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Abstract: Building polygons plays an important role in urban management. Although leveraging
deep learning techniques for building polygon extraction offers advantages, the models heavily rely
on a large number of training samples to achieve good generalization performance. In scenarios
with small training samples, the models struggle to effectively represent diverse building structures
and handle the complexity introduced by the background. A common approach to enhance feature
representation is fine-tuning a pre-trained model on a large dataset specific to the task. However,
the fine-tuning process tends to overfit the model to the task area samples, leading to the loss of
generalization knowledge from the large dataset. To address this challenge and enable the model to
inherit the generalization knowledge from the large dataset while learning the characteristics of the
task area samples, this paper proposes a knowledge distillation-based framework called Building
Polygon Distillation Network (BPDNet). The teacher network of BPDNet is trained on a large
building polygon dataset containing diverse building samples. The student network was trained
on a small number of available samples from the target area to learn the characteristics of the task
area samples. The teacher network provides guidance during the training of the student network,
enabling it to learn under the supervision of generalization knowledge. Moreover, to improve the
extraction of buildings against the backdrop of a complex urban context, characterized by fuzziness,
irregularity, and connectivity issues, BPDNet employs the Dice Loss, which focuses attention on
building boundaries. The experimental results demonstrated that BPDNet effectively addresses the
problem of limited generalization by integrating the generalization knowledge from the large dataset
with the characteristics of the task area samples. It accurately identifies building polygons with
diverse structures and alleviates boundary fuzziness and connectivity issues.

Keywords: building extraction; knowledge distillation; building vector polygons; high-resolution
remote sensing imagery

1. Introduction

Buildings are essential components of cities and serve as the primary places for resi-
dential and commercial activities [1]. Building polygons refer to the vector line information
representing the planar outline of buildings when viewed from an overhead perspective.
They play a crucial role in various fields such as urban planning [2], smart cities [3], 3D mod-
eling [4], and disaster assessment [5]. Therefore, there is significant interest in extracting
building polygon information rapidly and accurately.

In general, the process of extracting the polygon of a building is to first extract the
raster mask, then use the texture, shape, and structure to design conversion rules, and
finally convert the raster mask to a vector polygon within the constraints of the rules [6]. For
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example, firstly, remote sensing imagery is initially interpreted manually or through semi-
automatic methods to extract the raster mask [7]. Secondly, mathematical morphology [8],
edge detection operators such as Canny and Sobel [9,10] and Hough transform [11] are
employed to extract building features, which are used to design rules for the transformation
process. Finally, a rule set is used to determine the boundary positions of building raster
masks and convert them into vector polygons. However, these methods can only extract
accurate building polygons when predefined rules are satisfied. Besides, the methods
are complex, resource-intensive, and have high labor costs, resulting in low automation
levels [12].

In recent years, deep learning techniques have been widely applied in the field of
remote sensing and have achieved remarkable results in building extraction [13]. For
instance, using high-resolution remote sensing imagery, accurate building regions can be
extracted using techniques such as semantic segmentation [14–16], object detection [17–19],
and instance segmentation [20,21]. Building polygon extraction techniques have also grad-
ually shifted towards deep learning-based methods. The basic workflow of such methods
involves first obtaining a raster mask for the building class using deep learning-based
semantic segmentation techniques and then vectorizing the raster results. Furthermore,
researchers have integrated strategies such as multi-scale information [22], attention mecha-
nisms [23], and multi-feature fusion [24] to extract more precise and effective features from
high-resolution imagery to obtain more accurate raster masks. In the vectorization process,
some studies have incorporated building corner and edge information to optimize building
boundaries [25,26] or used Frame-Field to align the building segmentation maps for better
edge representation [27,28]. To achieve end-to-end automatic building polygon extraction,
some methods adopt the idea of multi-task learning by combining building segmentation
with the vectorization process [29]. Certain approaches first detect the bounding boxes of
building objects and then use LSTM to predict the building corners [30,31]. Additionally,
some researchers treat building polygons as graphs [32], detecting building vertices and
computing their adjacent connections to obtain polygonal contours.

However, deep learning methods require a large number of well-annotated labeled
samples for support [33], and obtaining building polygon labels through manual annotation
incurs significant labeling costs [34]. In practical applications, government agencies can
only provide a small number of building polygon-labeled samples due to data confiden-
tiality requirements. Training with a small number of samples leads to insufficient model
generalization, making it difficult to handle the challenges of extracting diverse building
polygons against complex backgrounds [35]. It is worth noting that some large and high-
quality building extraction datasets are publicly available [26,36,37]. These datasets include
building samples from different regions, encompassing various building styles, structures,
and diverse backgrounds. Therefore, it is possible to extract generalization knowledge
from these abundant and diverse building samples. However, directly applying models
trained on other datasets to predict the target area may not yield satisfactory results.

To account for the building characteristics in the target area, it is possible to incorporate
samples from the target area during the training process. A commonly used approach
in current research is to first pre-train the model on publicly available datasets and then
fine-tune the model on samples from the target area [38–41]. While this approach allows
the model to learn the specific characteristics of buildings in the target area, it does not
effectively inherit the generalization knowledge learned from the pretrained model on
public datasets. Knowledge distillation techniques [42,43] offer a solution by pretraining
a teacher neural network on a large dataset. During the training process, the knowledge
learned by the teacher network is utilized to guide the student neural network, thereby
improving the accuracy of the student network. For example, Wang et al. addressed the
problem of insufficient labels in remote sensing scene classification by employing self-
distillation to learn complex scene knowledge in diverse backgrounds [44]. Nabi et al.
used knowledge distillation to extract visual knowledge in complex urban scenes [45]. By
applying knowledge distillation, the model not only retains the generalization knowledge
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learned from the public datasets but also leverages the supervision from the limited samples
in the target area to enhance the model’s adaptability to diverse types of buildings.

Therefore, this paper proposes the Building Polygon Distillation Net (BPDNet) to
accurately extract building polygons in the target area with limited samples. The network
consists of two structurally identical sub-networks known as the teacher network and the
student network. The teacher network is trained on a large building polygon dataset that
contains structurally diverse building samples, while the student network is trained on a
small number of available samples from the target area. During the training process of the
student network, the teacher network provides guidance, allowing the student network to
access generalization knowledge. Furthermore, to address the issue of fuzzy, irregular, and
fragmented building extraction caused by complex urban backgrounds, we employed the
Dice Loss [46] to encourage the model to focus more on building boundaries. This helps
alleviate the problem of building fragmentation caused by blurry boundaries.

The primary contributions of this work can be summarized as follows:

1. We propose BPDNet for extracting building polygons in the area with limited high-
resolution remote sensing image samples. This network enables the model to inherit
the generalization knowledge from the large dataset via knowledge distillation;

2. BPDNet employs Dice Loss to improve the extraction of buildings against the back-
drop of complex urban context, characterized by fuzziness, irregularity, and connec-
tivity issues.

The paper is structured as follows: Section 1 introduces the background to the method-
ology and the problem addressed in this paper; Section 2 describes the study area, the
external dataset used, and the process and methods used to process the data; Section 3
presents the details of the methodology; Section 4 presents the experimental design, param-
eter settings, and analysis of the results; Section 5 provides a discussion of the methodology;
and, finally, the conclusions are presented in Section 6.

2. Study Area and Data
2.1. Remote Sensing Images and Building Vector Data

Wenzhou, located in Zhejiang Province, China, is an important coastal commercial and
regional center in southeastern China. In recent years, the urban area of Wenzhou has been
continuously expanding. The intelligent and automated extraction of building polygons
will effectively enhance the efficiency of building supervision. The remote sensing imagery
and building vector data used in this study are derived from six regions within the urban
area of Wenzhou, captured by unmanned aerial vehicles. Each region’s imagery has a size
of 20,480× 20,480 pixels with a spatial resolution of 0.2 m, including RGB bands. The study
area and the corresponding imagery are shown in Figure 1a. In the high-resolution remote
sensing imagery, various buildings with different shapes, arrangements, and heights can
be observed in the six regions, as shown in Figure 1b. Moreover, the imagery exhibits
challenges in extracting building polygons due to significant issues such as building tilts
and shadow occlusions, which can cause confusion between building rooftops, facades,
and the background.

In the data pre-processing stage, we cropped six remote sensing images into 2400 patches
of 1024 × 1024 size and randomly divided the training and test sets according to the ratio
of 7:3. The building contour label data is the building vector data corresponding to the
image range, as shown in the sample in Figure 2.
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Figure 2. Example of a sample from the study area: (a) shows a patch from the remote sensing image;
(b) shows the corresponding building polygon labels of (a).

2.2. WHU-Mix Dataset

In response to the lack of data diversity and poor label quality of current building
datasets, the WHU-Mix dataset [47] collects images and polygon vector labels of over
754k buildings from around the world. The training set of this dataset contains 43,727 im-
ages, and the test set contains 8402 images from another five cities on five continents. The
WHU-Mix dataset integrates data from the WHU dataset [37], Crowd AI [48], Open AI [49],
SpaceNet [50], and Inria [36] datasets, with manual corrections for offsets and missing data.
Sample data from the dataset are shown in Figure 3. To better capture the diversity of
real-world scenarios and consider the wide range of building variations, we trained the
teacher model based on the WHU-Mix dataset. This allowed us to transfer the knowledge
of generalization to the target study area effectively.
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Figure 3. Sample examples from the WHU-Mix Dataset.

3. Methods
3.1. Overall Architecture

Figure 4 illustrates the overall architecture of BPDNet, which consists of two struc-
turally identical networks: the teacher network and the student network. The teacher
network is trained on the WHU-Mix dataset for building polygon extraction. Once the
teacher network is trained and reaches convergence, its model parameters are frozen. The
student network is trained on the training set constructed from six images of the Wenzhou
area and distilled using the trained teacher network. Therefore, the student model is
capable of integrating the generalization knowledge from the large dataset and the feature
distribution knowledge of the task area samples to address the issue of insufficient general-
ization of the building polygon extraction model caused by a small number of samples in
the task area.
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Figure 4. Overall Architecture of BPDNet. Ld denotes the distillation loss and Lp denotes the
building polygon prediction loss. Mask Conv, Line Conv, and Vertex Conv represent the convolution
operations in the Mask branch, Line branch, and Vertex branch, respectively. Mask head, Line
head, and Vertex head represent the prediction head in the mask branch, line branch, and vertex
branch, respectively.

The teacher network and the student network are both constructed based on HiSup [49].
HiSup serves as the baseline model for our method, consisting of the HRNet [51] feature
encoder, Channel Attention module, and three building representation branches. Details
of HiSup and our improvements to it are described in Section 3.2. The teacher network
was trained on the WHU-Mix dataset, so during the training of the student network, the
parameters of the teacher network are no longer updated to guide the training of the
student network. In the training process of the student network, the remote sensing images
from the task area are input to both the student network and the teacher network with
frozen parameters. The forward propagation data flow of the network is shown by the
solid green arrows in Figure 4. The gradients of the network parameters are backprop-
agated through the purple dashed arrows in Figure 4. The loss of the student network
consists of two parts: distillation loss and building polygon prediction loss. The distillation
loss represents the difference between the output features of the student network and the
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teacher network in the three building representation branches, encouraging the student
model to learn generalization knowledge from the teacher model and improve its ability to
extract building polygons with diverse structures. The building polygon prediction loss
represents the difference between the predicted building polygons by the student network
and the ground truth building polygon labels, guiding the student model to learn the
feature distribution knowledge of the data in the task area and enhance its accuracy in
extracting building polygons in the task area.

3.2. Baseline Model: HiSup

This paper adopts HiSup as the baseline model for extracting building polygons from
remote sensing images. The model structure is illustrated in Figure 5. HiSup consists
of three feature learning branches, including the Mask Branch, Line Branch, and Vertex
Branch. Additionally, HiSup incorporates modules for multi-scale feature extraction,
channel attention, boundary enhancement, and polygon construction and simplification.
Specifically, for an input remote sensing image I ∈ R3×H×W , HRNet is employed as the
multi-scale feature extractor to obtain the feature map F ∈ R3×HS×WS . Here, HS = H/S
represents the length of feature map F, and WS = W/S represents its width, with S being
the downsampling factor. After obtaining the image feature map F through the multi-scale
feature extractor, F is fed into three distinct branches to learn the vertex feature Fver, line
feature Fline, and semantic mask feature Fseg of buildings. Each branch contains three
consecutive processing units, including 3 × 3 convolutional layers, a batch normalization
layer [52], and a ReLU [53] layer in each processing unit. Specifically, the vertex feature
Fver and line feature Fline are derived from mid-level image features, while the semantic
mask feature Fseg is obtained from high-level image features. Subsequently, the channel
attention module integrates these three features to generate the vertex prediction heat
map MH , vertex distance offset field MO, line attraction field [29] prediction map MA,
and building a semantic mask prediction map MS. Next, by utilizing the line attraction
field MA, and image feature F to impose boundary constraints on MS, a more regular
segmentation result is obtained. Finally, the vertex, line, and semantic prediction results
are utilized to construct vector polygons, which are further simplified to obtain the final
building polygon extraction results.
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represents the sigmoid activation function. GAP represents the global average pooling. Lseg, Lline,
and Lver represent the loss function in the Mask branch, Line branch, and Vertex branch, respectively.

To further reduce the influence of complex backgrounds on building boundaries, we
improved HiSup. In the boundary enhancement module, Dice Loss was incorporated to al-
leviate the issue of building adhesion. This modification aims to improve the segmentation
performance by effectively separating buildings from their surrounding environment, as
shown in Figure 5.
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3.2.1. Channel Attention Module

HiSup utilizes the channel attention mechanism [54] to enhance the feature represen-
tation of vertex maps Fver and semantic features Fseg, thereby improving the accuracy and
consistency of building shape prediction. The computation method is as follows:

Fe
seg = δ

(
C1D

(
GAP

(
Fline + Fseg

)))
× Fseg + Fseg (1)

Fe
ver = δ(C1D(GAP(Fline + Fver)))× Fver + Fver (2)

where C1D(·) represents one-dimensional convolution, GAP(·) represents global average
pooling, and δ(·) represents the sigmoid activation function.

3.2.2. Boundary Enhancement

Due to the widespread irregularity and fuzzy boundaries of building shapes in the
semantic mask results, HiSup employs the boundary enhancement module to utilize the
line attraction field results MA to constrain the semantic mask results MS, thereby making
the building shapes in the semantic mask more regular and the boundaries clearer. Specifi-
cally, firstly, MA is concatenated with the feature map F extracted by the backbone network
to obtain the fused feature map MAF, incorporating the line constraint information into F.
Then, MAF is fed into the semantic mask classification head to predict the semantic mask
image MAS. Subsequently, the semantic mask loss function is employed to calculate the
discrepancy between MAS and the semantic mask labels. Finally, through backpropagation,
MA receives additional supervision from the semantic mask labels, enabling it to have a bet-
ter representation. After further gradient backpropagation, the backbone network enhances
the expression of building shapes in F to facilitate the generation of MA. Consequently, the
backbone network learns the correct building shapes guided by MA.

To further reduce the merging of buildings and confusion with the background, we
improved the loss function of HiSup. Dice Loss [46] was added to the binary cross-entropy-
based segmentation loss Lseg to allow the model to focus more on the boundaries of building
targets and reduce the adhesion between building polygons. The segmentation loss Lseg of
the model can be represented as follows:

Lseg(θ) = BCE
(

MAS, MGT
S

)
+ BCE

(
MS, MGT

S

)
+ θLdice (3)

where BCE represents the binary cross-entropy loss, MAS represents the semantic mask
result guided by the line features, MGT

S represents the semantic mask label for the building,
Ldice represents the Dice Loss, θ is the coefficient. Dice Loss can be represented as follows:

Ldice = 1− 2TP
2TP + FP + FN

(4)

where TP represents the number of true positive pixels, FP represents the number of false
positive pixels, and FN represents the number of false negative pixels.

3.3. Polygon Construction and Simplification

After extracting building features, it is necessary to construct the polygonal outlines
of the buildings using post-processing methods. First, the semantic mask image MS is
filtered using a given threshold value ε ∈ (0, 1)(reference HiSup sets ε = 0.6) to obtain
the resulting image S, which contains n building polygons. Then, local non-maximum
suppression is applied to filter out non-key vertices in the vertex prediction heatmap
MH , and based on S, the vertices located on the boundary pixels of building polygons
are connected to construct the initial building outlines. Finally, the building outlines are
simplified, with a focus on the vertices of the buildings. The rule for vertex simplification
is as follows: if the distance between two vertices of the same building polygon is smaller
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than a threshold value τ (reference HiSup sets τ = 5), the midpoint of the line connecting
the two points is taken as the simplified vertex, resulting in the final building polygon.

3.4. Knowledge Distillation

In this study, knowledge distillation was employed to learn generalization knowledge
from the teacher network trained on a large dataset. The specific process of knowledge
distillation is illustrated in Figure 6. The input images are passed through the HRNet
feature extractors of both the teacher network and the student network, resulting in image
features denoted as FT and FS, respectively. For FT in the teacher network, it is sepa-
rately inputted into the Mask Branch, Line Branch, and Vertex Branch. The feature FT in
each branch undergoes three consecutive processing units, where each unit consists of
a 3 × 3 convolutional layer, a batch normalization (BN) layer, and a rectified linear unit
(ReLU) activation layer. The output of the last processing unit in each branch is, respectively,
the semantic mask feature FT

seg, the line feature FT
line, and the vertex feature FT

ver. Similarly
in the student network, the feature FS is separately inputted into the Mask Branch, Line
Branch, and Vertex Branch to obtain the semantic mask feature FS

seg, the line feature FS
line,

and the vertex feature FS
ver in the student network. Due to the well-trained teacher network

on the WHU-Mix dataset, it possesses the ability and knowledge to extract structurally
diverse building polygons, including the features of building semantic masks, building
lines, and building vertices. Therefore, we employed the CWD (Channel-wise Knowledge
Distillation) [43] to distill these capabilities of the teacher network regarding building
outlines into the student network. Taking the semantic mask feature as an example, we
aligned the feature distributions of each channel in FS

seg from the student network with
the corresponding channel in FT

seg from the teacher network. Similarly, both FS
line and FS

ver

need to be aligned with FT
line and FT

ver in the same manner as described for FS
seg. CWD,

as it distills knowledge in the channel dimension, can effectively utilize the knowledge
contained in each channel, making it suitable for dense prediction tasks such as building
polygon prediction in this paper.
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seg,
FS

line, and FS
ver represent the features map from the Mask Branch, Line Branch, and Vertex Branch of

the student network, respectively.
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CWD minimizes the asymmetry Kullback–Leibler (KL) divergence between the channel-
wise soft probability maps of the teacher and student networks to align the feature distribu-
tions of each channel. Therefore, the distillation loss can be defined as follows:

Ld(T) =
T2

C ∑C
c=1 ∑W·H

i=1 φ
(

FT
c,i

)
·log

φ
(

FT
c,i

)
φ
(

FS
c,i

)
 (5)

where c = 1, 2, . . ., C indexes the channel; and i indexes the spatial location of a channel. W
and H are the width and height of the feature map respectively. T is a hyperparameter. FT

denotes the feature map from the teacher network and FS denotes the feature map from the
student network. φ(·) is used to convert the activation values into a probability distribution
as below:

φ(T) =
exp
( Fc,i

T

)
∑W·H

i=1 exp
( Fc,i

T

) (6)

where c = 1, 2, . . ., C indexes the channel; and i indexes the spatial location of a channel.
W and H are the width and height of the feature map respectively. T is the temperature
hyper-parameter. The probability becomes softer if we use a larger T, meaning that we
focus on a wider spatial region for each channel.

3.5. Loss Function

The loss function of BPDNet consists of two parts: the building polygon prediction loss
Lp and the distillation loss Ld. The loss function for building polygon contour prediction
is composed of three components: the semantic mask branch loss function Lseg, the line
attraction field prediction branch loss function Lline, and the vertex prediction branch loss
function Lver. Lseg as shown in Equation (3), and Lline and Lver can be expressed as follows:

Lline = l1
(

MA, MGT
A

)
(7)

where l1 represents the l-penalized loss, which corresponds to the absolute deviation loss.
MGT

A refers to the line attraction field generated from the ground truth labels of the building
polygon in the image.

Lver(α, β) = αBCE
(

MH , MGT
H

)
+ βl1

(
MO·MGT

H , MGT
O ·MGT

H

)
(8)

where α and β are coefficients, MH represents the predicted heat map for building vertices,
MO corresponds to the short-distance offset field for vertices, and MGT

H and MGT
O refer to

the ground truth heat map and short-distance offset field for vertices generated from the
actual labels of the building polygon in the image.

The loss function for building polygon contour prediction can be expressed as follows:

Lp(λ1, λ2, λ3, α, β, θ) = λ1Lseg(θ) + λ2Lline + λ3Lver(α, β) (9)

where λ1, λ2, λ3, α, β, and θ are coefficients.
The overall loss function consists of the building polygon contour prediction loss and

the distillation loss and can be represented as follows:

Ltotal(λ1, λ2, λ3, α, β, θ, η, T) = λ1Lseg(θ) + λ2Lline + λ3Lver(α, β) + ηLd(T) (10)

where η represents the coefficient hyperparameter for Ld, and T represents the temperature
hyperparameter.
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4. Results
4.1. Experimental Design

To validate the effectiveness of the proposed BPDNet model, we conducted the follow-
ing experiments. By comparing the results of each model on evaluation metrics, we were
able to quantitatively analyze the strengths and weaknesses of each model in comparison
to BPDNet. Additionally, we performed a visual analysis of the predicted results of each
model to qualitatively assess the building extraction performance of each model.

(1) Frame-field [27] is a building polygon extraction method proposed in 2020. It aligns
the predicted frame field with the true outline. We implemented the model based
on the code of the original paper. In our experiments, the frame-field was trained
on a training set composed of samples from Wenzhou and was tested on a test set
constructed from samples from Wenzhou;

(2) Model_1 (Baseline) was trained on a training set composed of samples from Wenzhou
using the HiSup model. It was then tested on a test set constructed from samples from
Wenzhou. This serves as the baseline model for comparison;

(3) Model_2 (w/o Finetune) uses the WHU-Mix dataset to train the HiSup model without
using fine-tuning but directly on a test set constructed from the Wenzhou sample.

(4) Model_3 (w/Fine-tune) was trained on the WHU-Mix dataset using the HiSup model.
Subsequently, fine-tuning was performed on the training set constructed from samples
from Wenzhou. Finally, Model_3 was tested on the test set composed of samples
from Wenzhou;

(5) Model_4 represents the proposed BPDNet method. It involves training the HiSup
model on the WHU-Mix dataset, which serves as the teacher model. The CWD
(Collaborative Weight Distillation) method was then employed to guide the training
of the student model on the training set constructed from samples of Wenzhou. Finally,
Model_4 is evaluated on the test set composed of samples from Wenzhou.

4.2. Evaluation Metrics

For instance, for segmentation tasks such as building contour extraction, it is important
to evaluate not only pixel-level segmentation performance but also instance-level building
extraction effectiveness. To quantify the performance of different models, we utilize the
following metrics: Overall Accuracy (OA), IoU, Precision for IoU threshold > 0.5 called
PIoU

50 , Precision for Boundary IoU [55] threshold > 0.5 called PBoundary
50 , Recall for IoU

threshold > 0.5 called RIoU
50 and Recall for Boundary IoU threshold > 0.5 called RBoundary

50 .
Among the metrics used for evaluation, OA and IoU are employed to assess the pixel-level
effectiveness of building extraction. PIoU

50 is used to evaluate the precision of extracting

building polygon instances, while PBoundary
50 is utilized to evaluate the precision of the

boundaries of the extracted building polygon instances. RIoU
50 is used to evaluate the recall

of extracting building polygon instances, while RBoundary
50 is utilized to evaluate the recall

of the boundaries of the extracted building polygon instances. The evaluation metrics are
designed such that larger values indicate better performance of the models. The specific
calculation methods for these evaluation metrics are as follows:

OA =
TP + TN

TP + TN + FP + FN
(11)

where TP indicates the number of pixels predicted to be true positives, TN indicates the
number of pixels predicted to be true negatives, FP indicates the number of pixels predicted
to be false positives, and FN indicates the number of pixels predicted to be false negatives.

IoU(X, Y) =
X ∩Y
X ∪Y

(12)
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where X represents the predicted results, and Y represents the ground truth labels. IoU
measures the intersection-to-union ratio between the predicted building polygon and the
ground truth building polygon. A higher IoU value indicates a better match between
the predicted building polygon and the ground truth, signifying more accurate building
prediction results.

The Boundary IoU metric provides a reasonable measure to assess the accuracy of
polygon boundaries. It helps to reveal the precision of the boundaries of the detected
polygon instances in a meaningful way. For two polygon instances X and Y, Boundary
IoU calculates the IoU only for pixels that are within a distance d of the boundaries of the
two polygon instances. It focuses on evaluating the IoU specifically for the pixels that lie
within a specified distance d from the boundaries of the polygon instances X and Y. Define
the boundaries of X and Y as Xd and Yd. Similar to IoU, a larger value of Boundary IoU
indicates better extraction performance. The calculation formula for Boundary IoU can be
represented as follows:

Boundary IoU(X, Y) =
|(Xd ∩ X) ∩ (Yd ∩Y)|
|(Xd ∪ X) ∪ (Yd ∪Y)| (13)

The value of parameter d in the formula is set based on reference [55], where d = 0.2.

PIoU
50 =

TPIoU
50

TPIoU
50 + FPIoU

50
(14)

where TPIoU
50 represents the number of true positive pixels within instances where the IoU

is greater than 0.5. FPIoU
50 represents the number of false positive pixels within instances

where the IoU is greater than 0.5.

PBoundary
50 =

TPBoundary
50

TPBoundary
50 + FPBoundary

50

(15)

where TPBoundary
50 represents the number of true positive pixels within instances where the

Boundary IoU is greater than 0.5. FPBoundary
50 represents the number of false positive pixels

within instances where the Boundary IoU is greater than 0.5.

RIoU
50 =

TPIoU
50

TPIoU
50 + FN IoU

50
(16)

where TPIoU
50 represents the number of true positive pixels within instances where the IoU

is greater than 0.5. FN IoU
50 represents the number of false negative pixels within instances

where the IoU is greater than 0.5.

RBoundary
50 =

TPBoundary
50

TPBoundary
50 + FNBoundary

50

(17)

where TPBoundary
50 represents the number of true positive pixels within instances where the

Boundary IoU is greater than 0.5. FNBoundary
50 represents the number of false negative pixels

within instances where the Boundary IoU is greater than 0.5.

4.3. Experimental Parameter Setting

In this experiment, the HRNet model used for feature extraction is HRNetV2-W48 [51].
As for the variables λ1, λ2, λ3, α, and β in the loss function of BPDNet, we set their values
based on the reference HiSup [49]: λ1 = 1.0, λ2 = 0.1, λ3 = 1.0, α = 8.0, β = 0.25.
Furthermore, for the variables θ, η, and T in the loss function, we conducted experiments
to determine their optimal values for achieving the best results with BPDNet. Based on
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the experimental results, we found that setting θ = 1.0, η = 1.0, and T = 1.0 yielded the best
performance for BPDNet.

All experiments in this paper were conducted on an NVIDIA RTX3090 GPU. The batch
size for the models was set to 2, and the training process consisted of 60 epochs. Random
flipping augmentation was applied during the training of all methods. The AdamW
optimizer was used for training, with an initial learning rate of 6× 10−5, β1 = 0.9, β2 = 0.999,
and a weight decay coefficient of 0.01. The learning rate decay strategy employed the
poly strategy.

4.4. Experimental Results
4.4.1. Quantitative Analysis

The experimental results are presented in Table 1. From the results, we can observe
the following findings. Firstly, our proposed BPDNet method achieved improvements
compared to the frame-field and HiSup. It was shown that BPDNet is superior to the
current state-of-the-art building polygon extraction algorithms when facing the problem of
limited training sample sizes. Secondly, compared with HiSup, BPDNet showed an increase
of 1.40% in OA, 4.17% in IoU, 3.51% in PIoU

50 , 8.48% in PBoundary
50 , 3.29% in RIoU

50 and 8.01% in

RBoundary
50 . The significant improvement in PBoundary

50 and RBoundary
50 indicated that BPDNet

reduces missed and false extraction of building polygons and enhances the accuracy of
building polygon extraction, including the precise positioning of building boundaries. This
improvement effectively mitigates issues related to incorrect building polygon localization
and blurry boundaries caused by diverse building structures and complex backgrounds.
Thirdly, Model_2 performed the worst among the four comparative models, as indicated by
the lowest evaluation scores, where the OA was 90.34%, IoU was 61.89%, PIoU

50 was 52.01%,

PBoundary
50 was 45.18%, RIoU

50 was 56.03% and RBoundary
50 was 48.17%. This result indicates

that the significant difference in the sample distribution between WHU-Mix and the study
area greatly affected the performance of Model_2. Directly applying a model trained
on WHU-Mix to predict the test set from the study area shows that the generalization
capability obtained from a large dataset is still insufficient to overcome the impact of
sample distribution differences. To address this issue, it is necessary to enable the model to
learn the distribution characteristics of the samples in the task area. Compared to Model_2,
Model_3 incorporates fine-tuning on the training set from the study area, enabling the
model to learn the distribution characteristics of the samples in the task area. Although
Model_3 showed improved performance compared to both Model_1 and Model_2, its
evaluation metrics were still lower than those of Model_4 (BPDNet). Model_4 (BPDNet)
achieved an OA of 92.28%, IoU of 66.54%, PIoU

50 of 56.01%, PBoundary
50 of 54.19%, RIoU

50 of

60.18%, RBoundary
50 of 57.35%. This indicates that although fine-tuning allows the model to

learn the distribution characteristics of the task-specific dataset and partially overcome
the differences in sample distribution, it does not effectively preserve the generalization
performance obtained from the large dataset training. Model_4 (BPDNet) effectively distills
the building feature representation capability obtained from diverse structured building
samples in the large dataset to the student model through the CWD method. This enables
the student model to achieve the best prediction results on the test set of the study area.
Additionally, the inclusion of Dice Loss in the mask branch of Model_4 (BPDNet) further
optimizes the boundaries of buildings, allowing for better differentiation between buildings
and complex backgrounds. Therefore, based on the aforementioned analysis, the BPDNet
method not only improves the pixel-level extraction results of buildings but also enhances
the accuracy of the shape and position of building polygons. It reduces missed and false
extraction of building polygons and demonstrates superior generalization ability compared
to other methods for extracting building polygons with few samples in the Wenzhou area.
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Table 1. Accuracy results on the test set using different methods. “w/Fine-tune ” denotes that
fine-tune was employed. “w/o Fine-tune” denotes that fine-tune was not employed.

Method OA IoU PIoU
50 PBoundary

50 RIoU
50 RBoundary

50

Frame-field 88.43 59.84 50.17 43.25 54.24 47.11
Model_1 (Baseline) 90.88 62.37 52.50 45.71 56.89 49.34

Model_2 (w/o Fine-tune) 90.34 61.89 52.01 45.18 56.03 48.17
Model_3 (w/Fine-tune) 91.47 63.54 53.22 49.98 57.65 51.29

Model_4 (Ours) 92.28 66.54 56.01 54.19 60.18 57.35

4.4.2. Qualitative Analysis

To facilitate visual comparison of the results, we have provided visualizations of
prediction outputs (as shown in Figure 7). From Figure 7, it is evident that Model_4
(BPDNet) exhibited more accurate positioning and boundary delineation of building poly-
gons. BPDNet demonstrated fewer instances of missed detections compared to other
methods, which is consistent with the findings of Table 1. In Row (a), Model_4 accurately
identified the boundaries of the buildings within the red box, while other methods mis-
takenly recognized the background as buildings, resulting in inaccurate building polygon
results. The Hisup-based methods (Model_1, Model_2, Model_3, Model_4) were able to
recognize the complete building polygon in the yellow box, but the Frame-field model
mistakenly identified the one building polygon as two parts in the yellow box. In Row (b),
based on the imagery and labels in the second column, it can be observed that the building
within the red box is a composite structure consisting of three high-rise buildings and a
low-rise building. The extracted contour should only represent the entire complex, and
only BPDNet and Model_3 successfully identified it as a single entity. Regarding the small
building within the yellow box in Row (b), both BPDNet and Model_3 successfully detected
it, while Frame-field, Model_1, and Model_2 overlooked this small building. In Row (c),
Frame-field, Model_1, Model_2, and Model_3 exhibited varying degrees of issues with
building polygon merging within the yellow box, where buildings are incorrectly connected
or misclassified as part of the background. However, BPDNet accurately identified the
boundaries of the buildings. In Row (d), only BPDNet recognized and precisely extracted
the polygon of the small building within the red box, while other models failed to detect
it. In the yellow box region, Model_2 mistakenly identified the water body as a building,
indicating the impact of the difference in sample distribution between WHU-Mix and the
study area on the accuracy of building recognition. In conclusion, the results of building
polygon extraction demonstrated that BPDNet effectively tackles the challenges posed by
diverse building structures and complex backgrounds. It accurately identifies the positions
of building polygon and alleviates issues such as boundary blurring and merging.
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5. Discussion
5.1. Ablation Experiments

To validate the effectiveness of the proposed method, we conducted ablation experi-
ments by removing individual modules used in this study. The experimental results are
shown in Table 2 below.

Table 2. Ablation experiments.

Method Distillation Dice Loss OA IoU PIoU
50 PBoundary

50 Batch Time Params

Baseline 90.88 62.37 52.50 45.71 0.84s 74.29M
Ours

√
91.37 64.63 54.11 51.98 0.88s 74.29M

Ours
√ √

92.28 66.54 56.01 54.19 0.90s 74.29M

From the experimental results, it can be observed that when using knowledge distilla-
tion alone, compared to the baseline, the OA increased by 0.49%, IoU increased by 2.26%,
PIoU

50 increased by 1.61%, and PBoundary
50 increased by 6.27%. All metrics showed improve-

ment, with PBoundary
50 showing a significant increase. This indicates that by using knowledge

distillation, the accuracy of building boundary extraction can be greatly improved. The
model effectively learns generalization knowledge from the large dataset, enabling more
precise identification of diverse building boundaries. When both knowledge distillation
and Dice Loss were used together, the model achieved the best performance. Compared to
using knowledge distillation alone, OA increases by 0.91%, IoU increased by 1.91%, PIoU

50

increased by 1.90%, and PBoundary
50 increased by 2.21%. All metrics showed stable growth.

This indicates that the inclusion of Dice Loss effectively mitigates the problem of building
boundary adhesion, resulting in more complete extraction of building polygon instances
and more accurate boundaries.

Additionally, we calculated the GPU processing time per batch for each method during
training and the number of parameters of each model. From Table 2, the Baseline achieved
the least GPU processing time per batch. With the addition of distillation loss and Dice
Loss, the GPU processing time for each batch increased. Compared to the baseline, the
processing time per batch for the model with distillation loss and Dice Loss increased from
0.84 s to 0.90 s. We believe that this small increase in GPU processing time is acceptable
due to the significant improvement in modeling results. Meanwhile, Table 2 shows that the
number of parameters in each model is equal and the use of distillation loss and Dice Loss
does not increase the complexity of the model.

5.2. Distillation Methods

In this section, we extensively investigate the impact of feature selection and various
parameter settings on the experimental results during the knowledge distillation process,
aiming to explore effective approaches for knowledge distillation.

5.2.1. Selection of Feature to Distillate

During the training of the student network guided by the teacher network, it is
necessary to select distilled features. In this paper, the available features for selection
include semantic mask features Fseg, line features Fline, and vertex features Fver. We aimed to
ensure that the student network learns effective feature representations, and thus conducted
ablation experiments to investigate different feature combinations.

Table 3 presents the experimental results of different feature combinations during the
distillation process. The student network achieved the best learning performance when
using the semantic mask feature Fseg, line feature Fline, and vertex feature Fver simultane-
ously. The results demonstrated that all three features have a positive impact on building
polygon extraction. The combination of these three features outperformed any pairwise
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combination, indicating their complementary nature and collective contribution to building
polygon extraction.

Table 3. Distillation feature ablation experiments.
√

denotes the feature is selected for knowledge
distillation.

Distillation Feature
OA IoU PIoU

50 PBoundary
50Fseg Fline Fver

√
91.33 64.43 54.01 52.93√
92.08 66.31 55.35 53.34√
92.04 66.26 54.92 53.86√ √
92.13 66.32 55.62 53.65√ √
92.16 66.37 55.56 54.12√ √
92.21 66.45 55.61 53.74√ √ √
92.28 66.54 56.01 54.19

5.2.2. Distillation Temperature Hyperparameter

In knowledge distillation, the temperature hyperparameter T is used to control the
smoothness of the SoftMax function’s output during the feature map normalization process.
A higher value of T indicates a larger spatial region of interest for each feature channel
and leads to smoother outputs. We conducted experiments with different distillation
temperatures, aiming to explore the appropriate values for the hyperparameter T and
determine the optimal focus scale for feature channels during distillation.

Table 4 presents the experimental results with different hyperparameter T values.
The model achieved the best performance when T = 1.00. When T < 1, the probability
distribution became sharper as T decreased. On the other hand, when T > 1, the probability
distribution became smoother. When T = 1, the SoftMax probability distribution remained
consistent with the original distribution. In the results of this section, maintaining the
original probability distribution actually yielded better performance. Comparing T = 0.50
with T = 0.02 and T = 0.70, there was a significant decrease in performance, indicating that
a smaller focus scale for feature channels made it difficult for the student network to learn
effective generalization knowledge from the teacher network.

Table 4. Experimental results for different distillation temperatures T.

Distillation Temperature OA IoU PIoU
50 PBoundary

50

T = 0.02 91.25 63.21 53.86 51.84
T = 0.50 88.76 60.13 47.31 45.05
T = 0.70 92.05 65.97 54.96 52.81
T = 1.00 92.28 66.54 56.01 54.19
T = 1.50 90.85 62.76 52.24 50.96

5.2.3. Weighting of Distillation Loss

The total loss function of our proposed method consists of two components: the
building polygon prediction loss and the distillation loss. The weight of the distillation loss
η is a hyperparameter that controls the importance of the distillation process. In this study,
we conducted experiments with different values of the distillation loss weight η to explore
the optimal value for this hyperparameter.

Table 5 presents the experimental results with different values of the distillation loss
weight. As the value of the weight η increased, the model’s performance metrics steadily
improved, indicating the crucial role of knowledge distillation in our proposed method.
Particularly, when the weight value η was set to 1, the model achieved the best performance,
demonstrating the effectiveness of the knowledge distillation approach.
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Table 5. Distillation loss weighting and experimental results.

Weight of Distillation Loss OA IoU PIoU
50 PBoundary

50

η = 0.20 92.12 66.30 55.13 53.16
η = 0.40 92.17 66.41 55.25 53.47
η = 0.60 92.18 66.43 55.24 53.01
η = 0.80 92.21 66.47 55.08 53.80
η = 1.00 92.28 66.54 56.01 54.19

5.2.4. Application of the Proposed Distillation Method

In order to verify the effectiveness of the proposed distillation method for other models,
we applied the present distillation method to the Frame-field multi-task learning building
polygon extraction model based on ResNet-101. The experimental results are shown in
Table 6.

Table 6. The proposed distillation method’s experimental results.

Method Knowledge
Distillation Backbone OA IoU PIoU

50 PBoundary
50 RIoU

50 RBoundary
50

Frame-field ResNet-101 88.43 59.84 50.17 43.25 54.24 47.11
Frame-field

√
ResNet-101 90.45 61.74 51.33 44.97 55.15 48.36

Baseline HRNetV2-W48 90.88 62.37 52.50 45.71 56.89 49.34
Ours

√
HRNetV2-W48 92.28 66.54 56.01 54.19 60.18 57.35

From Table 6, it can be found that although the method framework and backbone of
Frame-field and baseline are different, both Frame-field and baseline are multi-task learning
models, which are able to apply our proposed multi-feature distillation. After applying the
proposed distillation method, the Frame-field was also able to improve significantly in all
indicators. Therefore, our proposed distillation method can be applied to other building
profile extraction models based on a multi-task learning approach. Due to the limitation
of the distillation method, it is difficult to apply the proposed distillation method to the
building polygon extraction model that does not adopt the multi-task learning method.

5.3. Weight Setting of Dice Loss

The overall segmentation loss of our model in this paper is composed of both binary
cross-entropy (BCE) loss and Dice Loss, with a coefficient θ controlling the contribution of
the Dice Loss. The Dice Loss measures the similarity between the predicted mask and the
ground truth mask in the semantic mask branch, and the value of θ reflects the importance
of the Dice Loss in semantic mask learning. We conducted experiments with different
values of θ to explore the optimal weight for the Dice Loss in our proposed method.

Table 7 presents the experimental results with different values of the weight coefficient
θ. When θ was set to 1, the model achieved the optimal performance in terms of all
evaluation metrics. However, when θ was too small, there was a noticeable decline in
model performance, indicating the important role of Dice Loss in the segmentation process.
It is worth noting that setting θ too high can also lead to a decrease in model performance,
suggesting that a larger value of θ is not necessarily better.
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Table 7. Dice Loss weights and experimental results.

Weight of Dice Loss OA IoU PIoU
50 PBoundary

50

θ = 0.25 90.95 62.78 53.01 51.52
θ = 0.50 91.38 64.64 54.13 52.09
θ = 0.75 92.10 66.25 55.05 53.13
θ = 1.00 92.28 66.54 56.01 54.19
θ = 1.25 92.11 66.26 55.87 53.62
θ = 1.50 92.16 66.32 55.46 54.01
θ = 1.75 89.57 60.45 51.42 49.47
θ = 2.00 91.44 64.73 54.18 52.23

6. Conclusions

This paper proposed a knowledge distillation method called BPDNet for building
polygon extraction. BPDNet utilizes the structural knowledge of buildings distilled from
a teacher network trained on a large dataset containing diverse building polygons. By
leveraging the generalization capability of the teacher network in extracting structurally
diverse building polygons, the proposed method enables the student network to learn the
characteristics of building polygons in the target region, thereby improving the student net-
work to represent the features of buildings in the target region. This approach addresses the
challenge of limited samples and diverse building structures, which can lead to insufficient
generalization performance of the model. Moreover, the incorporation of Dice Loss in the
model enhances the accuracy of the boundaries and reduces the blurring of building edges
caused by complex backgrounds such as building shadows and impermeable surfaces. The
experimental results demonstrated that BPDNet exhibits superior performance in terms
of evaluation metrics compared to models trained solely on the target region samples or
models fine-tuned using large datasets. The ablation experiments further validated the
effectiveness of our knowledge distillation method and the use of Dice Loss. The discussion
on hyperparameters also confirmed the rationality of the parameter settings in BPDNet.
In addition, the method has the following limitation: the method embeds sample knowl-
edge obtained from a large dataset on the task areas with an insufficient sample size for
enhancing the model’s feature representation. However, if the sample size of the task areas
is sufficient, the model can be trained without the sample knowledge from the large dataset
to obtain a better representation of various styles of buildings. Therefore, the method is
not applicable when the sample size of the task areas is sufficient. When the sample size
is large enough, the extraction results of this method may not exceed the SOTA method
by much.

In future work, our method can be further enhanced by incorporating prior knowledge
about the structural regularities of buildings, such as the symmetry of building structures
and the presence of right angles at building corners. By leveraging this prior knowl-
edge, we can assist the inference process of building polygons and extract more accurate
building polygons.
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