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Abstract: This study aimed to evaluate the influence of zeolitic tuff, an air-entraining agent, and
different types of fibers on the compressive strength and fracture parameters of concrete with
increased strength. Notched beams were tested in three-point bending to determine the fracture
parameters of concrete. It was established that the partial replacement of Portland cement (10% by
mass) with zeolitic tuff, the addition of an air-entraining agent and different types of fibers resulted
in the improvement both of the compressive strength (by 3.7% after 28 days of hardening) and
fracture properties of concrete (namely, the fracture energy by 35.1% and characteristic length by
61.5%) compared to the reference concrete. The beneficial effects of the air-entraining agent and
the mechanisms through which it enhances the properties of concrete by incorporating zeolitic tuff
and various types of fibers were explained. It has been demonstrated that the appropriate selection
and optimization of various technological factors enable the production of economically effective,
high-quality concrete with a 10% lower cement content. As a result, this leads to reduced CO2

emissions, aligning with a sustainable development strategy.

Keywords: air-entraining agent; concrete; fracture parameters; polypropylene fiber; strength

1. Introduction

During the last few decades, most countries have intensified their efforts to mitigate
the adverse effects of the construction industry on the environment. From this point of
view, developing and implementing effective technological solutions to produce concrete
with improved performance parameters, especially fracture properties, is essential. The
rational approach to properly selecting concrete constituents results in producing more
durable materials and, in addition to environmental benefits, reducing investment costs.
This corresponds to the requirements of sustainable construction. With the implementation
of standards from the ISO 14000 family, the awareness of the Life Cycle Assessment (LCA)
methodology has grown globally. This methodology serves as an assessment tool that
yields consistent analytical outcomes, addressing various environmental issues [1].

Supplementary cementitious materials (SCMs), especially aluminosilicates (fly ash,
zeolitic tuff, silica fume, etc.), offer numerous advantages to the transportation infras-
tructure and construction sector [2–4]. These materials are highly beneficial due to their
availability, cost-effectiveness (especially when easily accessible), long-term mechanical
properties, and ability to enhance durability [5,6]. Of particular interest is zeolitic tuff,
which exhibits significant pozzolanic activity [7,8]. Abundant mineable zeolite deposits
are found across numerous countries around the world. The yearly production of natural
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zeolites has remained relatively stable for the past decade, with an approximate output of
3 million tons. The use of zeolitic tuff in concrete has been proven to enhance its durabil-
ity significantly [9,10], along with its mechanical [11] and mass transport [12] properties.
Previous studies [13,14] have demonstrated that replacing 10% by mass of cement with
natural zeolite and using chemical admixtures leads to enhanced concrete properties and
improved durability. For industrial and civil construction, it is crucial to find new additives
to concrete that would satisfy operational parameters [15–21].

Nagrockiene et al. [22] studied modified zeolite’s influence on the freeze–thaw and
de-icing salt resistance of hardened cement paste; their results showed a significant im-
provement in density, strength, and frost resistance as well as resistance to the adverse
effects of salts. Study [23] found that the frost resistance of zeolite-containing concrete
exhibits a slightly lower performance than control concrete during the initial phase of
freeze–thaw cycles. As the cycles progress, the frost resistance of zeolite-containing con-
crete significantly surpasses that of conventional concrete, which is related to the internal
curing effect. However, the above-mentioned studies did not study the joint effect of the
use of both zeolite and air-entraining agent.

The water absorption and freeze–thaw resistance of hardened concrete are essential
parameters for bridge and pavement applications. According to Pleau et al. [24], it is
predominantly influenced by factors such as the size, type, and distribution of pores and
capillaries in concrete. Closed and tiny pores in such a structure are not entirely saturated
with water, resulting in what is known as reserve pores. During freezing conditions,
water may migrate towards these reserve pores, creating voids that accommodate ice
expansion. Air-entraining admixtures proved to be a reliable method to improve fresh-
concrete properties [25] and hardened-concrete performance, especially in a freeze–thaw
environment [26]. However, there is a lack of studies regarding the influence of entrained
air on the fracture parameters of concrete.

It is well known that concrete failure involves the formation and propagation of
cracks: it exhibits a quasi-brittle behavior, combining characteristics of both brittleness
and elastic-plasticity [27]. As concrete for infrastructure applications requires lower w/c
ratios (<0.45) to withstand aggressive exposure, it is more brittle than conventional concrete
with w/c > 0.5. To predict and mitigate cracking in cement-based structures, approaches
such as linear elastic fracture mechanics (LEFM) and fracture energy methods have proven
effective [28]. The fundamental fracture properties of concrete, including the critical stress
intensity factor, fracture energy, and characteristic length, can be determined using simple
three-point bend notched beam specimens.

Previous tests [29] revealed that incorporating 10 wt.% zeolite and 5 wt.% limestone,
along with chemical admixtures, demonstrated an increase in fracture properties. The
authors suggested that this can be attributed to the consolidation of the concrete microstruc-
ture through the reaction between active silica in zeolite and calcium hydroxide, leading
to the formation of larger quantities of calcium hydrosilicates. Furthermore, the absorp-
tion modification of hydrated products with chemical admixtures contributes to a higher
strength and improved fracture properties in the modified concretes.

A common method to enhance concrete fracture properties is to incorporate polypropy-
lene (PP) fibers of varying shapes, lengths, and characteristics into concrete at specific
volumes [30]. The authors of [31] tested the compressive strength, flexural strength, and
mid-span deflection of fiber-reinforced engineered cementitious composites blended with
silica fume and zeolite. It was found that despite a low zeolite dosage (3 wt.%), it provided
a better performance in combination with PP fibers in a sulfate environment, as evidenced
by the significant increases in the studied parameters. Another experimental study [32]
discussed the properties of an eco-friendly fiber-reinforced self-consolidated concrete with
10 wt.% zeolite. The authors established that samples with 0.50 to 0.75 vol.% of polyolefin
fibers showed the highest compressive and tensile strength.

A previously conducted study [33] investigated the impact of PP fibers’ addition on
concrete’s physical and mechanical properties. The experimental findings demonstrated
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that incorporating PP fibers significantly enhanced the compressive and flexural strength as
well as fracture energy. It was shown that the optimal combination of 0.675 and 3.5 kg/m3

of micro- and macro-PP fibers, respectively, can synergistically increase the fracture param-
eters, benefiting both the pre-peak and post-peak stages.

Although the influence of each individual technological factor (content of zeolitic
tuff, volume of entrained air, and dosage of fibers) has been sufficiently studied, there is
limited information in the scientific literature regarding their combined effect. In this study,
a work-of-fracture method is applied to assess the effect of the optimal combination of
zeolitic tuff, two types of fibers, and an air-entraining agent on the performance of concrete
under load.

2. Materials and Methods

Portland cement CEM II/A-S 52.5N was used in the research. The properties of the
cement were determined according to [34–36]. The obtained results are shown in Table 1.

Table 1. Properties of the cement.

Specific Surface, m2/kg Residue on Sieve 008, % Water Demand, %
Setting Time, min Compressive Strength, MPa

Initial Final 2 Days 28 Days

350 2.6 29.0 140 230 27.1 54.2

The chemical compositions of Portland cement and zeolitic tuff (from Sokyrnytsia,
Ukraine) were determined using an X-ray spectrometer ARL 9800 XP (Thermo Fisher
Scientific, Waltham, MA, USA) and are shown in Table 2. The clinoptilolite content in
zeolite was 68%.

Table 2. Chemical composition of cement and zeolitic tuff.

Material CEM II/A-S 52.5N Natural Zeolite

C
he

m
ic

al
co

m
po

si
ti

on
,%

SiO2 22.96 77.64
Al2O3 4.85 13.04
Fe2O3 3.59 2.90
CaO 60.20 4.77
MgO 2.04 1.60
SO3 2.40 0.05
LOI 3.96 -

The properties of aggregates were tested according to [37,38], and the obtained results
are reported in Table 3. The water absorption for crushed granite aggregates was 0.4%.

Table 3. Properties of aggregates.

Aggregate Type Density
[g/cm3]

Bulk Density
[kg/m3]

Voidage
[%]

Dust and Clay Particles
[%]

Fineness
Modulus

Fine (quartz sand) 2.63 1502 42.9 0.2 1.6

Fine (crushed granite sand,
0.63–2 mm) 2.66 1464 45.0 0.6 -

Coarse (granite gravel,
5–10 mm) 2.66 1428 46.3 0.2 -

Coarse (granite gravel,
10–20 mm) 2.66 1465 44.9 0.5 -

Grading curves for the aggregates are given in Figure 1.
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Figure 1. Grading curves for fine and coarse aggregates.

A commercially available polycarboxylate-based superplasticizer with a specific grav-
ity of 1.05 and solid content of 30% and an air-entraining agent with a specific gravity of
1.02 and solid content of 2.5% were used in this study.

Polypropylene (PP) microfibers and fibers with a deformed shape were added to
improve the deformation characteristics of concrete. PP fibers were thoroughly scattered
to provide an even distribution in the mix. Polypropylene fibers with a deformed shape
were used to improve the polymer-concrete bond, because the mechanical bond of ordinary
polypropylene fiber with the cement matrix is relatively weak. The properties of PP fibers
are given in Table 4.

Table 4. Characteristics of fibers.

Properties

Value

Ordinary Polypropylene (PP) Microfiber Polypropylene (PP) Macrofiber with
Deformed Shape

Fiber length 12 mm 45 mm
Shape of the cross-section Round (Ø 18 ÷ 20 µm) Rectangular (1.0 × 0.5 mm)

Aspect ratio 630 56
Type/form Micro/monofilament Macro/monofilament

Specific weight 0.91 g/cm3 0.91 g/cm3

Melting point 162 ◦C 164 ◦C
Flash point 593 ◦C >550 ◦C

A general view of fibers with deformed shape and microfibers can be seen in
Figures 2a and 2b, respectively.
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The morphology of the investigated materials was examined with the scanning elec-
tron microscope SEM FEI Quanta 250 FEG, equipped with EDS. Five mix-proportions
were designed, reference mix R and four mixes (R0, R, R+F, R+F+A, R+Z+F+A) containing
mineral additions and chemical admixtures. They were designed according to [39], and
the compressive strength of concrete was tested according to [40]. The mix-proportions are
presented in Table 5.

Table 5. The mixture proportions (W/C = 0.36, slump class of fresh concrete—S4).

Mix Identification R0 R R+F R+F+A R+Z+F+A

Cement, kg/m3 450 450 450 450 405
Zeolitic tuff, kg/m3 - - - - 45

Sand, kg/m3 400 400 400 300 300
Crushed granite sand (0.63–2 mm), kg/m3 - 100 100 100 100

Granite gravel (5.0–10 mm), kg/m3 400 370 370 370 370
Granite gravel (10.0–20 mm), kg/m3 1000 930 930 930 930

Superplasticizer, % by mass 0.8 0.8 1.5 1.2 1.5
Air-entraining admixture, % by mass - - - 0.4 0.4
Fiber with deformed shape, kg/m3 - - 8 8 8

Ordinary microfiber, kg/m3 - - 1.05 1.05 1.05
The volume of the entrained air, % 1.5 1.5 2.0 6.0 6.0

Samples have been tested according to a three-point bend scheme using a 200 ton
hydraulic press, equipped with a power distribution ring as well as load sensor (strain
gauge) and deflection gauge [41]. A general view of the test device is given in Figure 3a.

Samples (100 × 100 × 400 mm) with an initial notch of 40 mm in depth and 2 mm
in width have been used for testing. Two cycles of loading (up to 10% of the expected
peak load) and unloading have been held before testing. Specimens have been loaded
continuously until their fracture. Load–deflection curves were recorded using a computer-
aided data acquisition system (Figure 3b). An estimate of the fracture energy was obtained
from the L–d curves according to the RILEM method (work-of-fracture). All series consisted
of four specimens. Cube specimens measuring 100 × 100 × 100 mm were used to determine
the compressive strength. Specimens have been molded according to [40] and cured
(temperature of 20 ± 2 ◦C and relative humidity of 95%) for 28 days. Then, specimens were
taken out from the curing tanks, and a central notch for samples (100 × 100 × 400 mm) was
made using a diamond saw.
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Load–deflection curves were plotted based on the obtained results of the specimens’
tests. The physical and mechanical characteristics of the concrete and the energy character-
istics of the fracture were calculated.

3. Results and Discussion

It is well known that the brittle behavior of concrete fracture increases with the growth
of its compressive strength [27,28]. The properties of concrete with an increased compres-
sive strength, obtained by optimizing technological factors on the different structural levels,
were studied. The compressive strength of the designed concrete is shown in Figure 4.
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As can be seen from the obtained results, the optimization of the concrete grain size
results in the reduction of the compressive strength of reference concrete R by 13.3% after
1 day of hardening in comparison with concrete denoted R0. The more intensive kinetics of
the strength development of concrete R are observed with the further hardening of such
concrete. Thus, the strength of concrete R increases by 23.6% after 28 days. Following the
optimization of various types of fibers [33], the appropriate dosages were incorporated
into the reference concrete. The results show that concrete’s compressive strength increases
slightly compared to concrete R. Smarzewski [42] states that polypropylene fibers do not
have a significant effect on the compressive strength of high-performance self-compacting
concrete after 28 days of hardening because added fibers adversely affect the workability
of fresh concrete and, as a result, voids can be created in the concrete, reducing a possible
strength increase. Some growth of compressive strength is observed due to the retardation
of matrix fracturing because PP fibers limit crack propagation. Broda [43] also showed that
a slight influence on the compressive strength was observed when fibers with a length of
5 mm, 10 mm and 15 mm in quantities of 0.25%, 0.75%, and 1% were used in the mixture.
Grabiec et al. [44] studied the influence of different dosages (2 and 4%) of polypropylene
fibers with a length of 48 mm on the compressive strength of concrete and revealed a
positive effect. The concrete incorporating air-entraining agent R+F+A is characterized
by a 6.6% lower early strength and a 3.7 and 3.5% higher strength after 3 and 28 days,
respectively. The use of an optimal amount of zeolitic tuff [13,45] causes a slight decrease
of 12.3 and 12.8% of the early strength of concrete R+Z+F+A compared to the reference
concrete R after 1 and 3 days of hardening, respectively, and a 3.7% higher compressive
strength after 28 days of hardening.

It should be noted that concrete with such an increased strength is characterized
by more brittle behavior compared to conventional concrete. As shown in Figure 5, the
behavior of concretes, except concrete R+Z+F+A, do not differ significantly in the elastic
stage, which the linear ascending branches of the load–deflection curves indicate. A more
inclined ascending branch of the load–deflection curve in the pre-peak stage demonstrates
the increase of the fracture toughness of R+Z+F+A concrete. A similar behavior is observed
in the post-cracking stage for concretes R0 and R. The results show that this concrete exhibits
a consistent behavior throughout all stages of deformation under load. A significant
difference is visible in the post-cracking stage for other concretes. The descending part of
the load–deflection curve is rather steep for all concrete series. The tail of the descending
branch is short for concretes R and R0. The use of an optimal amount of both increases the
volume under the descending branch tail significantly. This indicates that the toughness of
the concrete increases in comparison with R0 despite the higher compressive strength class.
Rao and Prasad [28] reported that the tail of the descending branch would be longer in the
case of conventional concretes and shorter in HSC. Adding an air-entraining agent makes
the tail smaller. After the partial replacement of Portland cement in concrete R+F+A with
zeolitic tuff (10% by mass), the fracture behavior of such concrete under load is similar to
concrete R+F. However, this concrete will have a better resistance to freezing and thawing
cycles and, as a result, a durability that conforms to a sustainable development strategy [13].

The area under the complete load–deflection curve (Figure 5) represents the total
fracture energy GF. Figure 6 shows the fracture-energy magnitudes of concretes. The
obtained results indicate that the fracture-energy difference between concrete R0 and R
is negligible. The fracture energy of concrete incorporating different types of fibers has
the highest value, reaching 441 N/m. The addition of an air-entraining agent causes a
reduction of fracture energy by 32.9%. The fracture energy of concrete denoted R+Z+F+A
increases by 35.1% compared to the reference concrete R. This underlines the positive effect
of the optimization of technological factors when a concrete mix is designed to provide
appropriate fracture parameters and freeze–thaw resistance.
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A similar trend can be observed for the characteristic length of studied concretes.
Figure 7 reveals that when PP fibers are added to the concrete mix, the characteristic length
of concrete R+F increases by 55.0% compared to R. Entrained air bubbles in R+F+A series
are flaws in the cement matrix, increasing concrete brittle behavior. This results in a 19.9%
lower characteristic length for such a composite. However, the complex addition of zeolitic
tuff and air-entraining agent to concrete incorporating different types of fibers improves
the characteristic length, which reaches 176 mm and is the highest among tested concretes.
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The use of a scanning electron microscope equipped with EDS explains the improve-
ment of the mechanical properties and fracture parameters of concrete incorporating zeolitic
tuff and air-entraining agent. Despite its crystalline structure, the zeolitic tuff, which is a
hydrated alumina-silicate by nature, shows proper pozzolanic activity. The microstructure
of the above-mentioned concrete is characterized by an increased homogeneity (Figure 8b)
and the formation of tight submicroscopic clusters of hydrosilicates and calcium hydrosul-
foaluminates (Figure 8d). Such concrete also has a structure with an evenly distributed,
dispersed air bubble system (Figure 8a). Using a surface active agent as an air-entraining
admixture, which consists in most cases of amphiphilic molecules, induces the adsorption
of fine cement particles at the air/paste interface, and a particle-armored bubble shell is
formed (Figure 8c). The shell’s composition depends on the type of cement and used min-
eral additions. As can be seen from Figure 8e, due to the use of zeolitic tuff, the low-base
calcium hydrosilicates in the non-clinker part of the cement matrix of concrete form a
tight and robust bubble shell, which in combination with the modified microstructure of
concrete results in the enhancement of the mechanical and fracture parameters of concrete.
Tunstall et al. [26] confirm the formation of the shell and indicate that the bubble shell
improves strength and stability, reducing coalescence.
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That is why when a load is applied to the air-entrained FRC containing zeolitic tuff,
stresses distribute uniformly around the evenly scattered armored bubble shell. This
results in an improvement in the compressive strength and fracture parameters of the
designed concrete.

4. Conclusions

This article studied the effect of different technological factors on the compressive
strength and fracture parameters of concrete with increased strength. A previously opti-
mized amount of zeolitic tuff, different types of fibers and air-entraining agent were used
to improve the behavior of concrete under load. The following conclusions can be drawn
from the results obtained in the study:

• The compressive strength of concrete increases by 27% after 1 day of hardening when
different types of polypropylene fibers are added to concrete. The partial replacement
(10% by mass) of Portland cement with zeolitic tuff and the addition of air-entraining
agent result in the reduction of early strength, but over time, after 28 days of hardening,
the strength of concretes R+F+A and R+Z+F+A is even greater than the strength of
concrete R+F by 3.5 and 3.2%, respectively.

• Using zeolitic tuff results in the formation of a tight microstructure and particle-
armored bubble shell in the concrete with an air-entraining agent. Low-base calcium
hydrosilicates strengthen this shell and are formed in the non-clinker part of the
cement matrix due to the excellent pozzolanic activity of zeolitic tuff.

• The concrete incorporating zeolitic tuff, different types of fibers, and an air-entraining
agent, despite having a lower Portland cement content (by 10% by mass), exhibits
enhanced mechanical properties and fracture parameters, with a 35.1% increase in
fracture energy and a 61.5% increase in characteristic length, compared to the reference
concrete. This improvement in concrete incorporating an air-entraining admixture is
attributed to the even distribution of stresses around the armored bubble shell when
the concrete is loaded.

• Both concrete R+F and concrete incorporating an optimized amount of zeolitic tuff,
different types of polypropylene fibers, and air-entraining agent R+Z+F+A behave
similarly under load in the post-cracking stage. This confirms the efficiency of the
proper selection and the optimization of different technological factors, which allow
one to obtain economically effective high-quality concrete incorporating a lower
cement content. However, a comprehensive life-cycle assessment should be conducted
to evaluate the sustainability of the developed concrete.
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