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Abstract: With the development of deep learning, convolutional neural networks (CNNs) and
Transformer-based methods have become key techniques for medical image classification tasks.
However, many current neural network models have problems such as high complexity, a large
number of parameters, and large model sizes; such models obtain higher classification accuracy at
the expense of lightweight networks. Moreover, such larger-scale models pose a great challenge for
practical clinical applications. Meanwhile, Transformer and multi-layer perceptron (MLP) methods
have some shortcomings in terms of local modeling capability and high model complexity, and need to
be used on larger datasets to show good performance. This makes it difficult to utilize these networks
in clinical medicine. Based on this, we propose a lightweight and efficient pure CNN network for
medical image classification (Eff-PCNet). On the one hand, we propose a multi-branch multi-scale
CNN (M2C) module, which divides the feature map into four parallel branches along the channel
dimensions by a certain scale factor and carries out a deep convolution operation using different
scale convolution kernels, and this multi-branch multi-scale operation effectively replaces the large
kernel convolution. This multi-branch multi-scale operation effectively replaces the large kernel
convolution. It reduces the computational cost of the module while fusing the feature information
between different channels and thus obtains richer feature information. Finally, the four feature
maps are then spliced along the channel dimensions to fuse the multi-scale and multi-dimensional
feature information. On the other hand, we introduce the structural reparameterization technique and
propose the structural reparameterized CNN (Rep-C) module. Specifically, it utilizes multiple linear
operators to generate different feature maps during the training process and fuses all the participants
into one through parameter fusion to achieve fast inference while providing a more effective solution
for feature reuse. A number of experimental results show that our Eff-PCNet performs better than
current methods based on CNN, Transformer, and MLP in the classification of three publicly available
medical image datasets. Among them, we achieve 87.4% Acc on the HAM10000 dataset, 91.06% Acc
on the SkinCancer dataset, and 97.03% Acc on the Chest-Xray dataset. Meanwhile, our approach
achieves a better trade-off between the number of parameters; computation; and other performance
metrics as well.

Keywords: CNN; multi-branch; multi-scale; medical image classification

1. Introduction

With the rapid development of social productivity and the rapid progress of society,
people’s living standards are gradually rising, but the number of illnesses and types of
diseases are increasing, and a large number of medical images (including X-ray images, CT
images, pathology image, and magnetic resonance images) provide a rich reference value
for medical diagnosis by imaging physicians. Traditionally, radiologists and clinicians
have performed the majority of medical image interpretation. However, their analysis
is vulnerable to inter-observer variability, fatigue, and significant omission rates. As
a result, clinicians are unable to consistently analyze and interpret medical data with
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high accuracy. However, with the development of deep learning, the use of machine
learning algorithms in medicine is becoming more common. By analyzing the features
of input images, abnormalities can be detected faster by machine learning algorithms in
medical imaging. Computer-aided diagnosis and treatment can effectively solve the above
problems, make up for the shortcomings of manual diagnosis, and relieve the work pressure
experienced by doctors. However, medical images are usually characterized by a relatively
limited size and a low signal-to-noise ratio. It is difficult for deep learning algorithms to
locate abnormalities based on image content alone. Therefore, knowing how to correctly
and quickly classify and segment medical images to help doctors identify patient foci and
conduct disease diagnosis is a thorny problem in the field of medical image analysis.

In recent years, with the rapid development of high-performance computing resources,
deep learning techniques have made a big splash in the field of computer vision. Since
AlexNet [1] started to make its mark in the ImageNet [2] image classification competition
in 2012, it set records for accuracy and low error, beating all other models by rate. Convolu-
tional neural networks (CNN) gained the attention of all research scholars in the field. In
the following decade, many scholars explored and researched deep learning theory, and
various high-performance CNN models were proposed one after another. CNN became
indispensable in major vision tasks and achieved a lot of success. Influenced by this, some
researchers have also tried to apply CNN to medical image analysis tasks [3–5]. Since the
convolutional operation establishes a close connection between a pixel in an image and
the surrounding pixel points, this property allows CNN-based models to better extract
information about local details in an image. Therefore, these methods also show good
classification performance in medical image analysis tasks. However, these methods suffer
from the problem of large number of parameters and computational effort. Meanwhile,
since the convolutional operation itself can only extract local features, it has certain defi-
ciencies in remote modeling capability. In response to these problems with CNN, many
researchers have tried to find new solutions.

As the Transformer model [6] was proposed in the field of natural language processing
(NLP) and achieved significant results in various NLP tasks, researchers have tried to apply
it in the field of computer vision. Vit [7] is a pioneering work on vision Transformers that
splits an image into small patches, each of which is considered as a wordor token. The
success of Vit validates the feasibility of a pure Transformer architecture for computer vision
tasks. The self-attention mechanism in Transformer is a key component that helps the model
to capture global dependencies when processing sequential data. In computer vision, this
mechanism can help the model focus on the associations between different locations when
processing an image, to better understand the global structure and contextual information
of the image. The development of the Transformer model in computer vision has brought
new ideas and performance breakthroughs for tasks such as image classification, target
detection, and image generation. Its global dependencies, semantic information modeling,
and end-to-end advantages in processing images have made it widely used in computer
vision and changed the design paradigm of traditional computer vision models to some
extent. Since then, the improved Vit-based methods and their variants have performed
well in major vision tasks and have been widely used. However, although the Transformer
model has shown much potential in the field of medical images, it also has some drawbacks.
Compared to CNN, it has some disadvantages in extracting localized information. This
makes the Transformer model not as effective on some medical image datasets where the
lesion region accounts for a relatively small amount. In addition, the Transformer model
has a more complex structure and more parameters than the traditional CNN model. This
is due to the secondary computation and memory overhead associated with the token
length. This also results in the training and inference process requiring more time and
computational resources, which may pose a significant challenge for resource-limited
clinical applications.

Meanwhile, multi-layer perceptron (MLP) was revived by the proposal of the MLP-
mixer [8], the first pure MLP network architecture that uses MLP instead of convolutional
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operations in traditional CNN and self-attention in Transformer and achieves very compet-
itive performance in image classification tasks. The emergence of MLP-mixer provoked
a new research boom, and many works in the same line of work ensued. The fact that
RepMLP [9], CycleMLP [10], HireMLP [11], and other works has been proposed one after
another has brought the old structure of MLP back to the stage. However, the excellent
performance of MLP usually requires a large amount of training data. For medical image
classification tasks with high complexity and a limited number of data, pure MLP-based
models may suffer from underfitting, which may affect the performance of the model.
Meanwhile, most of the current MLP-based network architectures have the problem of
relatively large number of parameters and computations. These computationally expen-
sive models are not lightweight and efficient enough and thus present great challenges in
practical clinical applications.

Based on the above discussions and observations, we propose a lightweight and ef-
ficient medical image classification network (Eff-PCNet) based on pure CNN. Eff-PCNet
retains the baseline [12] CNN stage; on the one hand, we propose a multi-branch multi-scale
CNN (M2C) module, which utilizes multi-branch and multi-scale operation as an effective
alternative to the large kernel convolution. It reduces the computational cost of the module
while fusing the feature information between different channels, thus obtaining richer
feature information. On the other hand, we introduce the structural reparameterization
technique and propose the structural reparameterized CNN (Rep-C) module, which pro-
vides a more effective solution for feature reuse. We have conducted extensive experiments
using Eff-PCNet on three publicly available medical image classification datasets, and the
experimental results show that the classification performance of Eff-PCNet outperforms the
currently available methods. As shown in Figures 1 and 2, our Eff-PCNet achieves a better
trade-off between the number of parameters and accuracy, and the amount of computation
and degree of accuracy on the three publicly available datasets, respectively.
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Figure 1. Trade-offs between Acc and Params for different methods on three datasets, where our
Eff-PCNet is in green.
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Figure 2. Trade-offs between Acc and FLOPs for different methods on the three datasets, with our
Eff-PCNet in green.
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In summary, the main contributions of this paper are as follows:
1. We propose a lightweight and efficient medical image classification network (Eff-

PCNet) based on pure CNN, and the experimental results show that it achieves a better
trade-off between the number of parameters, the computation, and the classification perfor-
mance on three publicly available medical image classification datasets.

2. We propose a multi-branch multi-scale CNN (M2C) module, which effectively
replaces large kernel convolution with multi-branch multi-scale operation. It reduces the
computational cost of the module while fusing the feature information between different
channels, thus obtaining richer feature information.

3. We introduce the structural reparameterization technique and propose the structural
reparameterized CNN (Rep-C) module, which provides a more effective solution for
feature reuse.

2. Related Work
2.1. CNN-Based Methods

In recent years, with the rapid development of high-performance computing resources,
deep learning techniques have made a big splash in the field of computer vision, and effi-
cient convolutional neural networks (CNNs) have become indispensable in various fields.
However the classification task is one of the most widely used tasks in different fields.
Since the introduction of AlexNet [1], many scholars have been exploring and researching
CNN architectures, and subsequently many excellent CNN models have been proposed
one after another. ResNet [13] introduced a residual structure that allowed the “depth” of
neural networks to exceed 100 layers for the first time, with the largest neural networks
even exceeding 1000 layers. In 2017, DenseNet [14] introduced dense connectivity, con-
necting each layer to all its successor layers to simplify optimization. This was followed
by Shufflenet [15] and MobileNet [16], which established benchmarks by using a large
number of deep convolutions instead of dense ones. With this concept of neural archi-
tecture search (NAS), many excellent CNN models emerged, such as EfficientNet [17],
MnasNet [18], AtomNAS [19], and NASNet [20], which all have good classification on
ImageNet data performance. Recently, it has also been found that using deep convolu-
tion or group convolution to extract spatial features, the operator often suffers from the
side effect of increased memory accesses in the process of reducing FLOPs. In order to
solve this problem, FasterNet [21] proposes a simple but fast and effective operator PConv,
which can extract spatial features more efficiently by simultaneously reducing redundant
computations and memory accesses. All of the above are classically excellent network
architectures with both elegance and performance and are landmark CNN models that
are still widely used in various computational vision domains. However, compared with
traditional natural image datasets, medical image datasets are usually characterized by a
relatively limited size and a low signal-to-noise ratio. Therefore, it is difficult for traditional
machine learning algorithms to accomplish disease classification based on image content
localization anomalies alone, and many CNN-based methods have appeared in medical
classification tasks. ResGANet [22] proposed a modularized group attention block to cap-
ture key features in medical images in the spatial and in channel dimensions, respectively,
to improve the classification performance. The authors of [23] proposed to utilize the CXR
images to detect new cases of Crown pneumonia with the COVID-NET algorithm. The
authors of [24] proposed a system to detect breast cancer using histopathology images by
combining CNN and hierarchical voting applications. Their goal was to accurately classify
the images as benign or malignant tumors. The authors of [25] proposed a new crown
pneumonia detection model using CNN and pre-trained the Alexnet algorithm.

2.2. Transformer-Based Methods

In recent years, Transformer-based methods have achieved some success in various
domains because of their ability to model remote dependency and the globally receptive
field. Dosovitskiy et al. proposed Vit [7] as a seminal work, and a number of excellent
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Transformer-based architectures have been proposed one after another. T2T-Vit [26] pro-
poses to use overlapping segmented images to better preserve local structure. CPVT [27]
proposes to replace absolute positional coding with conditional positional coding through
deep convolution. Swin Transformer [28] restricts self-attention to being performed within
a localized window, which reduces the computation of attention, and at the same time, the
sliding window mechanism is used to make the connection between different windows,
which makes Swin Transformer become the new Backbone in the field of machine vision,
and it is used in a variety of machine vision applications, such as image classification, object
detection, semantic segmentation, and many other machine vision tasks at the state of
the art (SOTA) level. P2T [29] drastically reduces the computation of MHSA in the Trans-
former and provides a powerful multi-level feature representation. Biformer [30] proposes
a two-layer routing attention module for the dynamic, query-aware efficient allocation of
computation. Similarly, several researchers have used Transformer structures in medical
image classification tasks. Pocformer [31] proposed a lightweight Transformer model for di-
agnosing neocoronary pneumonia. Ref. [32] used Transformer for skin cancer classification.
Hosain et al. [33] describe a model that uses visual transformations and transfer learning
models to assist in medical diagnostic procedures and techniques to recognize gastroin-
testinal diseases.

2.3. MLP-Based Methods

In recent years, the Google Vit team proposed MLP-mixer [8], which uses MLP to
replace the convolution operation in traditional CNN and self-attention in Transformer.
Although it achieves competitive performance, it lacks the ability of fine-grained feature
extraction and requires a large number of training data, which is easy to be trained if
starting from scratch. Then, S2-MLP [34] proposed a spatial transfer MLP architecture with
a pure MLP structure without convolution and self-attention for communication between
spatial locations. HireMLP [11] aggregates spatial information by hierarchically rearranging
tokens. CycleMLP [10] can accept arbitrary scale size processing accepts inputs of arbitrary
resolution, while improving the disadvantage of spatial global context aggregation consumes
a large amount of computation and can expand the sensory field to a certain extent while
maintaining computational complexity. In the same period, some other MLP-based works
appeared, such as AS-MLP [35] and VIP [36]. These methods have also brought the old
structure of MLP back to the stage. Moreover, to the best of our knowledge, there is no work
using pure MLP for medical image classification tasks.

3. Methodology

In this chapter, we mainly introduce our proposed Eff-PCNet, which is a pure CNN
and efficient medical image classification network. Firstly, we mainly introduce the overall
network architecture of Eff-PCNet in Section 3.1, which mainly consists of the baseline CNN
stage and our proposed multi-branch multi-scale CNN (M2C) module and re-parameterized
CNN (Rep-C) module. Then, we introduce the M2C module in detail in Sections 3.2 and 3.3,
which focuses on the Rep-C module. Finally, the loss function used in our work is introduced
in Section 3.4.

3.1. Overall Architecture

In recent years, network architectures such as Transformer- and MLP-based have made
a big splash in the field of computer vision, and Transformer-based methods seem to have
replaced CNN-based methods for many tasks. However, in medical image classification
tasks, Transformer- and MLP-based methods require a large number of training data
to show their effective performance, and these models are large and complex, which
makes them difficult to advance in practical clinical applications. Therefore, we believe
that designing an efficient and lightweight CNN model is a must. In this paper, we
propose Eff-PCNet, an efficient medical image classification network based on pure CNN.
It achieves better classification performance than Transformer- and MLP-based methods
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with fewer parameters and less computation and is able to classify dermatological and
pneumonic diseases quickly and accurately. Eff-PCNet is a lightweight efficient medical
image classification network, and its overall network architecture is shown in the upper
side of Figure 3. It mainly consists of a stem layer and 8 CNN stages, and we keep the
structure of stages 1, 2, and 3 and stages 5, 7, and 8 in the CNN stages similar to the baseline,
and the number of repetitions of each stage consistent with the baseline. Stage 4 and stage
6 are our proposed M2C module and Rep-C module (because the position of our proposed
module is set in the whole network architecture; we will explain the reason for this in the
ablation experiment in Section 4.5).
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Figure 3. Eff-PCNet overall network architecture.

When the input image Xin ∈ R3×H×W enters the network, it first enters the stem layer,
which consists of a 3 × 3 convolution with a stride of 2, a BN [37] layer, and a Swish [38]
activation function, and the output feature map after downsampling in the stem layer
is F1 ∈ R24× H

2 ×
W
2 . Then, stages 1, 2, and 3 are repeated 2, 4, and 4 times, respectively,

on the fused mobile inverted bottleneck (FMB) module, and the output feature map is
F2 ∈ R64× H

8 ×
W
8 . The structure of the FMB module is shown in the lower side of Figure 3,

which mainly contains a CBA block consisting of the Conv, BN, and Act layers, and a CB
block consisting of the Conv and BN layers. Its working principle can be summarized
as follows:

X1 = Act(BN(Conv(X))),
X2 = BN(Conv(X)),

(1)

where Conv is denoted as regular convolution, BN is BatchNorm, and Act is the
activation function.

Stage 4 is our proposed M2C module. We divide the feature map F2 ∈ R64× H
8 ×

W
8 after

entering M2C into four parallel branches along the channel dimension by a certain ratio
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factor. One of the branches is a identity mapping, and the remaining three branches utilize
deep convolution at different scales to complete feature extraction; these concatenate along
the channel dimensions to fuse the multi-scale and multi-dimensional feature information.
The input feature map enters the M2C module after the number of channels, width and
height do not change, and the final output feature map is F3 ∈ R64× H

8 ×
W
8 . Stage 5 is the

mobile inverted bottleneck convolution (MBC) module, whose structure is shown in the
lower side of Figure 3, and it mainly consists of two CBA blocks: the SE block and the CB
block. Its working principle can be summarized as follows:

X1 = Act(BN(Conv(X))),
X2 = Act(BN(Conv(X1))),
X3 = SE(X2),
X4 = BN(Conv(X3)),

(2)

where Conv, BN, and Act are the same as in Equation (1). SE denotes convolution, and
SiLU [39] denotes activation function, convolution, and Sigmoid [40] activation function in
that order.

The feature map F3 ∈ R64× H
8 ×

W
8 that goes to stage 5 the output feature map after re-

peating the MBC module 6 times is F4 ∈ R128× H
16×

W
16 . Stage 6 is our proposed Rep-C module.

In Rep-C module, we use structural re-parameterization technique to transfer the feature
reuse process from feature space to weight space, and also use residual connection instead
of concatenates operator. This design makes the whole module reduce the computational
cost and more efficient. The output feature map after repeating Rep-C module once is
F5 ∈ R128× H

16×
W
16 . The last two stages of the network (stage 7,8) have the same structure as

stage 5, repeating the MBC module 9 and 15 times, respectively. However, the number of
repetitions in each stage increases, and using a larger number of channels would seriously
increase the computational and parametric counts of the model, so we did not expand the
width of the model several times in the deeper layers of the network in the design of the
overall network, as some classical methods do. Therefore, the final output feature map of
Eff-PCNet after all CNN stages is F6 ∈ R256× H

32×
W
32 .

3.2. M2C Module

Inspired by the long range modeling capability of Vit, large kernel convolution algo-
rithms have been widely studied and adopted in recent years to expand the receptive field
and improve the model performance, e.g., the well-known work ConvNext [41] employs
a 7 × 7 depth convolution. Although this depth operator consumes only a small number
of FLOPs, it greatly impairs the efficiency of the model on powerful computing devices
due to the high cost of memory access. Although the use of small convolutional kernels
can be effective in reducing complexity and speedup, it also significantly degrades the
model performance. To address this problem, we propose the M2C module, whose specific
structure is shown in Figure 4 (the feature map dimension is taken as stage 4). Inspired
by inceptionnext, our M2C module divides the feature map into four parallel branches
along the channel dimension by a certain ratio factor. One of the branches is an identity
mapping; the remaining three branches utilize deep convolution at different scales to
complete the feature extraction and are then concatenated along the channel dimensions
to fuse the multi-scale and multi-dimensional feature information. In order to reduce
the computational spending of the module, we choose to not perform deep convolution
operations on all the channels but select some of the channels to perform deep convolution
operations. Specifically, for the input feature map Xin ∈ RC×H×W in the M2C module,
we first divide the input channels into two parts, 24 and 40, according to the ratio factor
a = 0.375. Among them, the part with 40 channels is kept unchanged and denoted as an
identity mapping branch, and the rest of the parts with 24 channels are divided into three
branches for deep convolution operation. In particular, for the three parallel branches
where deep convolution is performed, we set the kernel functions for deep convolution as
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3 × 3, 1 × K, and K × 1, respectively. After the multi-branch and multi-scale deep convolu-
tion operation, we concatenate the feature maps generated from the four different channels
along the channel dimensions. This process can be formulated as follows:

(X1, X2, X3, X4) = split(X) = (X C
8

, X C
8

, X C
8

, X 5C
8
),

X
′
1 = DWConvk×k(X1),

X
′
2 = DWConv1×kS(X2),

X
′
3 = DWConvkS×1(X3),

X
′
4 = (X4),

Y = Concat(X
′
1, X

′
2, X

′
3, X

′
4),

(3)

where X1,X2,X3,X4 denotes the division of the input into four parallel branches along the
channel dimension. C is the number of channels in the input. k denotes the small square
kernel size set to 3 by default, and ks denotes the banded kernel size set to 11 by default.
Concat is an operation that concatenates the output of each branch.
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Figure 4. Specific structure of M2C module (as an example of the feature map dimension of stage 4.

The M2C module divides the feature map into four parallel branches along the channel
and utilizes convolution kernels of different scales to perform deep convolution operations,
and this multi-branch multi-scale operation effectively replaces the large kernel convolution
such as 7 × 7. It reduces the computational cost of the module and at the same time fuses the
feature information between different channels, thus obtaining richer feature information.

3.3. Rep-C Module

Feature reuse plays a key role in lightweight convolutional neural network design.
Current methods usually employ concatenates operators to maintain a large number of
channels by reusing feature mappings from other layers to achieve a large network capacity.
However, the computational cost of connection operations, although parameter-free and
FLOPs-free, on hardware devices cannot be ignored. Refs. [42,43] shift the feature reuse
process from the feature space to the weight space, thus improving the efficiency of the
module. Meanwhile, we note that structural reparameterization can also be regarded
as an effective implicit feature reuse technique. Therefore, in this paper we introduce
the structural reparameterization technique and use it as the basis to design an efficient
re-parameterized CNN (Rep-C) module to provide a more efficient solution for feature
reuse, and the detailed structure of the module is shown in Figure 5. The Rep-C module
implements feature reuse through the structural reparameterization technique. Specifically,
multiple linear operators are utilized to generate different feature mappings during the
training process, and all the participants are fused into one by parameter fusion to achieve
fast inference. As shown Figure 5, our Rep-C module mainly consists of two Rep blocks; SE
blocks; and skip connections, and its general structure is similar to that of the base building
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block in Ghost [42]. The base building block in Ghost adopts a cascading feature punch-in
approach, which can be expressed as follows:

X = Concat(X, α1(X), α2(X) . . . αt−1(X)), (4)

where Concat is the concatenates operation, and α(X) denotes other neural network layers
applied to X, such as Convolution or BN.
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Figure 5. Detailed structure of Rep-C module.

However, we believe that the use of concatenates is relatively inefficient to achieve
feature reuse. Therefore, we introduced a structural reparameterization technique using
additive operators (skip connections) instead of concatenates operators, as well as a 1 × 1
convolution and BN layer in the identity mapping branch. This brings nonlinearity to the
training process, making it more flexible and effective in improving the efficiency of the
model. The feature reuse for structural reparameterization can be expressed as follows:

X = Add(X, α1(X), α2(X) . . . αt−1(X)), (5)

where Add is the addition operation, as a feature fusion. α(X) is the same representation as
in Equation (4).

In addition, during the design process of our module, we found that the use of
downsample and SE blocks works better when the number of channels of the feature map
decreases, while the application of deep convolution expands the network capacity when
the number of channels of the feature map increases just as effectively. Therefore, we
followed this principle during the design of the Rep-C module.

3.4. Loss Function

Medical image classification tasks are of critical importance for the early diagnosis of
diseases and treatment decisions, and the choice of loss function is crucial for model training
and performance. The cross-entropy loss function is one of the most commonly used loss
functions in deep learning classification tasks, and it is widely used in classification tasks.
The cross-entropy loss function is a metric used to measure the difference between two
probability distributions. In the medical image classification task, we want the output
probability distribution of the model to be as close as possible to the probability distribution
of the real label. The cross-entropy loss function evaluates the prediction accuracy of the
model by comparing the probability distribution of the real label with the probability
distribution of the model output. Meanwhile, the cross-entropy loss function has good
mathematical properties and its gradient calculation is relatively simple. This is conducive
to updating the model parameters efficiently using the backpropagation algorithm and
accelerating the training speed of the model. In addition, medical image classification tasks
usually involve multiple categories, such as identifying different lesion types or tissue
structures. The cross-entropy loss function performs well in multi-category classification
problems, which can effectively deal with the relationship between multiple categories
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and drive the model to learn the features that distinguish different categories. Therefore,
cross entropy loss is used as the loss function in this paper.The computational equation of
CrossEntropyLoss is as follows:

LCrossEntropyLoss = −
N

∑
x=1

p(x) · log(q(x)), (6)

where N represents the batch size, p(x) represents the true label, and q(x) is the pre-
dicted probability.

4. Experiments and Analysis

In this chapter, we demonstrate the effectiveness and generalization ability of our pro-
posed method (Eff-PCNet) through a series of experiments. In this paper, EfficientNetV2 [12]
is used as a baseline. In order to evaluate the performance of the model architecture, first we
focus on the three publicly available medical datasets from different modalities that we use
in Section 4.1. Then, our experimental setup and experimental environment are described
in Section 4.2. Then, in Section 4.3 we introduce the evaluation metrics used in this paper.
Finally, we present the comparison experiments of Eff-PCNet with other models and ablation
experiments in Sections 4.4 and 4.5 to explore the effectiveness of the Eff-PCNet method.

4.1. Datasets

(1) HAM10000 Dataset: HAM10000 [44] is a commonly used dermatologic image
dataset for research in the field of machine learning and computer vision. This dataset
collects a total of 10,015 dermatologic patient images for detecting pigmented skin lesions.
In this paper, we randomly divide this dataset into a training set and a test set in the ratio
of 8:2, where the training set is 8015 images and the validation set is 2000 images. It mainly
includes seven different types of skin cancers: melanoma (MEL, 11.1%), melanocytic nevus
(NV, 66.9%), basal cell carcinoma (BCC, 5.1%), actinic keratosis (AKIEC, 3.3%), benign
keratoses (BKL, 11%), dermatofibromas (DF, 1.1%), and vascular lesions (VASC, 1.4%). The
data distribution of the HAM10000 dataset is shown in Table 1, and the samples for each
category are shown at the first column of Figure 6.

Table 1. Distribution of lesions in the HAM10000 dataset.

Dataset
Split MEL NV BCC AKIEC BKL DF VASC Tottal

Train 891 5364 421 262 880 92 114 8015
Test 222 1341 102 65 219 23 28 2000
Total 1113 6705 514 327 1099 115 142 10,015

(2) SkinCancer Dataset: SkinCancer is a mini-dataset of the ISIC 2018 [45] challenge
dataset. Due to the imbalance of samples in the categories in [45], this dataset removes
dermoscopic images of diseases other than melanoma from the original data and retains
only benign skin moles and malignant skin moles, the two categories with a more balanced
number of samples. The dataset has a total of 3297 samples. We maintain a consistent
division with [46]. The training set has a total of 2637 samples containing 1440 benign
samples and 1197 malignant samples. The test set has a total of 660 samples containing
360 benign samples and 300 malignant samples. The distribution of lesions on the small-
ISIC2018 dataset is shown in Table 2, and an example of maligant skin moles image is
shown in the second column of Figure 6.
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SkinCancerHAM10000 Chest-Xray

Figure 6. Original images on the three datasets.

Table 2. Distribution of lesions in the SkinCancer dataset.

Dataset Split Benign Maligant Total

Train 1440 1197 2637
Test 360 300 660
Total 1800 1497 3297

(3) Chest-Xray Dadaset: The Chest-Xray dataset was developed by [47] published
online, the chest-Xray images in the dataset were selected from pediatric patients between
the ages of 1 and 5 years old at the Guangzhou Women’s and Children’s Medical Center
(GWCMC), and a total of 5856 high-resolution chest-Xray images were collected. The
dataset was divided into two categories, normal and pneumonia, with 1583 samples of
normal images and 4273 samples of pneumonia images. We randomly selected 1341 sam-
ples of normal images and 3875 samples of pneumonia images as the training set, and
242 samples of normal images and 398 samples of pneumonia images as the test set for the
experiments.The distribution of the data in the Chest-Xray dataset is shown in Table 3, and
the example of pneumonia is shown in thethird column of Figure 6.

Table 3. Distribution of lesions in the Chest-Xray dataset.

Dataset Split Normal Benign Total

Train 1341 3875 5216
Test 242 398 640
Total 1583 4273 5856
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4.2. Implementation Details

For all of the experiments in this article, the image resolution path size of the input
model was set to 224 × 224 by default, the batch size was set to 32, and the model was trained
for 300 epochs by default, when not otherwise specified. For image preprocessing, we used
the most common data enhancement methods, such as random clipping, normalization,
and level flipping. In addition, we trained our model with the Adaw [48] optimizer with an
initial learning rate set to 0.0001 and then used cosine annealing to adjust the learning rate,
where Tmax was set to 10. To ensure the fairness of the experiments, the same operating
environment and hyperparameters were shared, and the same training, validation, and
test sets were used. Finally, all the experiments in this paper are trained and tested on the
NVIDIA Telsa T4.

4.3. Evaluation Indicators

For the medical image classification direction, when the number of samples of the cate-
gories in the dataset is not balanced, a single evaluation metric does not reflect the performance
of the model very comprehensively, so in this paper we use four metrics—accuracy (Acc),
precision, recall, and F1 score—to measure the performance of the proposed model. All these
evaluations are calculated based on the confusion matrix. The definitions of the symbols in
the confusion matrix are as follows: true-positive example (TP), true-negative example (TN),
false-positive example (FP), and false-negative example (FN).

The equation for accuracy (Acc) is as is shown as follows:

Accuracy(Acc) =
TP + TN

TP + FP + TN + FN
, (7)

The equation for precision is as is shown as follows:

precision =
TP

TP + FP
, (8)

The equation for recall is as is shown as follows:

recall =
TP

TP + FN
, (9)

The equation for F1 Score is as is shown as follows:

F1 Score =
2× precision × recall

precision + recall
, (10)

In addition, we use the area under the receiver ROC curve (AUC) as an evaluation met-
ric to assess the classification performance of different models, and the AUC is calculated
as follows:

AUC =
∑i∈ positiveClass ranki −M(1 + M)/2

M ∗ N
, (11)

where M is the number of positive samples, N is the number of negative samples, and
ranki is the model’s ranking of the samplei ranking of the predicted probability.

4.4. Experiments and Analysis

In this section, we compare our Eff-PCNet with some classical and new methods
in three datasets: HAM10000, SkinCancer, and Chers-Xray. The models involved in our
analysis mainly include ResNet [13], Regnet [49], RepVGG [50], FasterNet [21], Vit [7],
Swin Transformer [28], Cswin [51], P2T [29], VAN [52], MLP-mixer [8], HireMLP [11],
CycleMLP [10], SCNet [53], NextVit [54], and ConvMLP [55]. In the following, we will
present the results of the experiments on each of the three datasets.
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4.4.1. Results of Comparison Experiments on the HAM10000 Dataset

Table 4 shows the experimental comparison results of Eff-PCNet with some models
in HAM10000. We evaluate it with other models in terms of five metrics: Acc, precision,
recall, F1, and Auc. At the same time, we also compare the number of parameters and the
FLOPs of the models. From the table, we can see that Eff-PCNet has a significant advantage
over other competing methods. Eff-PCNet achieves an Acc of 0.874, an F1 of 0.7744,
precision of 0.7845, recall of 0.7669, and an Auc of 0.8664. In CNN-based methods such as
compared to the classical Resnet50, Eff-PCNet improves Acc by 3.7 percentage points, F1 by
6.31 percentage points, and precision by 10.08 percentage points. Meanwhile, compared
with the SOTA FasterNet network, Eff-PCNet improves Acc by 2.75 percentage points, and
Auc by 2.87 percentage points, and F1 by 4.86 percentage points. For the Transformer-based
method, our Eff-PCNet improves all three metrics: F1, precision, and recall, by more than
ten percentage points compared to Vit-B-16. Compared with the MLP-based method, Eff-
PCNet exceeds CycleMLP-B4 by 6.3 percentage points in Acc; 6.71 percentage points in
Auc; and more than ten percentage points in the remaining three metrics of F1, precision,
and recall. In addition, Eff-PCNet improves all three metrics—F1, precision, and recall—by
more than nine percentage points over P2T compared to the hybrid model-based model.
From the table, it can be seen that our Eff-PCNet maintains high performance, while the
number of parameters and FLOPs still maintains a better advantage, which also shows that
our method achieves a better trade-off between performance and the number of parameters
and computation compared to other methods.

In addition, Figure 7 shows the Grad-CAM [56] visualization results of some com-
parison models on the HAM10000 dataset, where column h is the visualization result of
our model. From the figure, we can clearly see that our model can better localize the
lesion region in the image compared to other models. This further illustrates the better
classification performance of our model compared to other models. Finally, we show the
confusion matrix of our method on the HAM10000 dataset on the left side of Figure 8,
showing the classification of each category separately.

Table 4. Results of comparison experiments on the HAM10000 dataset.

Methods Params (M) FLOPs (G) Acc F1 Precision Recall Auc

CNN

EfficientNetV2 20.18 2.87 0.8637 0.7522 0.7788 0.7349 0.8492
ResNet50 23.5 4.1 0.837 0.7113 0.6837 0.7453 0.8555
ResNet101 42.5 7.9 0.859 0.7218 0.7759 0.6821 0.8206
RegNet 2.32 0.21 0.823 0.6669 0.6654 0.6722 0.8145
RepVGG-B2 86.5 20.5 0.858 0.7402 0.7627 0.7223 0.8420
FasterNet 13.7 1.9 0.8465 0.7258 0.7537 0.7144 0.8377

Transformer

Vit-B-16 86.2 16.9 0.809 0.6335 0.6562 0.6187 0.7845
Swin-T 27.50 4.37 0.8505 0.7015 0.7202 0.6980 0.8303
Van-b2 26.07 5.04 0.8525 0.7209 0.7358 0.7231 0.8419
Cswin 23.57 3.65 0.8505 0.7375 0.7433 0.7378 0.8509

MLP
MLP-mixer-B 59.3 3.1 0.811 0.6318 0.7015 0.5878 0.7670
HireMLP-B 32.60 4.26 0.849 0.7246 0.7241 0.7439 0.8516
CycleMLP-B4 26.29 3.27 0.811 0.6421 0.6462 0.6465 0.7993

Hybrid method

P2T 21.81 4.08 0.836 0.6809 0.6955 0.6736 0.8153
ConvMLP 8.5 2.4 0.8450 0.7275 0.7370 0.7240 0.8423
NextVit 30.7 5.8 0.8620 0.7392 0.7426 0.7403 0.8525
SCNet 55.1 12.1 0.861 0.7280 0.7519 0.7134 0.8374

CNN Eff-PCNet(Ours) 20.39 2.92 0.874 0.7744 0.7845 0.7669 0.8664
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(a)Original (g)Swin(d)MLP-Mixer (f)Vit(e)CycleMLP(c)FasterNet (h)Ours(b)ResNet

Figure 7. Grad-CAM visualization results on the HAM10000 dataset.

HAM10000 Dataset Chest-Xray Dataset SkinCancer Dataset

Figure 8. Results of confusion matrices on three datasets.

4.4.2. Results of Comparison Experiments on the SkinCancer Dataset

Table 5 shows the experimental results of Eff-PCNet and some models on the Skin-
Cancer dataset. As can be seen from the table, Eff-PCNet achieves 0.9106 for Acc, 0.9102
for F1, 0.9094 for precision, 0.9117 for recall, and 0.9117 for Auc. Compared with Effi-
ciencynetv2, Eff-PCNet improves Acc by 1.36 percentage points, F1 by 1.4 percentage
points, precision by 1.36 percentage points, recall by 1.5 percentage points, and in Auc by
1.5 percentage points. In addition, Eff-PCNet improves to some extent on all five evaluation
metrics compared to other CNN-, Transformer-, MLP-, and hybrid model-basedmethods
and achieves the highest results among all of the compared methods. This also fully proves
the effectiveness and innovation of our proposed method. Figure 9 shows the Grad-CAM
visualization of benign samples in the SkinCancer dataset on different methods. By com-
paring the visualization results of different columns, we notice that the CNN-based method
is able to focus on the lesion area better; the MLP-based network just focuses on the vicinity
of the lesion area, and the localization shows some deviation. The comparison shows that
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our Eff-PCNet accurately localizes to the lesion region. The right side of Figure 8 shows the
confusion matrix of our method on the SkinCancer dataset, and from the confusion matrix
visualization, we can observe that our Eff-PCNet classifies the two categories in the dataset
in approximately the same way.

Table 5. Results of comparison experiments on the SkinCancer dataset.

Methods Params (M) FLOPs (G) Acc F1 Precision Recall Auc

CNN

EfficientNetV2 20.18 2.87 0.8970 0.8962 0.8958 0.8967 0.8967
ResNet50 23.5 4.1 0.8909 0.8905 0.8899 0.8928 0.8908
ResNet101 42.5 7.9 0.8970 0.8967 0.8963 0.8944 0.8944
RegNet 2.32 0.21 0.8893 0.8888 0.8881 0.8903 0.8903
RepVGG-B2 86.5 20.5 0.8970 0.8964 0.8957 0.8975 0.8975
FasterNet 13.7 1.9 0.8939 0.8936 0.8931 0.8961 0.8961

Transformer

Vit-B-16 86.2 16.9 0.8818 0.8813 0.8806 0.8831 0.8831
Swin-T 27.50 4.37 0.8894 0.8886 0.8883 0.8889 0.8889
Van-b2 26.07 5.04 0.8864 0.8861 0.8860 0.8892 0.8892
Cswin 23.57 3.65 0.8909 0.8936 0.8930 0.8961 0.8961

MLP
MLP-mixer-B 59.3 3.1 0.8848 0.8845 0.8840 0.8869 0.8869
HireMLP-B 32.60 4.26 0.8954 0.8947 0.8944 0.895 0.895
CycleMLP-B4 26.29 3.27 0.8909 0.8905 0.8899 0.8928 0.8928

Hybrid method

P2T 21.81 4.08 0.8969 0.8964 0.8957 0.8978 0.8978
ConvMLP 8.5 2.4 0.8364 0.8361 0.8373 0.8400 0.8400
NextVit 30.7 5.8 0.8955 0.8948 0.8942 0.8956 0.8956
SCNet 55.1 12.1 0.9060 0.9050 0.9065 0.9039 0.9039

CNN Eff-PCNet(Ours) 20.39 2.92 0.9106 0.9102 0.9094 0.9117 0.9117

(a)Original (g)Swin(d)MLP-Mixer (f)Vit(e)CycleMLP(c)FasterNet (h)Ours(b)ResNet

Figure 9. Grad-CAM visualization results on the SkinCancer dataset.

4.4.3. Results of Comparison Experiments on the Chest-Xray Dataset

To further verify that Eff-PCNet has better generalization ability, we conducted exper-
imental validation on the Chest-Xray dataset. Table 6 shows the experimental results of
all comparison models on the Chest-Xray dataset. From the table, we can see that the Acc
of Eff-PCNet reaches 0.9703, the F1 reaches 0.9766, the precision reaches 0.9588, the recall
reaches 0.9950, and the Auc reaches 0.9624. As with the two datasets above, we similarly
compare Eff-PCNet with a number of classical, newer methods. On the Chest-Xray dataset,
our Eff-PCNert achieves the highest metrics on Acc, F1, and AUC, and precision and recall
rank second among all models. Considering the five evaluation metrics, and the number
of parameters and FLOPs, our Eff-PCNet still has a clear advantage over other methods.
Our method has fewer parameters and computation while achieving high performance.
Meanwhile, this lightweight and efficient medical image classification network has a good
advantage in practical clinical applications. In addition, Figure 10 demonstrates the Grad-
CAM visualization results of different methods on the Chest-Xray dataset, from which
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we can see that our model is able to localize the chest lesion region better. The middle of
Figure 8 demonstrates the confusion matrix visualization of our method on the Chest-Xray
dataset, from which it can be observed that Eff-PCNet is better able to correctly classify the
category 1.

Table 6. Results of comparison experiments on the Chest-Xray dataset.

Methods Params (M) FLOPs (G) Acc F1 Precision Recall Auc

CNN

EfficientNetV2 20.18 2.87 0.9625 0.9700 0.9652 0.9749 0.9585
ResNet50 23.50 4.1 0.9547 0.9642 0.9467 0.9824 0.9458
ResNet101 42.50 7.9 0.9516 0.9625 0.9277 1.0000 0.9360
RegNet 2.32 0.21 0.9234 0.9407 0.9068 0.9774 0.9060
RepVGG-B2 86.50 20.5 0.9516 0.9617 0.9400 0.9849 0.9408
FasterNet 13.70 1.9 0.9438 0.9554 0.9415 0.9698 0.9353

Transformer

Vit-B-16 86.2 16.9 0.8891 0.9135 0.8865 0.9422 0.8719
Swin-T 27.50 4.37 0.9188 0.9370 0.9042 0.9724 0.9015
Van-b2 26.07 5.04 0.9563 0.9654 0.9490 0.9824 0.9478
Cswin 23.57 3.65 0.9375 0.9516 0.9182 0.9874 0.9214

MLP
MLP-mixer-B 59.30 3.1 0.9266 0.9432 0.9091 0.9799 0.9094
HireMLP-B 32.60 4.26 0.9453 0.9574 0.9291 0.9874 0.9317
CycleMLP-B4 26.29 3.27 0.9438 0.9660 0.9310 0.9824 0.9313

Hybrid method

P2T 21.81 4.08 0.9453 0.9566 0.9438 0.9698 0.9374
ConvMLP 8.5 2.4 0.9266 0.9436 0.9034 0.9874 0.9060
NextVit 30.7 5.8 0.9563 0.9653 0.9534 0.9774 0.9494
SCNet 55.1 12.1 0.9484 0.9598 0.9314 0.9899 0.9351

CNN Eff-PCNet(Ours) 20.39 2.92 0.9703 0.9766 0.9588 0.9950 0.9624

(a)Original (g)Swin(d)MLP-Mixer (f)Vit(e)CycleMLP(c)FasterNet (h)Ours(b)ResNet

Figure 10. Grad-CAM visualization results on the Chest-Xray dataset.

4.5. Ablation Experiments

In this section, we conduct two ablation studies on the two modules proposed in this
paper, M2C and Rep-C, on three datasets. First, we analyze the effects of the individual
M2C and Rep-C modules on the model classification performance, respectively. Then, in
order to investigate the effect of the change of position of the M2C and Rep-C modules in
Eff-PCNet on the model performance, we similarly conducted an ablation study.

Individual contribution of each module: In order to verify the impact of individual
M2C and Rep-C modules on the model classification performance, we conducted an
ablation study. In this ablation study, we always used the CNN stage in the baseline. The
results of the ablation experiments on the three datasets—HAM10000, SkinCancer and
Chest-Xray—are shown in Table 7. From the table, we can see that the use of M2C and Rep-
C modules alone compared to the baseline has different degrees of improvement on all three
datasets, which further proves the effectiveness of our proposed module. Overall, it seems
that the Rep-C module alone contributes more than the M2C module on all three datasets.
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Table 7. Ablation experiments for each module, where ‘8’ means that the module was not added and
‘4’ means that it was added.

Dataset M2C Rep-C Acc F1 Precision Recall Auc

HAM10000
8 8 0.8637 0.7522 0.7788 0.7349 0.8492
4 8 0.8695 0.7523 0.7474 0.7658 0.8673
8 4 0.8705 0.7651 0.7905 0.7472 0.8568
4 4 0.8740 0.7744 0.7845 0.7669 0.8664

SkinCancer
8 8 0.8970 0.8962 0.8958 0.8967 0.8967
4 8 0.8985 0.8980 0.8972 0.8994 0.8994
8 4 0.9076 0.9071 0.9063 0.9083 0.9083
4 4 0.9106 0.9102 0.9094 0.9117 0.9117

Chest-Xray
8 8 0.9625 0.9700 0.9652 0.9749 0.9585
4 8 0.9625 0.9704 0.9539 0.9874 0.9545
8 4 0.9688 0.9752 0.9610 0.9899 0.9619
4 4 0.9703 0.9766 0.9588 0.9950 0.9624

Variation of M2C module and Eff-rep module positions: In this part, we explore the
effect of variation of the M2C module and Rep-C module positions in Eff-PCNet on the model
performance. The results of the M2C module and the Rep-C module on the three datasets at
different locations of Eff-PCNet are shown in Table 8. In the table, we only list the experimental
results for the main locations, where 0 means that the M2C module or Rep-C module is in the
same location as the corresponding module in our Eff-PCNet (stage 4 for the M2C module, and
stage 6 for the Rep-C module), 3 means that the M2C module or Rep-C module is in the location
of stage 3, and 7 means that the M2C module or Rep-C module is stage 7. By comparing the
results of the ablation experiments with the M2C and Rep-C modules in different positions, we
can see that the combination of the positions of the M2C and Rep-C modules in any way has
mixed results on the three datasets, with some combinations having a small enhancement with
respect to the baseline and some combinations having a decrease instead. Overall, the highest
classification metrics were achieved on all three datasets when setting the M2C module to stage
4 and the Rep-C module to stage 6. Therefore, we adopt this combination as the design rule for
the Eff-PCNet architecture.

Table 8. Variation of module positions for ablation experiments: 0 means that the M2C module or
Rep-C module is in the same location as the corresponding module in our Eff-PCNet (stage 4 for the
M2C module, and stage 6 for the Rep-C module), 3 means that the M2C module or Rep-C module is
in the location of stage3, and 7 means that the M2C module or Rep-C module is stage 7.

Dataset M2C Rep-C Acc F1 Precision Recall Auc

HAM10000

Baseline Baseline 0.8637 0.7522 0.7788 0.7349 0.8492
3 0 0.8615 0.7295 0.7289 0.7384 0.8507
7 0 0.8655 0.7379 0.7459 0.7332 0.8498
0 3 0.8625 0.7293 0.7459 0.7207 0.8420
0 7 0.8690 0.7592 0.7832 0.7400 0.8521
Eff-PCNet Eff-PCNet 0.8740 0.7744 0.7845 0.7669 0.8664

SkinCancer

Baseline Baseline 0.8970 0.8962 0.8958 0.8967 0.8967
3 0 0.8788 0.8776 0.8783 0.8769 0.8769
7 0 0.8924 0.8917 0.8912 0.8922 0.8922
0 3 0.8833 0.8824 0.8823 0.8825 0.8825
0 7 0.900 0.8990 0.8998 0.8983 0.8983
Eff-PCNet Eff-PCNet 0.9106 0.9102 0.9094 0.9117 0.9117

Chest-Xray

Baseline Baseline 0.9625 0.9700 0.9652 0.9749 0.9585
3 0 0.9625 0.9701 0.9629 0.9774 0.9577
7 0 0.9625 0.9704 0.9539 0.9874 0.9545
0 3 0.9594 0.9678 0.9537 0.9824 0.9519
0 7 0.9625 0.9704 0.9539 0.9874 0.9545
Eff-PCNet Eff-PCNet 0.9703 0.9766 0.9588 0.9950 0.9624
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5. Conclusions

In this paper, we propose a lightweight and efficient medical image classification
network (Eff-PCNet) based on pure CNN. On the one hand, we propose a multi-branch
multi-scale CNN (M2C) module, which utilizes the multi-branch multi-scale operation to ef-
fectively replace the large kernel convolution. It reduces the computational cost of the mod-
ule while fusing the feature information between different channels, thus obtaining richer
feature information. On the other hand, we introduce the structural re-parameterization
technique and propose the structural reparameterized CNN (Rep-C) module, which pro-
vides a more effective solution for feature reuse. Numerous experimental results show that
our Eff-PCNet is better than the current methods based on CNN, Transformer, and MLP in
the classification performance of three publicly available medical image datasets, namely,
HAM10000, SkinCancer, and Chest-Xray. At the same time, our method achieves a better
trade-off between the number of parameters, the computational effort, and the performance.
Although our method has achieved relatively good results so far, the classification perfor-
mance on a dataset like HAM10000, which has extremely unbalanced categories, is still
not up to the level of real clinical applications. At the same time, for clinical applications,
our method is still lacking in lightweight. In addition, our work is currently only in the
practice stage, and we do not have a large number of medical image datasets to validate our
experimental results. In our future work, we will continue to optimize the model mainly in
these three directions.
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