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Abstract: DRAINMOD is a process-based hydrologic model used to analyze the effectiveness of vari-
ous drainage systems and management strategies. In this study, a sensitivity analysis of DRAINMOD
hydrologic parameters for two different field settings located at Champaign, Illinois, was performed
to determine the most sensitive parameters that affect the subsurface flow and relative productivity
of corn. Latin-Hypercube One-Factor-at-a-Time (LH-OAT) was used to determine the sensitivity
index of 17 parameters for six objective functions for daily flow, water balance, and relative yield for
the productivity of corn. The results indicated that flow and yield were highly sensitive to drainage
design parameters such as drainage depth and spacing. Winter flow and the water balance were
sensitive to soil thermal conductivity parameters; however, they had no impact on the relative corn
yield. The significant difference in sensitivity of the two fields was observed in the hydraulic conduc-
tivity of soil layers due to varying thicknesses for different soil types. This study highlights the need
for more careful calibration of these sensitive parameters to reduce equifinality and model output
uncertainty and appropriate drainage design for optimizing crop productivity and drainage outflow.

Keywords: DRAINMOD; uncertainty; LH-OAT sensitivity; equifinality; multi-objective calibration

1. Introduction

For facilitating crop production and improved yield in areas with inadequate agri-
cultural drainage, subsurface (tile) drainage helps assure reliable and successful crop
production by removing extra water from the agricultural field. By enhancing trafficability,
drainage makes it easier to access fields in time for activities like tillage, planting, and
harvesting. Plant stress can be also reduced by removing the extra water from the root zone
and boosting crop output [1]. In addition, subsurface drainage lessens surface runoff, sedi-
ment losses, and the flow of contaminants adhering to the sediment, including phosphorus,
nitrogen, and pesticides, into surface waters [2]. It enhances soil aeration at the root depth,
which assists in organic matter decomposition in the soil.

Due to the interconnected dynamics of soil, water, and plant systems with multiple
processes and variables that influence the behavior, monitoring studies on a large scale to
capture this complexity can be challenging. Hydrological models have proliferated in the
past few decades as a tool to evaluate the problems associated with water management
primarily for two reasons. First, using models enhances the current understanding of cause-
effect dynamics in the aquatic ecosystem. Second, models offer a synthesis of essential
insights in the policy arena [3]. The process-based hydrological models conceptualize the
scientific understanding of the watershed’s and field’s hydrological, plant physiological,
and biogeochemical processes, providing an edge over empirical models for simulating
these associated processes [4].
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No hydrological models are an ideal representation of the actual process involved, and
it is also challenging to provide the initial and boundary conditions required by a model
with absolute precision. Thus, all the model calibrations and future predictions/projections
are subjected to uncertainty which arises primarily due to input parameters, observed data,
and uncertainties in the structure of model [5]. On the other hand, different sets of model
parameters lead to a similar performance index (for example, NSE or RSQ), which leads to
equifinality [6]. The bias in model predictions and the likelihood of errors increases with
the increase in uncertainty of the input parameters.

Due to the incompatibility between the model complexity and observed data, de-
termining the model input parameters during the calibration phase is one of the critical
tasks regardless of the hydrological model used. For example, the model parameters in
hydrological models can be estimated using manual and autocalibration approaches using
discharge-related measures. However, if the hydrological model has lots of parameters,
calibrating numerous parameters by manual is a time-consuming and cumbersome process.
Parameter sensitivity analysis can be considered to effectively minimize adjustment work-
load and achieve optimum simulation quickly and efficiently direct field data collection
and monitoring [7,8].

Sensitivity analysis is widely used to quantify the impact of change in model parame-
ters in the variance in predicting model outputs. It provides insights into the parameters
that have the most bearing on the model outputs, which can be utilized to refine calibration
and improve the model structure to lower model complexity and uncertainty [4]. Primarily,
two methods, global sensitivity and local sensitivity, are applied to study the sensitivity of
the models. In global sensitivity, all parameters are simultaneously altered in each model
run. In contrast to global methods, in the local sensitivity analysis (also called the one-at-a-
time (OAT) method), one parameter is altered at a time, keeping all other parameters as
base values. Due to high computational efficiency and simplicity, OAT methods have been
extensively utilized for sensitivity analysis of hydrological models [9–12].

DRAINMOD is the most commonly used process-based model to simulate tile drainage
systems, subsurface hydrology, and nitrogen and phosphorus dynamics in agricultural
fields [2,13–16]. A few studies were conducted on the uncertainty analysis of hydrological
and water quality parameters using DRAINMOD. For instance, Ref [17] made a relative
sensitivity analysis of the DRAINMOD hydrological parameters in the study on tile drain
spacing optimization in four fields in the Little Vermilion watershed, Illinois. Ref [9] per-
formed a two-step sensitivity analysis using global variables to assess the sensitivity of
nitrate losses on drainage using model prediction. Similarly, recently, Ref [15] made a sensi-
tivity analysis for DRAINMOD-H and DRAINMOD-N modules using the Morris screening.
The degree of the sensitivity of these parameters, however, differed. For example, Ref [17]
considered maximum surface storage an insensitive parameter, but Ref [15] considered it a
sensitive parameter for drainage flow. The possible reason for the differing results may be
the variation in field conditions and soil types which the authors still need to explain in
their study.

The researchers suggested that model calibration and uncertainty analysis based
purely on one variable does not ensure the reliability of hydrological models since water
balance elements might need to be more accurately represented [18]. The multi-objective
calibration and sensitivity analysis of the hydrological models may reduce the uncertainty
and help with the issue of equifinality in the model calibration process [19]. However, a few
studies were performed regarding the multi-objective sensitivity analysis of DRAINMOD.
So, this study aimed to enhance the model calibration and reduce the equifinality and
parameter uncertainty of DRAINMOD using multi-objective sensitivity analysis of 17 hy-
drological parameters. The authors analyzed the local sensitivity of the DRAINMOD
hydrological parameters for multiple objective functions representing drainage flow, water
balance, and relative yield. Moreover, a comparative sensitivity evaluation was performed
for two fields with distinct drainage designs, soil types, and other field conditions.
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2. Materials and Methods
2.1. Study Area

The study was conducted at the South Farm Agricultural Research Station of the Uni-
versity of Illinois located at Champaign County in Illinois, USA (−88.211472 E, 40.053167 N).
The 30-acre field was divided into six sub-fields as CF-1, CF-2, CF-3, CF-4, CF-5, and CF-6,
and respective outlets as CS-1, CS-2, CS-3, CS-4, CS-5, and CS-6 with different drainage
configurations to examine the impacts of tile drainage configurations on the drainage water,
soil properties, and nutrient losses, as well as crop production (Figure 1). Instrumenta-
tion for the field was set up in May 2018, and the field monitoring of tile flow, nutrient
concentration, and soil sampling was conducted for 2018–2022 to understand better the
effects of tile spacing and depth on hydrological responses and crop production. CF-6 was
located at the highest elevation (707 ft), while CF-1 was at the lowest elevation (692 ft). As
per the United States Department of Agriculture Natural Resources Conservation Service
(USDA-NRCS) soil survey report, the predominant soil for the field was Flanagan (154A),
followed by Drummer (152A). This study considered two fields, CF-3 and CF-4, having
distinct soil types: Drummer and Flanagan, respectively, with surface slopes being 1.2% for
CF-3 and about 1.8% for CF-4. Rainfall, temperature, and subsurface flow measured at the
study site were the observed data used for the model setup. The site was planted with corn
for 2019, 2020, and 2022 and soybean for 2021 with conventional drainage practices.
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Figure 1. Study area showing the field partition, monitoring outlets, and soil classification.

2.2. Model and Parameters Description

DRAINMOD is a deterministic field-scale model to simulate hydrology, nitrogen,
carbon, and phosphorus dynamics in poorly drained soils. The model was scaled up to the
watershed scale by incorporating the surface runoff routes from the field and projecting the
flow rates and stages in the drain channels and receiving streams [2,20]. DRAINMOD-H
is the module of DRAINMOD for hydrological analysis that performs water balance on
hourly and daily time scales, and the hydrologic variables such as surface runoff, infiltration,
subsurface drainage, water table depth, and drained pore space in the soil profile can be
projected on yearly, monthly, or daily scales as per the need. In addition, relative crop yield
and irrigation water requirement can be predicted [21]. The fundamental relationship of the
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model is the water balance in the unit area of soil layers that extend from the surface to the
impermeable layer (Figure 2). For the time step of ∆t, the water balance can be equated as

∆Va = F − ET − D − DS

and
P = F + RO + ∆S

where,

∆Va = Soil storage or change in the air volume (cm);
F = Infiltration (cm);
ET = Evapotranspiration (cm);
D = Lateral drainage (cm);
DS = Deep seepage (cm);
P = Precipitation (cm);
RO = Surface runoff (cm);
∆S = Change in surface water storage (cm).

Characterization of infiltration was conducted using Green–Ampt equation [22] and
potential evapotranspiration (PRT) was determined using Thornthwaite method [23] using
temperature as the sole climatic data. Similarly, subsurface drainage flow (cm/h) was
computed using Hooghoudt’s steady state equation [24] with correction for the convergence
near drains given by

q =
4 Ke×m× (2de + m)

L2

where q is the lateral subsurface drainage flux (cm/h), Ke is the effective lateral hydraulic
conductivity (cm/h) under water table, m represents the midpoint of the height in water
table above the drain (cm), de is the equivalent depth which is the depth of impermeable
layer below the base of drain (cm), and L is the spacing between drains (cm).
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Maximum surface storage (SS) characterizes the intensity of surface drainage which
indicates the average depth of depression storage that needs to be filled before surface
runoff takes place.
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2.3. Data and Sources of Information

Daily climate data (temperature and rainfall) were measured in a nearby field with a
weather station. Evapotranspiration was computed using the Thornthwaite equation using
observed temperature and rainfall data [23]. Out of 17 hydrologic parameters considered
in the study, some drainage system parameters, such as drain depth (B) and drain spacing
(L), were obtained from the observed data. The drainage coefficient (DC) computed using
the slope and drain area was less than the observed drainage flow. Hence, the maximum
observed historical daily subsurface drainage was used as DC in the study. Soil layer profile
and respective bottom layer depth were used as that of Drummer, a silty clay loam, from
the United States Department of Agriculture (USDA), Natural Resources Conservation
Services (NRCS) (Table 1). Corrugated plastic tile drains of diameter 4 inches were installed
at 40 ft (12.2 m) spacing at a depth of 3.5 ft (1.07 m) at a slope of 1.2% for CS-3 and 80 ft
spacing at a depth of 3.5 ft at the slope of 1.8% for CS-4. The daily drainage flow from
the tiles was obtained from the continuously monitored data. Grain corn was planted in
both fields on 24 April 2019, harvested on 7 October 2019, and planted on 8 April 2020 and
harvested on 7 October 2020, while soybean was planted on 10 April 2021 and harvested
on 10 October 2021. All the other coefficients and parameters for evapotranspiration, soil,
and crops were initialized based on the past study in the nearby locations [14], which were
later calibrated for the observed data.

Table 1. Parameters for DRAINMOD-H with their range and base parameter values for sensitivity analysis.

Parameters Meaning Unit Parameter Value
Drainage System Parameters CS3 CS4

H Depth to Impermeable Layer cm 152 152
Re * Effective Radius cm 1.1 1.1

B Drain Depth cm 107 107
L Drain Spacing cm 1220 2438

SS * Maximum surface storage cm 1.2 0.9
KD * Kirkham Depth cm 1.76 2.2
DC Drainage coefficient cm/day 2.09 2.36

Soil properties
Lateral saturated conductivity

LK5 * layer 5 cm/h 0.1 0.69
LK4 * layer 4 cm/h 3 1.5
LK3 * layer 3 cm/h 5.5 0.26
LK2 * layer 2 cm/h 2 1.09
LK1 * layer 1 cm/h 3 1.88

Soil type Drummer Flanagan
Soil layer bottom depth
layer 5 cm 152 152
layer 4 cm 100 114
layer 3 cm 81 97
layer 2 cm 48 58
layer 1 cm 18 46

Slope Surface slope % 1.2 1.8
Surface length along drain tiles cm 7800 8600

Soil temperature parameters
ZA * ZA coefficient 3.9 7.64
ZB * ZB coefficient 1.4 1.4
TKA * Thermal conductivity function (TKA) 3 3.97
TKB * Thermal conductivity function (TKB) 1.3 0.26
T_dep Soil temperature at bottom of soil profile ◦C 11.5 11.5
T_snow Avg air temp below which precipitation is snow ◦C 0 0
T_melt Average air temp above which snow starts to melt ◦C 1 1
CDEG * Snow melt coefficient mm/dd-◦C 7.6 3.58
CICE * Critical ice content above which infiltration stops cm3/cm3 0.2 0.11
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Table 1. Cont.

Parameters Meaning Unit Parameter Value
Drainage System Parameters CS3 CS4

Objective functions CS-3 CS-4
Calibration Validation Calibration Validation

NSE 0.5 0.58 0.49 0.46
RSQ 0.5 0.645 0.53 0.52
RMSE 0.206 0.161 0.196 0.192
PBIAS −5.70% −28% 1.86% −25%

* Represents calibrated parameters.

2.4. Calibration and Validation

The DRAINMOD model was run from January 2017 to December 2022 with a warmup
period from January 2017 to November 2018. The calibration of DRAINMOD parameters
was conducted for daily and annual subsurface flow for the period of November 2018 to
December 2020 for continuous corn production, and the validation was carried out for
the period of January 2021 to May 2022. The model was initialized using known data
as well as available literature for unknown parameters. First, a range of parameters was
selected based on the literature and judgment based on the field conditions (Table 1). The
flow parameters were divided into an array for the step interval of approximately 5%.
The Monte Carlo simulation was performed by running DRAINMOD 2000 times each to
obtain the best set of parameters using integrated Python codes and DRAINMOD. The
parameter range was updated by sensitivity analysis and graphical plots of the Monte
Carlo simulation results. The process was repeated till the model outputs well represented
the observed flow. Some manual adjustments were made for the final calibration of the
model on the lateral hydraulic conductivity and maximum surface storage following both
the graphical and statistical approaches.

Absolute values of Nash–Sutcliffe model efficiency coefficient (NSE), coefficient of
determination (RSQ), root mean square efficiency (RMSE), and percentage bias (PBIAS) for
the daily subsurface drainage flow and total cumulative flow were the objective functions
considered for calibration of the model. RSQ ranges from 0 to 1 and indicates the correlation
between observed and simulated data series of daily drainage flow, with 1 being the best
correlation [26]. NSE ranges from −∞ to 1 and represents the closeness between the data
series [27]. RMSE quantifies the average magnitude of differences between simulated and
observed values, while PBIAS denotes whether the simulated outputs are overestimated or
underestimated [28]. Calibration was considered satisfactory when the objective functions
for NSE and RSQ were greater than 0.4 for the daily hydrological data, and the difference
between cumulative flow was less than 10%. The graphical plot of daily hydrology data
and cumulative flow was used to assess the anomalies between the simulated and observed
values, for instance, in peak flow and slope of cumulative flow data.

NSE = 1− ∑n
i=1(Oi − Si)

2

∑N
i=1
(
Oi −O

)2

R2 =
∑n

i=1
(
Oi −O

)
∗
(
Si − S

)√
∑n

i=1
(
Oi −O

)2
) ∗

√
∑n

i=1
(
Si − S

)2

PBIAS =
∑n

i=1(Oi − Si)

∑n
i=1 Oi

× 100

RMSE =

√
n

∑
i=1

(Oi − Si)
2/n
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where Oi is the observed value, Si is the simulated value and O is the mean of observed
values, S is the mean simulated values and n is the number of data.

2.5. Sensitivity Analysis of Parameters

A total of 17 flow hydrological parameters, including drainage system parameters, soil
hydraulic parameters, and soil temperature parameters, were selected for the sensitivity
analysis using Latin Hypercube One-Factor-at--Time (LH-OAT) method, which is com-
monly utilized for screening and sensitivity analysis. In this method, only one parameter
varies. In contrast, the other parameters remain constant, which allows a specific attribute to
the change in model output concerning change in the input parameters. Sensitive analysis
was performed for multiple objective functions: NSE, RSQ, and RSME representing daily
drainage flow, PBIAS, and total cumulative flow representing long-term water balance and
relative yield of corn. The relative yield of corn was taken as an average of 2019 and 2020
from the DRAINMOD output. Two types of sensitivity indicators were calculated: relative
and absolute.

Relative sensitivity Index (RSI) defined by [9] was used for quantitative evaluation of
the sensitivity of the model output with an absolute change in the model inputs.

Sij =
|O(x1, . . . xi + ∆xi, . . . xp)−O(x1, . . . xi, . . . xp)|

(O(x1, . . . xi + ∆xi, . . . xp) + O(x1, . . . xi, . . . xp))/2
∗ xi
|∆xi|

Absolute sensitivity Index was defined as

Sij =
|O(x1, . . . xi + ∆xi, . . . xp)−O(x1, . . . xi, . . . xp)|

|∆xi|

where Sij is the relative partial effect of a parameter (xi) out of total p parameters and O
refers to the output of model for the considered objective functions. Partial sensitivity
indices (both relative and absolute) were considered in terms of magnitudes only rather
than considering signs for eliminating the cumulative effects.

The parameter xi was then varied by factor ∆xi = 5% from the range −80% to +80%
of the base value in the step interval of 5%. The best parameter sets after calibration were
taken as the base value, and the simulation was repeated. The final sensitivity index Sxi
was then computed by taking the average of these partial effects. The higher the value of
Sxi represents the outputs are more sensitive to the given parameters.

Sxi =
∑N

j=1 Sij

N

The sensitivity analysis was performed for both fields by repeating the same procedure.

3. Results and Discussion
3.1. Calibration and Model Performance

The known parameters and calibrated results are presented in Table 1. Overall, the
calibration was good for both CS-3 and CS-4 for November 2018 to December 2020. The
NSE and RSQ for daily flow for CS-3 were 0.50 and 0.50, respectively, while that for field
CS-4 were 0.49 and 0.53, respectively. Similarly, the difference in observed and simulated
cumulative flow for field CS-3 was−5.70%, and that of field CS-4 was 1.86%. The simulated
cumulative flow was underpredicted (PBIAS = −5.70% for calibration and PBIAS = −28%
for validation) for CS-3, while the flow was slightly overpredicted (PBIAS = 1.86% for
calibration and −25% for validation) for CS-4. High PBIAS values for these fields could be
because of low total outflow and inefficient simulation of peaks at the validation period.
The calibrated model was validated from January 2021 to December 2021. NSE and RSQ
for field CS-3 for validation were 0.58 and 0.62, respectively, that of field CS-4 was 0.46 and
0.52, respectively. Though the peaks were not well-simulated, water balance, correlation,
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and closeness were good enough to represent the observed data for the overall study period
(Figure 3).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 16 
 

because of low total outflow and inefficient simulation of peaks at the validation period. 
The calibrated model was validated from January 2021 to December 2021. NSE and RSQ 
for field CS-3 for validation were 0.58 and 0.62, respectively, that of field CS-4 was 0.46 
and 0.52, respectively. Though the peaks were not well-simulated, water balance, correla-
tion, and closeness were good enough to represent the observed data for the overall study 
period (Figure 3). 

 
Figure 3. Observed and simulated daily drainage flow for CS-3 (upper), CS-4 (lower) for study pe-
riod. 

3.2. Sensitivity Analysis 
The scatter plot for the DRAINMOD output with the change in input parameters for 

CS-3 suggests that the daily flow was most sensitive to the drainage design parameters 
such as drain spacing and depth. The parametric variation from −80% to 0 had much 
steeper slopes (Figure 4) than the variation from 0 to 80%. This finding indicates that the 
daily flow pattern, both in terms of closeness (NSE) as low as 0.4 and correlation (RSQ) as 
low as 0.6, are much different at the lower drain spacing and drain depth. However, the 
close drain spacing than the field settings (1220 cm) did not impact the overall cumulative 
flow much, as shown by the cumulative flow and PBIAS plot. A possible reason could be 
the sufficiency of the drainage system to remove the infiltrated water at this design. 
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3.2. Sensitivity Analysis

The scatter plot for the DRAINMOD output with the change in input parameters for
CS-3 suggests that the daily flow was most sensitive to the drainage design parameters
such as drain spacing and depth. The parametric variation from −80% to 0 had much
steeper slopes (Figure 4) than the variation from 0 to 80%. This finding indicates that the
daily flow pattern, both in terms of closeness (NSE) as low as 0.4 and correlation (RSQ) as
low as 0.6, are much different at the lower drain spacing and drain depth. However, the
close drain spacing than the field settings (1220 cm) did not impact the overall cumulative
flow much, as shown by the cumulative flow and PBIAS plot. A possible reason could be
the sufficiency of the drainage system to remove the infiltrated water at this design.

On the other hand, drain depth depicted remarkable effects in both daily flow and
cumulative water balance, as well as the relative yield of corn. A decrease in drain depth
by 80% yielded 30% less flow, and relative yield decreased to 20%. The yield is impacted by
drought or excessive water conditions, salinity, and planting delay. However, in this study,
the effects of salinity and planting delay were not evaluated. The reduction in the relative
yield is solely attributed to the excessive water stress on the crop due to ineffective removal
at the root zone. Drainage coefficient (DC), a parameter indicating the capacity of drainage
removal, impacted the flow to a specific range only. For instance, in CS-3 (Figure 4), figures
for NSE and RSQ had a sharp drop from −50% to −80% due to the tile drains’ limiting
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hydraulic capacity to remove the maximum infiltration volume to transport away from the
field. Kirkham depth impacted the cumulative flow results even if the daily flow indicators
had the same output, while surface storage and slope did not vary the model outputs
significantly at the given range.
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Soil parameters such as lateral conductivity of two different soil types had varying
effects on both flow and relative yield. The lateral hydraulic conductivity of the third layer
(LK3) from the surface impacted outputs of CS-3, while that of other layers was insignificant.
However, for CS-4 (Figure 5), LK3 and LK2 were insignificant, while LK5, LK4, and LK1
held viable impacts on the flow and yield outputs. This was mainly due to the varying
thickness of each layer for Drummer and Flanagan soil types. For instance, in Drummer
soil, the thickness of the first layer was 18 cm while that in Flanagan was 46 cm. More
variability in output was observed due to the change in the lateral conductivity of layer
1 in Flanagan. Layer 4, which was the layer consisting of tile drains, and layer 5, which
was a layer just below the tile drains, had a notable effect on the model output of CS-4. For
Drummer soil, layer 5 was the thickest layer and consisted of tile drains. However, it did
not impact the local sensitivity of outputs. However, it played a significant role during
model calibration using Monte Carlo simulation. This phenomenon is shown due to the
non-additive and non-linearity of the model, whose sensitivity is only realized from global
sensitivity analysis using the interaction of multiple parameters at once.
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Soil temperature parameters such as CICE, CDEG, and ZA did not impact the relative
yield but significantly affected the flow outputs. The effects were more notable on the water
balance as represented by a steep gradient for cumulative flow (Figures 4 and 5). CICE is
associated with the critical ice content above, which infiltration stops, and CDEG with the
rate of ice melt, which plays a role in water balance in the soil layers during winters. Thus,
these parameters do not contribute to the relative yield of corn. However, their uncertainty
impacts winter drainage flow and, so, their impact on water quality might be significant.
TKA and TKB represent soil thermal conductivity function and had little impact on both
model outputs.

Figures 6 and 7 summarize the LH-OAT sensitivity index value of DRAINMOD
hydrologic parameters for CS-3 and CS-4, respectively. RMSE and PBIAS are represented
by the absolute sensitivity index, while the relative sensitivity index characterizes NSE, RSQ
relative yield, and cumulative flow. It is because the values of RMSE and PBIAS are zero at
base simulation, which cannot represent the actual relative sensitivity of each parameter
since the ratio of change in model output per change in parameters input would always
be constant, whatever the parameters be. In both figures, the sensitivity of PBIAS appears
more dominating than RMSE. The dominating magnitude is because of the higher absolute
values of PBIAS than RMSE. However, the relative sensitivity characteristics can depict
the comparative evaluation of the model output’s behavior. Most RSI values were higher
for daily flow indicators (NSE and RSQ) than the water balance indicator (cumulative
flow) in both fields. It represents the lower agreement of the daily flow between the base
and simulated values than the long-term water balance by varying parameters in each
model run.
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For the CS-3 field, daily flow was most sensitive to drain spacing (ranked first for
NSE and RSQ sensitivity), followed by drain depth and lateral hydraulic conductivity
of the third layer from the surface (Table 2). Similarly, LH-OAT ranked CICE and DC
as the fourth and fifth sensitive parameters for daily flow. Nevertheless, RSQ and NSE
did not behave similarly in field CS-4 (Table 3). RSI for NSE was highest for drain depth,
followed by drain spacing, depth of impermeable layer, TKA, ZA, and Kirkham depth,
respectively. However, drain spacing ranked first, followed by the depth of impermeable
layer, drain spacing, TKA, and ZA. Slope and surface storage had negligible effects on
the model outputs in both fields. In general, the slope affects the runoff and, hence, the
infiltration capacity of the field, but the slopes in both fields were less than 2%, which is
comparatively flat, and the length of fields was also short (7.8 m for CS-3 and 8.6 m for
CS-4) in the direction of drain tiles layout. Thus, the variation of slopes within the set
ranges did not affect the model outputs significantly. The lateral conductivity of the second
and third layers also had an insignificant contribution to flow outputs for CS-4. In CS-4,
these were layers with comparatively lower thicknesses than the other layers. Moreover,
the soil layers’ composition (clay, silt, and sand percentage) and water-holding capacity
also impacted the layer properties.

Table 2. Compiled LH-OAT sensitivity ranking for CS-3.

Parameters

Relative Sensitivity Index Absolute Sensitivity Index

NSE RSQ Yield Cum flow PBIAS RMSE

Sx Rank Sx Rank Sx Rank Sx Rank Sx Rank Sx Rank

CDEG 0.010 6 0.009 7 0.000 16 0.006 7 0.696 6 0.064 7
CICE 0.016 4 0.016 4 0.000 17 0.021 1 7.523 1 0.073 5
DC 0.011 5 0.011 5 0.000 4 0.000 15 0.001 14 0.024 9
Depth_imp 0.000 11 0.000 11 0.000 6 0.001 8 0.363 9 0.002 14
Drain depth 0.066 2 0.058 2 0.053 1 0.018 2 6.466 2 0.158 2
Drain spacing 0.129 1 0.062 1 0.001 3 0.001 9 0.437 8 0.197 1
Kirk_depth 0.002 10 0.001 10 0.000 7 0.007 6 2.933 4 0.023 10
LK1 0.000 17 0.000 17 0.000 12 0.000 17 0.000 16 0.000 16
LK2 0.000 12 0.000 16 0.000 11 0.000 14 0.000 15 0.016 11
LK3 0.030 3 0.017 3 0.023 2 0.000 12 0.012 13 0.099 3
LK4 0.000 16 0.000 15 0.000 10 0.000 13 0.012 12 0.009 12
LK5 0.000 15 0.000 14 0.000 9 0.000 10 0.145 10 0.007 13
Slope 0.000 13 0.000 12 0.000 5 0.000 11 0.140 11 0.000 15
Surf_storage 0.000 14 0.000 13 0.000 8 0.000 16 0.000 17 17
TKA 0.010 7 0.009 6 0.000 14 0.009 4 0.495 7 0.073 6
TKB 0.003 9 0.003 9 0.000 15 0.008 5 0.758 5 0.055 8
ZA 0.009 8 0.009 8 0.000 13 0.010 3 3.756 3 0.074 4

For the CS-3 field, the long-term water balance was most sensitive to soil temperature
parameters with the first ranking of CICE (Table 2). Similarly, other soil temperature
parameters ZA, TKA, and TKB were ranked third, fourth, and fifth for CS-3. This result was
quite unusual compared to other flow indices and the water balance index for field CS-4.
A possible reason could be the winter flow observed from the model output compared
to the no-flow condition from the observed data (Figure 3). This result also depicts an
uncertainty of soil temperature parameters affecting the behavior of sub-surface hydrology
in cold regions such as Illinois. For CS-4, however, water balance was most affected by
the drainage system parameters drain depth and spacing with first and second ranking,
respectively. This result corresponds to the daily flow indicator (NSE) for CS-4. Kirkham
depth, LK5, and CDEG were ranked third, fourth, and fifth, respectively. The possible
reason for discrepancies in the water balance indicators for CS-3 and CS-4 could be soil
composition and variation in the thickness of the soil layers.
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Table 3. Compiled LH-OAT sensitivity ranking for CS-4.

Parameters

Relative Sensitivity Absolute Sensitivity

NSE RSQ Yield Cum flow PBIAS RMSE

Sx Rank Sx Rank Sx Rank Sx Rank Sx Rank Sx Rank

CDEG 0.007 13 0.006 13 0.003 12 0.001 17 0.829 14 0.101 7
CICE 0.000 17 0.000 17 0.001 17 0.002 16 6.602 7 0.052 11
DC 0.006 14 0.005 14 0.013 10 0.003 15 0.267 17 0.008 15
Depth_imp 0.264 3 0.264 2 0.267 3 0.005 14 1.350 11 0.005 16
Drain depth 0.005 15 0.005 15 0.015 9 0.007 13 37.005 1 0.213 1
Drain spacing 0.003 16 0.003 16 0.021 8 0.008 12 29.023 2 0.200 2
kirk_depth 0.084 7 0.081 6 0.002 15 0.012 11 20.942 3 0.107 6
LK1 0.025 11 0.019 11 0.072 4 0.014 10 5.734 8 0.059 10
LK2 0.146 4 0.142 4 0.003 14 0.016 9 3.106 9 0.023 14
LK3 0.021 12 0.019 12 0.002 16 0.016 8 2.739 10 0.024 13
LK4 0.141 5 0.136 5 0.004 11 0.018 7 7.845 5 0.061 9
LK5 0.026 10 0.024 10 0.041 6 0.020 6 8.789 4 0.068 8
Slope 0.055 8 0.051 8 0.003 13 0.021 5 0.650 15 0.003 17
surf_storage 0.031 9 0.029 9 0.045 5 0.022 4 1.259 12 0.029 12
TKA 0.086 6 0.052 7 0.022 7 0.053 3 0.598 16 0.176 3
TKB 0.317 2 0.223 3 0.269 2 0.073 2 0.837 13 0.123 5
ZA 0.352 1 0.286 1 0.307 1 0.096 1 7.332 6 0.172 4

Field CS-3 had a better drainage design than field CS-4 (Table 1), and the base relative
yield was close to 100%. Thus, given the ranges of parameters, other parameters except the
drainage design parameter did not significantly impact the relative yield of corn. Though
the yield output of corn for 2019 and 2020 differed, the average yield was taken as an
indicator of overall corn yield. For CS-3, drain depth, LK3, and drain spacing impacted
the corn yield. However, CS-4 needed a better drainage design, so the relative yield could
have been higher (average 70%). Also, many other parameters, in addition to drainage
design, impacted the yield of corn for this design. Like CS-3, drain depth was the most
sensitive parameter influencing relative yield, followed by drain spacing. These are visible
in the relative yield plot (Figure 5), where the increase in drain depth and decrease in
drain spacing improved the relative yield by up to 100%. Relative yield for CS-4 was also
sensitive to the depth of the impermeable layer and lateral hydraulic conductivities of the
first, fifth, and fourth layers. Given the inadequate drainage design, lateral conductivities
of these layers affected the water logging in these soil layers at the root zone. In both fields,
soil temperature parameters were not sensitive to corn’s relative yield.

4. Conclusions and Limitations

Calibration, validation, and sensitivity analysis of 17 hydrologic parameters for
DRAINMOD were performed in two fields with distinct soil characteristics, and drainage
design was conducted. The multi-objective sensitivity analysis of the fields using daily
drainage flow, water balance, and relative yield depicts the varying results for these fields.
The results indicated that both daily and long-term flow, as well as the relative yield of the
corn, were most sensitive to the drainage design parameters of the tile drain spacing and
drain depth. Parameters related to the soil properties influencing sub-surface hydrology,
such as the lateral hydraulic conductivity of dominant layers, impacted the flow and yield
results. Soil temperature-related parameters mainly impacted the long-term water balance
but did not affect the relative yield of corn. These findings, however, may differ in other
regions since this study was conducted in specific climatic regions.

Since sensitivity analysis reflects the parameter uncertainty of the model, careful
calibration of the most sensitive parameters needs to be conducted to reduce prediction
errors. The study also suggests that drainage design variables such as depth and spacing
must be considered cautiously depending on field settings, as they highly impact flow and
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crop productivity. Some parameters were affected during the calibration of the model in
combination with other parameters but not in the LH-OAT analysis, whose actual impacts
might be realized by global sensitivity analysis. Moreover, we did not consider the nutrient
parameters that could influence the relative crop yield, which we acknowledge was a
limitation in the current study.
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