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Featured Application: To obtain the normal cognitive decline during interaction with mobile
devices on the move as a ground truth for further studies about pathologic cognitive decline
(such as MCI).

Abstract: The widespread use of mobile phones in daily life makes them a fundamental tool for
the study of human behavior. In particular, they can be used as a source of additional information
to help to diagnose diseases. This work is based on contrasted dual-tasking tests where cognitive
performance is studied by performing tasks of high cognitive load while walking. In this case, we
study significant differences in mobile device use among groups of people of different ages and
examine whether they are more characteristic when the interaction takes place on the move. A study
is conducted by monitoring the interaction with the mobile device for one consecutive week and
analyzing the correlations between these interactions and the participants’ ages. Additionally, a user
profiling model is designed to help to use this ground truth in future works focused on the early
diagnosis of cognitive deficits. The results obtained contribute to preliminarily characterizing how
age-related normotypical cognitive decline affects interactions with mobile devices. In addition, the
pilot study generates a dataset with monitored events and interactions of 45 users that includes more
than 4.5 million records.

Keywords: mobile computing; dual tasking; cognitive decline; human–computer interaction

1. Introduction

The use of mobile devices as a tool in our daily lives is universally widespread. This
general use allows them to serve as a valuable source of information for the analysis of
people’s performance in their daily activities [1]. In their common usage, mobile devices
and their applications can collect data about location, movement, battery usage, etc. Apart
from sensor data, it is particularly interesting that interactions between users and their
mobile devices also provide valuable information related to human behavior. Indeed, it
has been shown that this analysis can support the diagnosis of diseases [2] but should play
a complementary role in the doctor–patient relationship. In regard to dementia, Blanka
Klimova [3] demonstrated the potential of mobile applications to facilitate diagnostic
support, minimizing bias, with greater patient independence. Indirectly, such approaches
can reduce healthcare costs and improve the overall quality of life of older people [4].
This makes the analysis of smartphone interactions highly valuable, both in the general
field of human–computer Interaction (HCI) and in healthcare, whether for diagnostic or
treatment purposes.
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This article is part of the project “Mobile computing-based Multitasking for Mild
cognitive impairment Monitoring and early Screening (M4S)”, which aims to contribute
to the early diagnosis of cognitive decline by monitoring dual daily tasks in terms of
interactions with mobile devices. One of the most common pre-dementia stages is known
as mild cognitive impairment [5] (MCI). It is defined as “cognitive decline greater than
expected for an individual’s age and education level, but that does not interfere notably
with activities of daily life” [6]. One of the main motivations of this project is the increasing
prevalence of MCI, with epidemiological studies estimating it to be between 3% to 19% in
adults older than 65 years, and with a risk of it progressing to dementia (11–33% cases)
after 2 years. The prevalence increases over time, being up to 50% for those who finally
progress to dementia within 5 years [7]. These statistics show that dementia is one of the
most common disorders among older adults, and the number of people affected is projected
to increase by up to three times by 2050 [8].

The aim of this study is to determine which tasks performed with a mobile device
show significant differences between population cohorts of different ages and whether this
difference is more relevant when the tasks are performed while walking. This study is
conducted with people who have no diagnosed dementia; therefore, the aim is to establish
a ground truth regarding how the normal cognitive decline of aging affects the use of
mobile devices, both while stationary and on the move.

This work is based on a previous study [9] where we defined the HuSBIT-10 taxon-
omy for the main types of tasks performed with mobile devices (distinguishing between
automatic, psychomotor, production, consumption, and exploration tasks). Based on this
taxonomy, the cognitive load was studied by measuring it with electroencephalography
(EEG), to extract those tasks with a more significant cognitive load. This study helped to
determine the tasks to be monitored and analyzed in the current work.

After explaining the context, motivation, and objective of this work during the in-
troduction section, the rest of the paper continues with a review of related works in the
literature in Section 2. Next, the description of the experimental protocol, materials, and
methods (the BIPapp monitoring application and the generated dataset) is provided in
Section 3. The statistical method and results are explained in Section 4. The user profiling
model to classify people regarding the use of mobile devices and age is also developed in
Section 4. Section 5 discusses the results’ scope, their meaning, and the possible limitations
of the experiment. Finally, Section 6 concludes the paper, discussing the goals accomplished
and the contributions of this work.

2. Related Work

There are multiple diagnosis tools for MCI, such as neurological evaluation, cognitive
tests, or physical examinations [10], although none of them alone can provide high certainty
in the results, so it is common to combine them. Within the neurological evaluation
methods, there are tools such as EEG [11] or fMRI [12]. Regarding cognitive tests, two of the
most used are the Mini-Mental State Examination (MMSE) [13], which is a general test for
dementia, and the Montreal Cognitive Assessment [14], which is specific for MCI. Physical
examination often refers to analyzing on-the-move activities, which represent a special
focus of attention as they are commonly used as a tool in diagnosing cognitive decline.
MCI is accompanied by other changes, such as balance and coordination [15]. In particular,
evidence of an association between cognitive impairment and gait has been found as soon
as older adults are affected by MCI [16,17]. Thus, the ability to multitask has been said to
be at the core of competency in everyday life [18].

The term m-health refers to the usage of mobile devices to support medicine or
improve people’s health. It can be used for treatment, as in [19], where the authors proved
that smartphones can be used to induce positive or negative affective states, or in [20],
where the authors developed an app to improve diabetes self-management. There are
also applications to support the activities of health professionals [21,22]. The m-health
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usage on which this paper focuses is m-health for diagnosis [4], and, more specifically,
early diagnosis.

Research on smartphones as an early diagnosis tool has increased in the last few years
and shows some promising results. In particular, for this paper, the focus is psychological
and neurological disorders. For example, Kim et al. [23] describes a mobile app for the
gathering of self-reports of mental health ratings from breast cancer patients as a depression
screening tool. In [24], the authors propose a system for the detection of Parkinson’s disease,
analyzing gait data from the smartphone, so that the doctor can obtain data that have been
monitored continuously. In [25], the authors implement into an app a modified version
of the MMSE for the easy gathering of results using a voice recognition technique and
automated scoring as an alternative to the paper version.

This paper is a preliminary study of the utility of smartphones as early diagnosis tools
for the detection of MCI by combining ideas from traditional techniques of MCI diagnosis
and modern mental disorder diagnosis using smartphones.

3. Materials and Methods
3.1. Experimental Protocol and Method

The experiment gathered evidence regarding mobile interactions in an empirical
manner, with the data quantitatively analyzed. The twofold research question guiding this
experiment was “Are there significant differences in mobile device use among groups of
people of different ages and are they more characteristic when the interaction takes place on
the move?”. This question resulted in two hypotheses to be tested through this experiment:

Hypothesis 1. Different tasks performed with a smartphone present different performance depend-
ing on the user’s age.

Hypothesis 2. The performance of mobile device tasks depends on whether the user is stationary or
on the move.

The pilot study was conducted by the MAmI Research Group from the University
of Castilla-La Mancha, a group focused on health informatics and HCI. The participants
were informed about the scope and goals of this research and the collected data. The work
was conducted with 45 participants, from 20 to 70 years old, who received and signed
an information sheet and consent form, which provided detailed information about the
study’s objective, procedures, and the types of data to be collected. All participants had
the opportunity to consider their participation before making a final decision. Thereby,
the preservation of the dignity and autonomy of the participants was ensured by their
voluntary participation and the fact that they could leave the study at any time without
any consequences.

The overall context of the M4S project presented above is described in Figure 1. This
work contributes to the characterization of the interactions with mobile devices. In the
previous work [9], the cognitive load of each task with the mobile device was studied to
select the tasks to be considered in the present study. In parallel, a detailed analysis of gait
variables while interacting with the mobile device was carried out using body tracking
technology [26]. The protocol employed within the experiment can be summarized as
follows: (1) all participants were informed and signed the consent form; (2) the participants,
with or without help, installed BIPapp (described in Section 3.2) and configured it to
activate the required permissions and services (i.e., accessibility and activity recognition
services); (3) without receiving any additional instruction, they used their mobile devices
for at least 7 days; and (4) users uninstalled BIPapp from their devices.
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3.2. Material: BIPapp

BIPapp is an Android mobile application that enables the monitoring of different
actions and events performed by a user with a mobile device. Privacy and ethics are
ensured in the collection of data by using a random unique identifier that prevents users
from being recognized. Figure 2 illustrates the different actions and events monitored.
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Figure 3 depicts a graphical representation of the development and operation of
BIPapp. When the user has installed the application for the first time, it must be reg-
istered (1). Once the user has registered and logged in, different options can be en-
abled to monitor the user’s actions and events (2), (4). The app recognizes user activ-
ity and steps taken with stand-alone services (https://developer.android.com/guide/
components/services, accessed on 16 February 2023). Google’s Activity Recognition
Client API (https://developers.google.com/android/reference/com/google/android/
gms/location/ActivityRecognitionClient, accessed on 26 April 2023) is used to detect
physical activity performed by the user. The monitored actions correspond to an accessibil-
ity service (3) (https://developer.android.com/reference/android/accessibilityservice/
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AccessibilityService, accessed on 8 July 2023) that enables the monitoring of events and
actions performed with the mobile device.
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Once the user has registered and configured the app, all event data are stored in a
relational database in the cloud (5). These data are accessed and processed via a REST API
implemented with Slim (https://www.slimframework.com/, accessed on 13 June 2023)
(6) and (7). The “Application Information” section explains how the application works and
shows the unique and anonymous user identifier assigned to it (8).

3.3. Obtained Data

The process of designing the database to store the data monitored by BIPapp was
critical. For this purpose, a MySQL relational database hosted on a cloud server was
used; this was due to the relationship between the tables, enabled by means of the unique
identifier assigned to each user. The different tables created to store the collected data were
as follows.

• Apps. Stores specific events performed in certain applications. (e.g., sending an email,
opening a WhatsApp conversation, liking a Facebook post, etc.).

• AppsInstalled. These are records of the apps installed on each user’s device.
• Lock. This stores the locking and unlocking events of the mobile device.
• Buttons. This stores events related to pressing physical buttons, such as those to

increase and decrease the volume.
• ActivityDetect. This records the different physical activities performed by the user

and related to the event performed with the device at that moment.
• Calls. The numbers and dates of incoming, outgoing, and missed calls are recorded.
• FirstPlane. This stores the use of a given application along with the event produced in

that application.
• Keyboard. This logs events performed with the keyboard, specifically metrics that

measure the typing of letters, symbols, and emoticons (it does not store conversations).
• Users. These are the distinct encrypted identifiers for users.

At the end of the experiment, there were approximately 4,500,000 records in the
database. The criterion for inclusion in the experiments was that a full, uninterrupted
week of data was available, so a subset of users had to be disregarded. In the end, 29 users
were included in the dataset, with a total of 3,805,000 data records. The following section
describes how the data were processed to obtain the final dataset.

https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://www.slimframework.com/
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3.4. Data Pre-Processing and Generated Dataset

Due to the number of records, as well as their nature, it was necessary to conduct
several refinement processes in order to be able to effectively use these data.

The first step was to condense the different events into cycles to profile the users. To
accomplish this, several approaches were considered, including grouping by time window,
grouping by event typology, and grouping by locked/unlocked cycles. As the focus of
the study was oriented towards the uses applied to the mobile device, the decision was
made to use the lock/unlock cycle classification approach, which was achieved with the
algorithm in Algorithm 1. As described, the filtering of the locked/unlocked events of all
users was performed first. After this, they were sorted temporally, from oldest to newest.
Finally, a loop was performed that checked the input or output of lock/unlock events and
stored this information in a lexicon to then assign the type of cycle to each record.

Algorithm 1 Locked/Unlocked cycles generation

1: Let cycles = {}
2: for user = 0, 1, 2,. . ., N from users do
3: Assign user_events all the user events on smartphone that are

locked/unlocked events
4: Let in_locked = False variable
5: Let in_unlocked = False variable
6: for user_event = 0, 1, 2,. . ., M from user_events do
7: if user_event is the first then
8: if user_event is an locked event then
9: Assign in_locked = True variable

10: Add a new register to cycles dictionary, with kind lock
and init with the timestamp of the event

11: else
12: Assign in_unlocked = True variable
13: Add a new register to cycles dictionary, with kind unlock

and init with the timestamp of the event
14: end if
15: else
16: if in_lock and user_event is a unlocked event then
17: Access to the register of cycles variable and add the end

of the cycle with the last event timestamp
18: Access in_lock = False
19: Access in_unlock = True
20: Add a new register to cycles dictionary, with kind unlock

and init with the timestamp of the current event
21: else if in_unlock and user_event is a locked event then
22: Access to the register of cycles variable and add the end

of the cycle with the last event timestamp
23: Assign in_unlock = False
24: Access in_lock = True
25: Add a new register to cycles dictionary, with kind unlock

and init with the timestamp of the current event
26: end if
27: end if
28: end for
29: Use cycles to assign the kind of cycle of every user event
30: end for

The second step comprised combining the user event logs (classified into locked/unlocked
cycles as explained above) with the physical activity logs. Here, we dealt mainly with
the difference in the frequency of physical activity and user event collection. To solve this
and perform an accurate matching process, an algorithm was designed and implemented
that could assign to each event the physical activities closest in time and type; Algorithm 2
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provides details of the algorithm. In this case, it was traversed event by event, using the
time stamp. With this time stamp and a pre-determined time drift of seconds, a time
window was established to locate physical activities. The activities that fell within the
window were ordered temporally, and the one closest to the time stamp of the event (or the
one with the least temporal drift) was searched.

Algorithm 2 Combining smartphone events and physical activity

1: Let time_drift = 3
2: Add action = NOT ACTION and confidence = 100 parameters to

user events dataset
3: for user = 0, 1, 2,. . .,N from users do
4: if first_timestamp_event of user < first_timestamp_physical then
5: Assign events variable to the events collection with a timestamp
≥ first_timestamp_physical of user

6: Assign phyacts variable to all the physical activities of user
7: else if first_timestamp_event of user > first_timestamp_physical
then

8: Assign phyacts variable to the physical activities collection with
a timestamp ≥ first_timestamp_physical of user

9: Assign events variable to all the events of user
10: else
11: Assign events variable to all the events of user
12: Assign phyacts variable to all the physical activities of user
13: end if
14: for event = 0, 1, 2,. . ., M from events do
15: Let timestamp_event variable the value of event timestamp
16: Let phy_acts_coll all the physical activities between

timestamp_event-time_drift and timestamp_event + time_drift
17: if phy_acts_coll size ≥ 0 then
18: Checks all the candidates and select those that satisfy

Min ([timestamp_event-timestamp_phy])
19: if Selected candidates size ≥ 1 then
20: Selected the candidate that satisfies Max (count(candidate∈

candidates))
21: end if
22: Assign the action and confidence parameter from the best

candidate find to the events dataset
23: end if
24: end for
25: end for

After combining physical activities as events captured by the mobile device, “summary
cycles” were computed that grouped the counts of all events and actions given during a
lock or unlock. During this process, several metrics were generated, such as the cycle time,
number of production type events, and average typing time. In the following sections, we
provide additional details about the mechanisms that utilize the generated dataset.

4. Results
4.1. Statistical Analysis

The data are studied from two perspectives, one statistical and one algorithmic. The
objective of each approach is different. The defined hypotheses are investigated through
the statistical approach (Section 3). The user profiling model is applied to establish how
people of different ages use mobile phones (Section 4); this provides us with a method for
the classification of users.
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4.1.1. Theory and Calculation

To check the study’s hypotheses, a statistical analysis was developed from the data
collected to identify correlations or associations between different metrics of mobile us-
age and users’ ages (e.g., comparing the number of characters deleted by each user, the
frequency of typing, the amount of time spent using the mobile phone, etc.). These metrics
were also linked to the physical activity performed at each moment.

A non-parametric statistical test was performed as the sample was small and did not
follow a normal distribution. Due to the nature of the data as continuous quantitative
variables, Pearson’s correlation coefficient [27] was applied in order to measure the ordinal
association between two measured quantities. Pearson’s correlation coefficient ranges
from −1 to +1, indicating in both cases the degree of association between variables but
in opposite directions. According to the suggestions given in [28], the interpretation of
the magnitude of Pearson’s correlation coefficient is shown in Table 1. It represents the
relationship between X and Y in absolute values but applies to any pair of variables.

Table 1. Boundaries of Pearson’s correlation coefficient [28].

Range of Rxy Values Interpretation

0.00 ≤ |rxy| < 0.10 Null correlation
0.10 ≤ |rxy| < 0.30 Weak correlation
0.30 ≤ |rxy| < 0.50 Moderate correlation
0.50 ≤ |rxy| < 1.00 Strong correlation

The first step was to make certain assumptions about the parameters by establishing
two opposite hypotheses: a null hypothesis and an alternative hypothesis. Then, depending
on the coefficient obtained, a decision was made to accept or reject the hypothesis. This
measure of inferential statistics made it possible to draw conclusions or general patterns
for the whole population from the study of the sample and the degree of significance of the
results obtained.

4.1.2. Results of the Statistical Approach

Based on the first hypothesis about verifying how people use their mobile devices dif-
ferently depending on their age, a statistical analysis was performed using the data obtained.

The data of users who completed the experiment were organized into stages of adult-
hood according to Carl Jung’s theory [29], in order to analyze changing trends in the use of
mobile devices. Table 2 describes each age range. To distinguish each user’s events, we
used a variable named “identifier”. Participants also provided their subjective ability to
use technology. A criterion for inclusion was that the participants typically used mobile
devices in their daily tasks, including communication, shopping, managing finances, and
searching for information on the internet.

Table 2. Grouping of user data by age range.

Total High
Ability

Medium
Ability Low Ability Men Women

Young adults [20–34 yo] 9 9 0 0 3 6
Middle-aged adults [35–59 yo] 13 3 7 3 6 7

Older adults [60–70 yo] 7 1 2 4 4 3

The fixed variables were age and the type of physical activity (standing or moving).
The rest of the variables were selected based on the information collected and those that
differentiated the use of the device from one user to another. Sex/gender and the tech-
nological ability of the participants were variables that were collected, but, due to the
limited population, they were not considered in the study as no meaningful statistical
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conclusions could be drawn. Inferential analysis of the data was then performed using
Pearson’s correlation coefficient. Firstly, Table 3 summarizes this correlation regarding
mobile use and age.

Table 3. Correlation coefficients of mobile device usage metrics vs. age.

Stationary On the Move

Mobile usage vs. age −0.574 −0.605
Average number of open applications vs. age 0.225 0.133

Total events held vs. age −0.650 −0.539
Blocking vs. age −0.543 −0.476

Unblocking vs. age −0.594 −0.541

To provide greater detail on the use of mobile devices, the applications utilized by
users were classified by the type of content offered to users. Five types were distinguished:
financial, commercial, shopping, entertainment, and utility. As Table 4 depicts, the most
frequently used applications were commercial, utility, and entertainment.

Table 4. Correlation coefficient application categories vs. age.

Financial Commercial Shopping Entertainment Utility

Age 0.344 −0.062 −0.451 −0.621 0.176
% of users 20.69 86.21 24.14 100.00 93.10

The significance of the analysis lies in differentiating the use of the mobile device
while the user is standing or in motion. Therefore, starting from the previous classification,
an exploration was performed of the applications utilized by users on the move and the
degree of correlation that existed with respect to age (Table 5).

Table 5. Correlation coefficient of use of apps on the move vs. age.

WhatsApp Gmail Calls Twitter Instagram Facebook Outlook Chro me Other All

Age −0.542 0.466 0.255 −0.391 −0.290 0.068 −0.030 −0.580 −0.282 −0556
% of users 100.00 30.4 39.1 21.74 26.09 30.43 26.09 17.39 4.35 100.00

Focusing on WhatsApp and Facebook, the two applications most often used, Table 6
shows that the older the age of users, the fewer actions they performed on the application.

Table 6. Correlation coefficients of actions performed in WhatsApp and Facebook vs. age.

Stationary On the Move

WHATSAPP

WhatsApp events vs. age −0.578 −0.545
Open conversation vs. age −0.169 −0.476

Viewing and listening to multimedia files vs. age −0.194 −0.502
Writing vs. age −0.566 −0.551

Sending files and camera vs. age 0.370 −0.640

FACEBOOK

Facebook events vs. age 0.194 0.068
Facebook likes vs. age 0.156 <0.01

Facebook commenting vs. age 0.526 <0.01
Facebook sharing vs. age 0.070 <0.01

Notification vs. age 0.078 0.086
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Studying the correlation index between the age of the users and the number of each
type of call made (Table 7), a low association was found, where, as the age increased, more
calls were made.

Table 7. Correlation coefficients for calls vs. age.

Total Calls Outgoing Lost Incoming

Age 0.256 0.189 0.071 0.339

Finally, the relationship between the user’s age and the number of elements written
(letters, symbols, and emoticons) and between the age and the number of elements deleted
was studied, as depicted in Table 8.

Table 8. Correlation coefficients for typing and age.

Stationary On the Move

Written elements vs. age −0.697 −0.522
Elements removed vs. age 0.690 0.778
Total writing time vs. age −0.446 −0.436
Writing frequency vs. age −0.253 −0.660

4.2. User Profiling
4.2.1. Theory and Calculation

With the objective of building a method to determine how people use their mobile
phones differently depending on their age, a model for the construction of a device inter-
action profile was developed. The proposed profiling method consists of counting how
many cycles of each type each user has; therefore, this section explains how each cycle type
is labeled.

The focus of this process is to characterize a user by the way in which she or he interacts
with the mobile device, and, as the interaction when the mobile device is locked is minimal,
as a first step, locked cycles are discarded. As a next step, to increase the interpretability of
the data, a subset of features that are more appropriate to characterize each type of cycle
is selected. This subset is further reduced by totaling the type of interaction following
the HuSBIT-10 taxonomy [9] and the physical activities’ durations that are highly related
between them.

Once the data are simplified, the next step is to group the cycles according to their
similarities, for which a clustering algorithm is an appropriate tool. The data have many
samples, thus making the utilization of numerous clustering algorithms unfeasible because
they require an excessive amount of time to be executed; thus, they are discarded. Moreover,
these data present a distribution with varying density, and many samples are quite similar,
which results in most of the clustering algorithms producing highly unbalanced groups. As
a result, after testing a number of clustering algorithms, a self-organizing map (SOM) [30]
is chosen. An SOM is an unsupervised artificial neural network that projects the data to
a low-dimensional (usually 2D) network while maintaining their topological structure.
The SOM algorithm starts by creating a neural network and initializes its weights, which
can be random, decided beforehand, or set by prior calculation (for example, principal
component analysis). Then, each sample of the dataset is associated with a neuron based on
its weights, and these weights, along with the weights of neighboring neurons, are modified
to be closer to the sample. After repeating this process several times but decreasing how
much the weights are affected, the weights of the neurons will converge, and the network
will be trained. One of the main hyperparameters of an SOM algorithm is the topology
and its dimensions. The other two main hyperparameters are the initial learning rate,
which affects how much the weights of each neuron are modified, and the sigma, which
represents the radius by which nearby neurons affect each other. For this case, a hexagonal
topology is used with dimensions of 6 × 7, a learning rate of 1.5, and a sigma of 1.3.
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These specific values are established after performing a grid search. MiniSom (https:
//github.com/JustGlowing/minisom, accessed on 25 June 2023) is the implementation of
the algorithm that is employed in this paper.

Before applying the algorithm, the data are pre-processed in two ways. First, a
logarithm is applied to the duration column, so that its distribution is similar to a Gaussian
function, and its large scale has less impact on the clustering. Second, all the data are
standardized using Z-score normalization, causing all of them to have the same scale,
which is highly desirable for a clustering process. Once the clustering process is completed,
the next step is to study each group of cycles by observing their distributions and the
means, medians, and standard deviations of the different features. Lastly, profiles are built
by counting the number of cycles of each type for each user. This process is illustrated in
Figure 4.
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A decision tree is used to study the differences between these profiles for each age
group. A decision tree [31] is a supervised learning classifier that uses a tree structure to
create recursive splits of the data, where each leaf represents a class, and each intermediate
node represents a split. How the data are split depends on the functions used to determine
the quality of a split, with the most used being entropy and Gini impurity. For the analysis,
the scikit-learn [32] implementation is used, which applies, by default, the Gini impurity
function. This algorithm is usually less powerful than many other classifiers, but it is useful
in visualizing how classes are assigned based on the data used to train the tree.

4.2.2. User Profiling Results

Figure 5 illustrates the decision tree that shows how profiles are associated with each
age group. To improve the visualization in the paper, we limit the minimum samples on a
leaf to 2, which makes the tree smaller. Young adults and middle-aged adults are grouped
mostly into large and pure leaves, while older adults are more dispersed throughout the
tree, which depicts more varied behavior. The first split corresponds to a type of cycle with
an average duration of 3.5 min, low writing, and low physical activity and creates a leaf
with most of the young adult users. The second greatest split is related to cycles with an
average duration of 23 s, low physical activity, and very little writing.

https://github.com/JustGlowing/minisom
https://github.com/JustGlowing/minisom
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(the first position includes the participants from 20 to 34 years, the second includes participants from
35 to 59 years, and the third includes participants from 60 to 75 years); and the last line is the class
with more samples.

In addition, this tree’s accuracy is tested using the leave-one-out cross-validation
method, which consists of training the model with the data of every user except one and
testing it with the remaining ones. After this cross-validation process, the model obtains
average accuracy of 70%. The model mainly fails to classify a user within their age group,
which is predictable. However, it works with a high level of accuracy in separating users of
different age groups.

5. Discussion

After conducting the pilot study and analyzing the results, this work has demonstrated
promising contributions as well as clear limitations. The contributions extracted from the
results can be summarized as follows.

• There exists a strong correlation between age and several monitored metrics.
• A significant inverse correlation is found in the mobile’s time of use, the frequency

of locking and unlocking the device, and the number of actions performed in each
open app. Consequently, younger individuals exhibit more intensive use of the device.
Additionally, younger people tend to use entertainment apps more frequently.

• One of the most valuable findings is the strong inverse correlation in the use of the
device while in motion. Generally, but particularly in applications such as WhatsApp
and Chrome, the older the user, the fewer apps they use while moving. This finding is
closely related to the dual-tasking test commonly used to diagnose cognitive decline.

• Concerning the use of WhatsApp, there is a significant difference in the type of action
performed depending on whether the user is in motion or stationary, as well as
depending on their age. As individuals age, they use complex actions such as writing
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messages, viewing multimedia files, or sending images less frequently while walking.
However, these actions do not correlate with age when the user is stationary; they
perform these actions similarly and with a comparable frequency regardless of age.

• Further analysis of the metrics related to messaging reveals that young adults write
more than older users in both stationary and in-motion scenarios. There is a similar
ratio between the number of deleted items and the number of typed items when the
user is stationary. However, this correlation changes to the opposite direction when in
motion, as older adults tend to correct more errors and write at a slower pace.

These findings provide valuable insights into the relationship between age and mobile
device usage patterns, specifically in relation to cognitive decline and messaging behavior
on WhatsApp. The work sheds light on the different ways in which age impacts mobile
interactions and helps us to understand the potential implications of these findings.

However, it is essential to acknowledge the limitations of the study to guide future
research and further explore this intriguing area of investigation. Comparisons between
different users are always based on intrinsic differences in how people use their mobile
devices, which makes it difficult to obtain statistically robust results. An important bias
is that differences in use may be the result of generational differences, rather than normal
cognitive decline. A typical example is the strong correlation between age and the deletion
of characters when writing messages. Is this related to the fact that we make more mistakes
as we get older or that the current generation of older adults is more concerned about
writing correctly?

Another limiting aspect is the simple distinction between standing and moving activi-
ties. Based on existing studies showing the relationship between cognitive impairment and
alterations in gait parameters [16,17], we are currently working on studying the interaction
with mobile devices and specific gait parameters obtained through body tracking [26].

Despite the limitations in the statistical results, both in terms of the population size
and the nature of the correlations (which do not imply causation with age-related cognitive
impairment), the identified differences can serve as valuable metrics for future studies on
cognitive impairment. Specifically, these differences are particularly evident in actions such
as writing, sending files, or engaging with multimedia content, especially while in motion.
In fact, the data obtained from healthy adults can serve as a reliable baseline when studying
cases of cognitive decline.

Moreover, the dataset itself contains a substantial amount of information, making
it suitable for other studies aimed at characterizing interactions with mobile devices.
An illustrative example of this is the second analysis explained in Section 4.2 about user
profiling. The profiling technique employed has proven to be useful and has some strengths.
The first is that the profiles of each user can be easily compared between them, both visually
and mathematically. They are also simple to understand because they are represented
by counting the number of each type of cycle. This work also shows the possibility of
using them for machine learning, which has shown good results and could be improved
with more data and more powerful algorithms. Regarding the disadvantages, the main
one is that they are expensive in terms of time and memory to compute, although some
improvements in the pipeline could be made for implementation in production. The other
major disadvantage is that these profiles can only be used to compare the usage between
similar periods of time, although, with some modifications, the number of cycles could be
converted into frequencies, avoiding this problem.

All these findings are related to the characterization, based on correlations and sta-
tistical inferences, of differences in mobile device use depending on age. This aspect is
especially critical for the next steps of the M4S project, in which the present work is framed.
Recognizing and understanding the differences produced by normal aging is critical in
avoiding false positives when screening for cognitive deficits based on mobile device use.



Appl. Sci. 2023, 13, 9204 14 of 16

6. Conclusions

The twofold research question that guided this experiment was “Are there significant
differences in mobile-device use among groups of people of different ages, and are they
more characteristic when the interaction takes place on the move?”. Two hypotheses were
formulated on the basis of this question.

First, the aim was to check whether there are tasks performed on a smartphone
that present different performance depending on the user’s age. Statistically, there is a
strong correlation between age and lower mobile device usage, with older adults using
financial apps to a greater extent and entertainment, communication, and shopping apps
to a lesser extent.

The second hypothesis, regarding the characterization of usage taking into account
differences while stationary and moving, showed that the difference in some communi-
cation tasks was particularly significant, with older adults characteristically performing
significantly fewer actions on the move, such as opening conversations, viewing or sending
multimedia items, or commenting on social network posts. In writing, older adults had a
slower speed of writing and tended to correct more errors.

In addition to these findings, the article provides a user profiling model that is used to
classify them based on their mobile phone usage and age. Currently, this model, although
it has been proven to classify with some effectiveness, requires a larger dataset. In any
case, it has been shown to be a powerful tool for the future goal of helping to screen for
cognitive impairments.

Finally, an important contribution of this article is the dataset generated with more
than 4.5 million interactions recorded for mobile phone use, from a total of 45 people.
Considering only the data of people for whom a full, uninterrupted week was obtained,
the dataset includes data from 29 users and more than 3.8 million records.

Future work will focus on intra-user and long-term studies in which changes in mobile
device use can be observed in the same person. These would make it possible to study
causality in terms of cognitive decline. The present work lays the foundations for such a
future study, providing as contributions the validity of the tools and methods applied in
the present work.
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