 180 mA. Afterwards, gear shifting continues to be performed
according to the rules of Equation (19).

A variety of leakage current changes were simulated in the test, and the floating of the
leakage action threshold was consistent with the design. Effective leakage protection can be
performed no matter which gear the normal leakage current is in. The operation availability
and accuracy of the leakage protector with an adaptive action threshold have been enhanced
in comparison to the leakage protector with a fixed action threshold. The ratio of protector
activation and leakage fault identification accuracy of the leakage protection device has
been increased from less than 50% to over 90%. In addition, because the action threshold of
adaptive leakage protection is always set at the lowest level to ensure the normal operation
of the leakage protector, it is more sensitive to identifying low fault currents generated by
high-resistance ground faults (more than 5 kΩ). It will effectively reduce the occurrence
of personal electric shock accidents and generate great value for the low-voltage leakage
protection industry. The leakage prediction accuracy and protection reliability with the
access of distributed generations need further research [32,33].

5.3. Compared with Other Methods

A comparison between the method proposed in this paper and the traditional leakage
protection methods is shown in Table 2. The adaptive leakage current detection method
based on VMD-DFNN can cope with the change in normal leakage current and realize the
full adjustment of the protection action threshold. The adaptive leakage protection based
on fuzzy logic can realize the adjustment of normal leakage value in the range of −30%
to 20%. These two methods have neither an action-threshold grading setting and nor do
they involve the threshold adjustment in advance. In contrast, the method in this paper
acts according to the normal leakage current, and there is no action dead zone. Therefore,
the proposed method has higher reliability and protection effects.

Table 2. Comparison results of several methods.

Methods Algorithms Adjustment
Range

Adjust in
Advance

Protective
Effectiveness

[17] VMD-DFNN Full Range No Medium
[34] Fuzzy Logic [−30%, 20%] No Low

Proposed
Method SSA-BP Full Range Yes High

6. Conclusions

(1) In this paper, the influencing factors of normal leakage current change are analyzed,
and it is found that the normal leakage current of the line is affected by the environmen-
tal temperature, humidity, aging, and line voltage drop, and that the normal leakage
current may change greatly or even double under multi-factor extreme conditions.
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(2) The SSA-BP neural network is used to build a prediction model of normal leakage
current, and the model is trained based on the current and historical data collected. In
the leakage protection experiment, the prediction accuracy is more than 95%, and the
operation rate and action accuracy of the leakage protection device are more than 90%.
It is verified that the predicted results can be used as a reference for the development
trend of a normal leakage current.

(3) The predicted leakage current is used to adjust the protection action threshold in
advance, which improves the action accuracy of the leakage protector. It not only
ensures the operation availability of the leakage protector, but also makes the leakage
protector more sensitive in identifying the high-resistance ground leakage fault. In
future work, we will explore the impact of input data quality on prediction accuracy
and how to improve the accuracy of leakage prediction by improving data quality.
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