
Citation: Park, J.; Jeong, S.; Yeom, K.

Bespoke Virtual Machine

Orchestrator: An Approach for

Constructing and Reconfiguring

Bespoke Virtual Machine in Private

Cloud Environment. Appl. Sci. 2023,

13, 9161. https://doi.org/10.3390/

app13169161

Academic Editor: Rong Gu

Received: 10 June 2023

Revised: 26 July 2023

Accepted: 8 August 2023

Published: 11 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Bespoke Virtual Machine Orchestrator: An Approach for
Constructing and Reconfiguring Bespoke Virtual Machine in
Private Cloud Environment
Joonseok Park 1, Sumin Jeong 2 and Keunhyuk Yeom 3,*

1 Research Institute of Intelligent Logistics Big Data, Pusan National University,
Busan 43241, Republic of Korea; pjs50@pusan.ac.kr

2 Department of Information Convergence Engineering, Pusan National University,
Busan 43241, Republic of Korea; sumin2708@gmail.com

3 School of Computer Science and Engineering, Pusan National University, Busan 43241, Republic of Korea
* Correspondence: yeom@pusan.ac.kr; Tel.: +82-51-510-2475

Abstract: A cloud-computing company or user must create a virtual machine to build and operate a
cloud environment. With the growth of cloud computing, it is necessary to build virtual machines
that reflect the needs of both companies and users. In this study, we propose a bespoke virtual
machine orchestrator (BVMO) as a method for constructing a virtual machine. The BVMO builds
resource volumes as core assets to meet user requirements and builds virtual machines by reusing and
combining these resource volumes. This can increase the reusability and flexibility of virtual-machine
construction. A case study was conducted to build a virtual machine by applying the proposed
BVMO to an actual OpenStack cloud platform, and it was confirmed that the construction time of the
virtual machine was reduced compared with that of the existing method.

Keywords: cloud computing; private cloud; virtual machine; cloud platform

1. Introduction

Cloud computing [1–3] provides a service environment in which IT resources can
be virtualized and used. This computing environment has evolved with the advent of
public cloud services [4] such as AWS [5] and Google Cloud [6] and the emergence of open-
source platforms that provide private cloud service construction, such as OpenStack [7] and
CloudStack [8]. In the case of a public cloud, the user pays a certain amount and receives a
prebuilt cloud service. A private cloud [9] is used by a company or user to directly build
and use a cloud-service-provision environment. “A Hybrid cloud”, which refers to the use
of a public cloud and a private cloud together [10], is also provided.

In the case of public cloud-computing services, companies or users receive services
in the form provided by cloud vendors and pay according to service usage. A private
cloud environment must be established to reduce the cost of cloud computing and build a
cloud-service environment in the form desired by companies or users.

In the case of private clouds, dependence on cloud vendors can be reduced; however, it
is difficult to build a desired cloud-service-delivery environment without expert knowledge
of the cloud. The most basic technical application for building and receiving cloud services
is building a virtual machine. Enterprises or users who build private clouds have different
purposes for using the cloud and have different requirements for different operating envi-
ronments. Therefore, it is important to provide a customized virtual-machine environment
suitable for various companies or users who wish to operate a private cloud [11–15].

Recently, infrastructure as code (IaC) [16] has emerged as a concept for automating and
providing virtual-machine provision and cloud-infrastructure construction. Tools such as
Ansible [17] and Cloud-Init [18], which are used to automate virtual-machine construction

Appl. Sci. 2023, 13, 9161. https://doi.org/10.3390/app13169161 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13169161
https://doi.org/10.3390/app13169161
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2763-5570
https://doi.org/10.3390/app13169161
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13169161?type=check_update&version=1

Appl. Sci. 2023, 13, 9161 2 of 21

as support tools that reflect the concept of IaC, are being researched and developed [19]. In
this study, we propose a method for automating the creation and management of custom
virtual machines by borrowing the concept of IaC. In addition, to ensure reusability and
flexibility in building user virtual machines, we applied the concept of software product
lines to build resource volumes used for virtual machines as core assets and presented an
approach to utilize them. We proposed a bespoke virtual machine orchestrator (BVMO) to
build a user-customized virtual machine by applying these concepts.

The contributions of the BVMO proposed in this study are as follows: (1) providing
a foundation to support user-customized virtual machine construction and management
in a multi-private cloud environment by combining volumes provided from provisioning
resource pools; (2) establishing a reuse virtuous cycle system that enables new reuse by
re-registering virtual-machine resources created by users for the provisioning resource
pool; and (3) solving technical difficulties in building virtual machines by applying BVMO
without using command line interface (CLI) or application programming interface (API).

The remainder of this paper is organized as follows. Section 2 introduces previous
studies related to the creation and management of virtual machines. Section 3 describes
the architecture, process and application of BVMO. Section 4 presents a case study and an
evaluation of the process of creating a custom virtual machine using BVMO, and Section 5
concludes the paper.

2. Related Works
2.1. Private Cloud Platform

OpenStack [7] and CloudStack [8] are representative open-source platforms that sup-
port private cloud computing. OpenStack has numerous components that can provide
major cloud functions such as computing, networking, storage and identity. In addition,
a cloud-orchestration component called heat was provided to support virtual-machine
creation and cloud-environment construction using a heat-orchestration template. Similar
to OpenStack, CloudStack is an open-source cloud platform that supports deployment and
management of cloud-service resources. This supports various hypervisors [20], such as
Hyper-V, XenServer and vSphere. Most modules in CloudStack are bundled into a single
binary, whereas OpenStack can build a cloud by combining multiple components.

2.2. Software-Product-Line Engineering

Among software development methodologies, product-line engineering [21] involves
developing a core asset, a unit to be reused in developing a similar software-product
family, in advance. Assets used for commonality (required) and assets used for variability
(optional) were identified in advance and reused to develop new software products flexibly.

Even in a cloud environment, there is a concept of resource provisioning [22], in
which various cloud resources existing on a cloud platform are built, prepared and utilized
in advance before being combined. This can be linked to the product-line-engineering
approach. Therefore, in this study, we propose a method that combines product-line
engineering with cloud-resource provisioning for virtual-machine creation in a cloud
environment. In this method, a volume pool that can be combined to build a virtual
machine is built in advance as a core asset (resource provisioning) and a new virtual
machine is built by binding these assets.

2.3. Provisioning Cloud Resources

Rajan et al. [23] proposed a method for distributing cloud resources by applying a
map-reduce-merge method based on cloud workloads. After the cloud resources were
classified into task units and the divided units were identified as one workload, the map-
reduce-merge technique was applied to allocate the workload to a work queue.

By contrast, in the proposed approach, apart from separating cloud resources into
workload units and then dividing and conquering them, common and reusable cloud
resources were identified in advance and built. The difference is that a virtual machine is

Appl. Sci. 2023, 13, 9161 3 of 21

created by combining prebuilt cloud resources according to the requirements, similar to a
building with Lego blocks.

Wei et al. [24] formalized the decision system in the configuration of a cloud-platform-
management system according to the workflow analysis of the cloud. This method focuses
on configuring a system from a management viewpoint rather than configuring a cus-
tomized system by reflecting requirements. This involves merging instances by analyzing
the quality of service (QoS). Therefore, this study presents a case in which the QoS is con-
sidered in the process of combination. The proposed method differs from the method that
considers simple QoS in the part where combining is performed according to requirements
and merging is performed by reusing pre-established resources.

Nadeem et al. [25] recommended the proactive resource provisioning of service level
agreement (SLA) in cloud computing (PRP-RM-SLA), which can provide cloud-computing
resources based on SLA. This method operates by delivering the task of provisioning
resources to the cloud based on the SLA manager, which interprets and negotiates SLA
requests from cloud users, and the resource manager, which manages the resources based
on the SLA manager. However, this study does not suggest systemic elements that reflect
multi-clouds, and it is different from our method because no support is available for the
components constituting the resources.

2.4. Cloud-Service Brokerage

Alwada’n et al. [26] presented a dynamic congestion-management system that pro-
vides and recommends services suitable for cloud consumers according to cloud size,
classified as IaaS, PaaS or SaaS. The proposed system configures the service and transmits
it to the user by performing scheduled provisioning requests based on the situation in the
data center. The system receives inputs by prioritizing the user requests. However, this
study differs from that of Alwada’n et al. in that it does not describe how the provisioning
method is performed but only presents a scheduling methodology.

Li et al. [27] presented a management method that used online scheduling for cloud
services provided by public clouds. This method classifies virtual machines (VMs) provided
as containers into large, medium and small based on their size and proposes a method
for provisioning and management by determining the suitability of resource preparation
according to each size. However, this study presents an intensive scheduling technique for
containers, which is another virtualization method. Moreover, VM-level resources, which
constitute a large category in current cloud computing, are ignored, which differs from the
results of this study.

2.5. Infrastructure as Code

Terraform [28] is an IaC tool written to create and manage resources for multi-cloud
components. This corresponds to tools that perform infrastructure deployment and man-
agement in addition to the Hashicorp Software Stack [29], a software stack that manages
and controls multi-cloud platforms. The Terraform Engine, which is mapped to each
cloud platform, interprets it based on a common template, converts it into commands or a
representational state transfer API (RESTful API), and delivers the platform commands.

Heat [30] is an OpenStack-specific IaC tool that was developed to control the compo-
nents and resources of OpenStack, an open-source private cloud platform. It is used to
control and manage various components that exist in OpenStack and performs operations
in the form of transmitting commands to each component of OpenStack by interpreting
templates created by users in the Heat Engine.

IaC tools are commonly used as software for deploying infrastructure elements. How-
ever, the BVMO presented in this study is different in that it increases reusability and
utilization by focusing on VM resources.

2.6. Discussion

Table 1 compares the BVMO proposed in this study with those of related studies.

Appl. Sci. 2023, 13, 9161 4 of 21

Table 1. Literature Review of Related Studies.

Study Resource Provisioning
Domain?

Resource
Reuse?

Methodology System
Architecture?

Multi-Cloud
System Support?

Customized
VM?

Rajan et al. [23] 4 4

Wei et al. [24] 4 4 4

Nadeem et al. [25] 4 4 4

Alwada’n et al. [26] 4 4

Li et al. [27] 4 4

Our method 4 4 4 4 4

The categories adopted for comparison listed in Table 1 are as follows: (1) whether the
resource-provisioning domain is introduced and utilized in the study; (2) whether there is
a method or mechanism for reusing cloud resources; (3) whether there is a description of
the technique through the system architecture; (4) whether there is a plan for multi-cloud
support; and (5) support measures for providing VMs tailored to user needs.

Table 2 presents the comparison of the IaC tools, cloud-platform-management tools
and BVMO.

Table 2. Review of Related Technologies.

Software Set Specific
Software

Software
Category Platform Boundary Implement

Method Coverage

Hashicorp
Software Stack [29]

Terraform [28] IaC

Multi cloud
domain where

automation engine
exists

Template Cloud platform
elements deployment

Vault [31] Security Template Cloud platform
authority

Consul [32] Networking
System Template Cloud platform

networking strategy

Nomad [33] Application Template Cloud platform
workload automation

OpenStack
Components

Heat [30] IaC

OpenStack cloud
platform

Template OpenStack platform
elements management

Keystone [34] Authentication API, CLI
OpenStack platform

authority and
authentication

Neutron [35] Networking Dashboard,
API, CLI

OpenStack platform
virtual network strategy

Nova [36] Instantiation Dashboard,
API, CLI

OpenStack platform
instance management

Our Study BVMO
VM resource
orchestration
based on IaC

Multi-cloud platform
where IaC can be

applied
Dashboard

Cloud platform instance
management for more

reusability and
flexibility

As listed in Table 2, the subjects of comparison with the BVMO presented in this study
are each components of OpenStack, which is used as an open-source private cloud platform,
and the main element of the Hasicorp Software Stack, which performs automation and
distributed control of multi-cloud. The vault of the Hashicorp Software Stack performs
security related to authentication processing scattered across multiple clouds, Consul
controls cloud networking resources through service discovery and Nomad performs
service utilization and control through a Remote Procedure Call (RPC). In this stack, the
platform deployment and execution of each software package are implemented as templates
based on Terraform.

Appl. Sci. 2023, 13, 9161 5 of 21

Additionally, on the OpenStack Components side, Keystone creates and assigns per-
mission to access the platform, configures and controls instance networks through Neutron,
and creates and controls cloud instances through Nova. The distribution and flow control
of these components can be achieved using heat templates.

In contrast, the BVMO in this study is a system that creates and reconfigures VMs by
combining cloud resources extracted from multiple private clouds using IaC and supports
deployment to specific locations in multiple clouds. In addition, the various tools compared
above require prior knowledge of APIs or templates rather than system control through a
dashboard for smooth use. However, because the BVMO presented in this study provides
the basic flow of combining pre-established resources with the user’s choice, compared to
other tools, the BVMO is technically accessible and simple to use.

3. Bespoke Virtual Machine Orchestrator
3.1. Conceptual Process for Bespoke Virtual Machine Orchestrator

The BVMO allows the creation and management of user-customized virtual machines
in a private cloud environment. Figure 1 shows the conceptual steps for building a virtual
environment by applying the proposed provisioning resource pool.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 21

As listed in Table 2, the subjects of comparison with the BVMO presented in this
study are each components of OpenStack, which is used as an open-source private cloud
platform, and the main element of the Hasicorp Software Stack, which performs automa-
tion and distributed control of multi-cloud. The vault of the Hashicorp Software Stack
performs security related to authentication processing scattered across multiple clouds,
Consul controls cloud networking resources through service discovery and Nomad per-
forms service utilization and control through a Remote Procedure Call (RPC). In this stack,
the platform deployment and execution of each software package are implemented as
templates based on Terraform.

Additionally, on the OpenStack Components side, Keystone creates and assigns per-
mission to access the platform, configures and controls instance networks through Neu-
tron, and creates and controls cloud instances through Nova. The distribution and flow
control of these components can be achieved using heat templates.

In contrast, the BVMO in this study is a system that creates and reconfigures VMs by
combining cloud resources extracted from multiple private clouds using IaC and supports
deployment to specific locations in multiple clouds. In addition, the various tools com-
pared above require prior knowledge of APIs or templates rather than system control
through a dashboard for smooth use. However, because the BVMO presented in this study
provides the basic flow of combining pre-established resources with the user�s choice,
compared to other tools, the BVMO is technically accessible and simple to use.

3. Bespoke Virtual Machine Orchestrator
3.1. Conceptual Process for Bespoke Virtual Machine Orchestrator

The BVMO allows the creation and management of user-customized virtual ma-
chines in a private cloud environment. Figure 1 shows the conceptual steps for building a
virtual environment by applying the proposed provisioning resource pool.

Figure 1. Conceptual Process of BVMO.

First, in the resource-pool-construction step, provisioning resources are divided into
operating system, software and data-resource items. Operating system resources include
CentOS and Ubuntu, which operate the virtual machines. Software resources refer to var-
ious software programs, such as GCC [37], Java [38] and Python [39], that users require in
a virtual environment. Data resources represent various structured and unstructured
data, such as text, documents, images and videos.

Next, in the resource-pool-selection step, the user selects the desired resources from
a prebuilt resource pool. Because prebuilt resources are provided, users can easily com-
bine the desired components of a virtual environment through selection.

The setting and combination of the selected resource items are performed in the re-
source-configuration step.

Finally, in the customized-VM-creation step, a user-customized virtual machine re-
flecting the settings and combinations is created. Figure 2 shows the application of the
process described above.

Figure 1. Conceptual Process of BVMO.

First, in the resource-pool-construction step, provisioning resources are divided into
operating system, software and data-resource items. Operating system resources include
CentOS and Ubuntu, which operate the virtual machines. Software resources refer to
various software programs, such as GCC [37], Java [38] and Python [39], that users require
in a virtual environment. Data resources represent various structured and unstructured
data, such as text, documents, images and videos.

Next, in the resource-pool-selection step, the user selects the desired resources from a
prebuilt resource pool. Because prebuilt resources are provided, users can easily combine
the desired components of a virtual environment through selection.

The setting and combination of the selected resource items are performed in the
resource-configuration step.

Finally, in the customized-VM-creation step, a user-customized virtual machine re-
flecting the settings and combinations is created. Figure 2 shows the application of the
process described above.

As shown in Figure 2, the proposed method creates various provisioning resource
pools (data and software) and provides flexibility in building a virtual environment by
combining resource pools that satisfy the needs of each user.

3.2. Analysis of Cloud Resource Features and Cloud Functional Flow

Currently used public and private cloud platforms configure and provide independent
virtual machines; therefore, virtual machines are configured based on platform-dependent
virtual-machine specifications [40–44]. Table 3 lists the classifications of common specifica-
tions for supporting various virtual machines.

Appl. Sci. 2023, 13, 9161 6 of 21
Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 21

Figure 2. Conceptual Application of BVMO.

As shown in Figure 2, the proposed method creates various provisioning resource
pools (data and software) and provides flexibility in building a virtual environment by
combining resource pools that satisfy the needs of each user.

3.2. Analysis of Cloud Resource Features and Cloud Functional Flow
Currently used public and private cloud platforms configure and provide independ-

ent virtual machines; therefore, virtual machines are configured based on platform-de-
pendent virtual-machine specifications [40–44]. Table 3 lists the classifications of common
specifications for supporting various virtual machines.

Table 3. Common Specifications of Cloud Platforms.

Category
Google Cloud

Platform
Amazon Web

Service
Microsoft

Azure OpenStack CloudStack

VM
specification

Name
Virtual machine

name Name Instance name Instance name

Instance type
Machine

configuration Size Flavor Instance type

Resource
specification

Booting disk
Application and

OS image Image Image Template

Disk Storage config Disk Volume Volume
Interface

specification
Network VPC Virtual network Network Network

Network tag Security group Inbound port rule Security group Security group

Among the categories listed in Table 3, the VM specifications contain the metadata
required to specify the VM and the resource-size information required to drive the VM.
Resource specifications include the information necessary for operating software, such as
an OS, and the details of the storage device on which the software is loaded. The interface

Figure 2. Conceptual Application of BVMO.

Table 3. Common Specifications of Cloud Platforms.

Category Google Cloud
Platform

Amazon Web
Service

Microsoft
Azure OpenStack CloudStack

VM
specification

Name Virtual machine
name Name Instance name Instance name

Instance type Machine
configuration Size Flavor Instance type

Resource
specification

Booting disk Application and
OS image Image Image Template

Disk Storage config Disk Volume Volume

Interface
specification

Network VPC Virtual network Network Network

Network tag Security group Inbound port rule Security group Security group

Among the categories listed in Table 3, the VM specifications contain the metadata
required to specify the VM and the resource-size information required to drive the VM.
Resource specifications include the information necessary for operating software, such
as an OS, and the details of the storage device on which the software is loaded. The
interface specification contains the network information and policy through which the
VM communicates.

The aforementioned specifications are interpreted according to the schedule flow of the
cloud platform and reflected in the platform. The basic feature request flows of OpenStack
and CloudStack are as follows.

Appl. Sci. 2023, 13, 9161 7 of 21

For OpenStack:

1. Issuance of tokens (temporal data for authority execution) according to user identification;
2. Authorization to compare issued tokens;
3. API specification and request that the user wants to perform;
4. Execution of functions within the platform of the specified API.

For CloudStack:

1. Create a secret key that combines the API key existing in the user’s identification and
the request function;

2. Authorization of secret key;
3. Request for functions that the user wants to perform;
4. Execution of functions within the platform of the specified API.

From the flow above, a common execution flow can be extracted as follows.

1. Authority information issued based on user-identification information;
2. Authorization based on authority information;
3. Execute request with authority information based on request interface;
4. Performance and processing of API functions suitable for the purpose.

Figure 3 shows the dependencies of the basic components, including the IaC of the
OpenStack platform, which is currently used as a private cloud.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 21

specification contains the network information and policy through which the VM com-
municates.

The aforementioned specifications are interpreted according to the schedule flow of
the cloud platform and reflected in the platform. The basic feature request flows of Open-
Stack and CloudStack are as follows.

For OpenStack:
1. Issuance of tokens (temporal data for authority execution) according to user identifi-

cation;
2. Authorization to compare issued tokens;
3. API specification and request that the user wants to perform;
4. Execution of functions within the platform of the specified API.

For CloudStack:
1. Create a secret key that combines the API key existing in the user�s identification and

the request function;
2. Authorization of secret key;
3. Request for functions that the user wants to perform;
4. Execution of functions within the platform of the specified API.

From the flow above, a common execution flow can be extracted as follows.
1. Authority information issued based on user-identification information;
2. Authorization based on authority information;
3. Execute request with authority information based on request interface;
4. Performance and processing of API functions suitable for the purpose.

Figure 3 shows the dependencies of the basic components, including the IaC of the
OpenStack platform, which is currently used as a private cloud.

Figure 3. OpenStack-Component Functional-Dependency Diagram.

The components shown in Figure 3 consist of a keystone that implements authenti-
cation and authorization; Nova, Neutron and Cinder, which perform direct resource man-
agement such as instance, network and block storage in the cloud platform; and Heat, an
IaC tool that supports management.

3.3. Architecture of Bespoke Virtual Machine Orchestrator
A virtual-environment-construction architecture using provisioning resources is em-

ployed to realize the construction process presented in Section 3.1, as shown in Figure 4.

Figure 3. OpenStack-Component Functional-Dependency Diagram.

The components shown in Figure 3 consist of a keystone that implements authen-
tication and authorization; Nova, Neutron and Cinder, which perform direct resource
management such as instance, network and block storage in the cloud platform; and Heat,
an IaC tool that supports management.

3.3. Architecture of Bespoke Virtual Machine Orchestrator

A virtual-environment-construction architecture using provisioning resources is em-
ployed to realize the construction process presented in Section 3.1, as shown in Figure 4.

Appl. Sci. 2023, 13, 9161 8 of 21
Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 21

Figure 4. Architecture.

Table 4 describes the main components of the architecture presented in Figure 4.

Table 4. Main Component in Architecture.

Name Description
Provisioning-Resource

Handler
A component that manages resources scattered in the
cloud environment to create a virtual environment

Virtual-Environment
Handler

A component that builds, reconfigures and manages vir-
tual environments

Access Handler
A component that handles resource-related requests for
user authentication, resource-access-permission setting
and requirements

The main modules of each component implement the following roles:
• Resource Template Management: this manages templates that specify the provision-

ing of resource-binding information that reflects user requirements;
• Pool Management: this supports creation, reading, updating and deletion (CRUD) of

provisioned resources and the allocation of provisioned resources according to inter-
pretation of user requirements;

• Virtual Machine Creation: this interprets template information and creates a virtual
environment in which the provisioning resources are bound;

• Virtual Machine Configuration: this supports the creation, reconfiguration and as-
sembly of orchestration templates to combine provisioned resources;

• Authority Management: this authenticates users and provides access to provisioning
resources;

• Request Management: this invokes the application-programming interface (API) of
the cloud platform that performs provisioning resource integration and requests re-
source combinations.
Table 5 lists the resources used in the architecture.

Table 5. Resource Information.

Name Description
Provisioning

Resources
Pre-created provisioning resource pools on multiple target
platforms

Figure 4. Architecture.

Table 4 describes the main components of the architecture presented in Figure 4.

Table 4. Main Component in Architecture.

Name Description

Provisioning-Resource
Handler

A component that manages resources scattered in the
cloud environment to create a virtual environment

Virtual-Environment
Handler

A component that builds, reconfigures and manages
virtual environments

Access Handler
A component that handles resource-related requests for
user authentication, resource-access-permission setting
and requirements

The main modules of each component implement the following roles:

• Resource Template Management: this manages templates that specify the provisioning
of resource-binding information that reflects user requirements;

• Pool Management: this supports creation, reading, updating and deletion (CRUD)
of provisioned resources and the allocation of provisioned resources according to
interpretation of user requirements;

• Virtual Machine Creation: this interprets template information and creates a virtual
environment in which the provisioning resources are bound;

• Virtual Machine Configuration: this supports the creation, reconfiguration and assem-
bly of orchestration templates to combine provisioned resources;

• Authority Management: this authenticates users and provides access to provision-
ing resources;

• Request Management: this invokes the application-programming interface (API) of
the cloud platform that performs provisioning resource integration and requests
resource combinations.

Table 5 lists the resources used in the architecture.

Appl. Sci. 2023, 13, 9161 9 of 21

Table 5. Resource Information.

Name Description

Provisioning
Resources Pre-created provisioning resource pools on multiple target platforms

Environment
Template

A template pool that specifies the settings of various virtual
environments currently being utilized

Requirement
Specification User requirements pool

Resource
Specification

Detailed specifications of the provisioned resource pool (available
amount, maximum usage, etc.)

As presented in the architecture, the provisioning-resource-handler component man-
ages the provisioning resources and resource templates. The delivery of provisioned
resources and API calls are delivered by an access-handler component. The virtual-
environment-handler component combines resource items and creates templates based on
them. In addition, it creates, separates and combines provisioned resources using templates.
Therefore, a virtual environment reflecting these resources was built. The corresponding
application scenarios are described in Section 3.4.

Figure 5 shows the inclusion relationship based on the functional flow analyzed in
Section 3.2 for the function and related resources of the proposed architecture.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 21

Environment
Template

A template pool that specifies the settings of various vir-
tual environments currently being utilized

Requirement
Specification

User requirements pool

Resource
Specification

Detailed specifications of the provisioned resource pool
(available amount, maximum usage, etc.)

As presented in the architecture, the provisioning-resource-handler component man-
ages the provisioning resources and resource templates. The delivery of provisioned re-
sources and API calls are delivered by an access-handler component. The virtual-environ-
ment-handler component combines resource items and creates templates based on them.
In addition, it creates, separates and combines provisioned resources using templates.
Therefore, a virtual environment reflecting these resources was built. The corresponding
application scenarios are described in Section 3.4.

Figure 5 shows the inclusion relationship based on the functional flow analyzed in
Section 3.2 for the function and related resources of the proposed architecture.

Figure 5. Architecture Hierarchy.

The hierarchy shown in Figure 5 is based on the dependencies of the OpenStack com-
ponents shown in Figure 3. As shown in Figure 5, the authority management of the access
handler is executed first. After the authority is normally executed, resource pool manage-
ment, resource template management, VM creation and VM management are performed
according to the given functions in the request management.

3.4. Application Scenario for BVMO
The BVMO allows the creation and management of user-customized virtual ma-

chines in a private cloud environment. Figure 6 shows an application scenario involving
a virtual-machine system based on the architecture presented in Section 3.3, in which a
virtual environment is built by applying the provisioning resource pool proposed in this
study. When requesting the creation of a virtual environment, the user requirements were
collected and analyzed. Subsequently, provisioning resources suitable for the require-
ments were delivered. The virtual-environment-creation management system combines
resource items by reflecting requirements (selected resource information). It also creates a
template that describes the resource-combination information that can be interpreted and
executed on a cloud platform. The created template is used to combine the necessary re-
sources, and a user-customized virtual environment is created by applying additional in-
formation such as the network settings required when creating a virtual environment.

Figure 5. Architecture Hierarchy.

The hierarchy shown in Figure 5 is based on the dependencies of the OpenStack
components shown in Figure 3. As shown in Figure 5, the authority management of
the access handler is executed first. After the authority is normally executed, resource
pool management, resource template management, VM creation and VM management are
performed according to the given functions in the request management.

3.4. Application Scenario for BVMO

The BVMO allows the creation and management of user-customized virtual machines
in a private cloud environment. Figure 6 shows an application scenario involving a virtual-
machine system based on the architecture presented in Section 3.3, in which a virtual
environment is built by applying the provisioning resource pool proposed in this study.
When requesting the creation of a virtual environment, the user requirements were collected
and analyzed. Subsequently, provisioning resources suitable for the requirements were
delivered. The virtual-environment-creation management system combines resource items
by reflecting requirements (selected resource information). It also creates a template that

Appl. Sci. 2023, 13, 9161 10 of 21

describes the resource-combination information that can be interpreted and executed on a
cloud platform. The created template is used to combine the necessary resources, and a
user-customized virtual environment is created by applying additional information such
as the network settings required when creating a virtual environment.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 21

Figure 6. Application Scenario.

4. Case Study and Evaluation
4.1. Case Study

In this section, a case study that implements the proposed method is presented. This
case study presents the process of building a virtual machine that conducts web classes
on a cloud platform based on a BVMO dashboard.

The environment and software applied to the BVMO development are presented as
a dashboard system, as in Table 6, and OpenStack was used as the target platform to which
the VM was applied.

Table 6. Case Study Environment.

Label Requirement

Dashboard
System

OS Windows 10
Software Node.JS v.18.16.1

Hardware
CPU: 8 core
RAM: 16 GB
Disk: 1.8 TB

OpenStack
Platform

OS Ubuntu 20.04 LTS
Software OpenStack Xena, Terraform Engine v.1.5.3

Hardware
CPU: 4 core
RAM: 8 GB
Disk: 80 GB

(1) BVMO dashboard
Figure 7 shows the BVMO dashboard implemented by applying the concept pre-

sented in this study.

Figure 6. Application Scenario.

4. Case Study and Evaluation
4.1. Case Study

In this section, a case study that implements the proposed method is presented. This
case study presents the process of building a virtual machine that conducts web classes on
a cloud platform based on a BVMO dashboard.

The environment and software applied to the BVMO development are presented as a
dashboard system, as in Table 6, and OpenStack was used as the target platform to which
the VM was applied.

Table 6. Case Study Environment.

Label Requirement

Dashboard System

OS Windows 10

Software Node.JS v.18.16.1

Hardware
CPU: 8 core
RAM: 16 GB
Disk: 1.8 TB

OpenStack Platform

OS Ubuntu 20.04 LTS

Software OpenStack Xena, Terraform Engine v.1.5.3

Hardware
CPU: 4 core
RAM: 8 GB
Disk: 80 GB

Appl. Sci. 2023, 13, 9161 11 of 21

(1) BVMO dashboard

Figure 7 shows the BVMO dashboard implemented by applying the concept presented
in this study.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 21

Figure 7. BVMO Dashboard.

The dashboard is divided into four views. No. 1 ‘Exist Virtual Machine View� is the
basic information of the previously created VM, providing information to check the VM�s
deployed ID and deployment location. No. 2 ‘Exist Virtual Machine Resource View� can
check resources specified by the selected VM, and representative information of VM con-
figuration, such as VM hardware information and OS, is displayed. In No. 3, ‘Provisioning
Resource Pool View� can check the pre-established resources that exist in the provisioning
resource pool presented in this study. Number 4 ‘Selected Resources View� is for the final
confirmation before providing the resources selected in views No. 2 and No. 3 as tem-
plates.

Each resource type in view No. 3 is enlarged as shown in Figure 8.
As shown in Figure 8, the resource type was created by dividing it into empty, which

provides empty storage space; OS, which provides an operating system; software, which
provides software against the operating system; and data resources, which provide data
for specific purposes. Because data should be provided most fundamentally in the soft-
ware stack constituting the service, a provisioning pool was built by classifying them as
above.
(2) A case study on building a virtual machine for web classes using BVMO

Figure 9 shows the results of selecting provisioning resources and VM specifications
when building a virtual machine for web classes.

Figure 7. BVMO Dashboard.

The dashboard is divided into four views. No. 1 ‘Exist Virtual Machine View’ is
the basic information of the previously created VM, providing information to check the
VM’s deployed ID and deployment location. No. 2 ‘Exist Virtual Machine Resource
View’ can check resources specified by the selected VM, and representative information
of VM configuration, such as VM hardware information and OS, is displayed. In No. 3,
‘Provisioning Resource Pool View’ can check the pre-established resources that exist in the
provisioning resource pool presented in this study. Number 4 ‘Selected Resources View’ is
for the final confirmation before providing the resources selected in views No. 2 and No. 3
as templates.

Each resource type in view No. 3 is enlarged as shown in Figure 8.
As shown in Figure 8, the resource type was created by dividing it into empty, which

provides empty storage space; OS, which provides an operating system; software, which
provides software against the operating system; and data resources, which provide data for
specific purposes. Because data should be provided most fundamentally in the software
stack constituting the service, a provisioning pool was built by classifying them as above.

(2) A case study on building a virtual machine for web classes using BVMO

Figure 9 shows the results of selecting provisioning resources and VM specifications
when building a virtual machine for web classes.

Appl. Sci. 2023, 13, 9161 12 of 21Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 21

Figure 8. Provisioning Resource Pool View.

Figure 9. Web-Class Case—Selected Resources.

Figure 8. Provisioning Resource Pool View.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 21

Figure 8. Provisioning Resource Pool View.

Figure 9. Web-Class Case—Selected Resources.
Figure 9. Web-Class Case—Selected Resources.

Appl. Sci. 2023, 13, 9161 13 of 21

As shown in Figure 9, if the selected virtual machine specifications and provisioning
resources are selected, they are reflected in the selected resource view, and by applying
these details, BVMO internally creates a terraform template for IaC utilization. Figure 10
shows the created terraform template.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 21

As shown in Figure 9, if the selected virtual machine specifications and provisioning
resources are selected, they are reflected in the selected resource view, and by applying
these details, BVMO internally creates a terraform template for IaC utilization. Figure 10
shows the created terraform template.

Figure 10. Web-Class Case—Terraform Template Example.

Figure 10 shows a created terraform template that maps the provisioning resources
to virtual machines. Figure 11 shows the VM volume tree created by BVMO during the
integration process.

Figure 11. Web-Class Case—Virtual-Machine Volume Tree.

Figure 10. Web-Class Case—Terraform Template Example.

Figure 10 shows a created terraform template that maps the provisioning resources
to virtual machines. Figure 11 shows the VM volume tree created by BVMO during the
integration process.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 21

As shown in Figure 9, if the selected virtual machine specifications and provisioning
resources are selected, they are reflected in the selected resource view, and by applying
these details, BVMO internally creates a terraform template for IaC utilization. Figure 10
shows the created terraform template.

Figure 10. Web-Class Case—Terraform Template Example.

Figure 10 shows a created terraform template that maps the provisioning resources
to virtual machines. Figure 11 shows the VM volume tree created by BVMO during the
integration process.

Figure 11. Web-Class Case—Virtual-Machine Volume Tree. Figure 11. Web-Class Case—Virtual-Machine Volume Tree.

Appl. Sci. 2023, 13, 9161 14 of 21

As shown in Figure 11, it can be confirmed that node version manager (NVM v0.39.4)
software (in/mnt/vdb) for web classes, pdf files of lecture materials (in/mnt/vdc) and
video lecture materials (in/mnt/vdd) imported from existing data resources are loaded
into the virtual machine and that the software is normally executed, as shown in Figure 12.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 21

As shown in Figure 11, it can be confirmed that node version manager (NVM v0.39.4)
software (in /mnt/vdb) for web classes, pdf files of lecture materials (in /mnt/vdc) and
video lecture materials (in /mnt/vdd) imported from existing data resources are loaded
into the virtual machine and that the software is normally executed, as shown in Figure
12.

Figure 12. Web-Class Case—Software Check.

4.2. Qualitative Evaluation
A qualitative evaluation suggests a method to show flexibility and a method to show

the reusability of the proposed method. To demonstrate whether the system was flexible,
the combinability of the provisioning resources used in this study was reviewed.

Assuming that all coupling dependencies between provisioned resources are re-
solved, the number of coupling cases can be extracted as follows:

ሺ𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠ሻ ൌ ෍ 𝐶ሺ𝑁, 𝑘ሻே
௞ୀଵ (1)

𝐶ሺ𝑁, 𝑘ሻ ൌ 𝑁!ሺ𝑘! ሺ𝑁 െ 𝑘ሻ!ሻ , 𝑁 ൌ 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑖𝑛𝑔 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

If this was applied to the 12 provisioning resources used in the case study and calcu-
lated, a total of 4095 virtual-machine combinations were derived. The above results show
the flexibility corresponding to the case in which provisioning resources are independent.

Dependencies may also exist between provisioned resources. For example, if the OS
is Windows, software that can operate on Windows should be selected. This type of rela-
tionship can be resolved by creating a combination table (Table 7) because the cases differ
depending on the OS, software and data that must be selected. Table 7 lists some of the
combined cases based on the web-class case study and the case study system presented in
this study.

Table 7. Resource Coupling Table.

Category OS Software Data Empty

Resources
Ubuntu20.04

CentOS7

MySQL-CentOS
Node.Js-CentOS
MySQL-Ubuntu
Node.Js-Ubuntu

DB Class Video
DB Class Data

Web Class Video
Web Class Data

Default Vol 1
Default Vol 2

Meaningful Cases
Case 1

(Web-class case study) Ubuntu20.04 Node.Js-Ubuntu
Web Class Video
Web Class Data -

Case 2
(Web-class case with

CentOS)
CentOS7 Node.Js-CentOS Web Class Video

Web Class Data
-

Case 3
(Ubuntu System with

additional storage)
Ubuntu20.04 - - Default Vol 1

Figure 12. Web-Class Case—Software Check.

4.2. Qualitative Evaluation

A qualitative evaluation suggests a method to show flexibility and a method to show
the reusability of the proposed method. To demonstrate whether the system was flexible,
the combinability of the provisioning resources used in this study was reviewed.

Assuming that all coupling dependencies between provisioned resources are resolved,
the number of coupling cases can be extracted as follows:

(The number o f Instances) =
N

∑
k=1

C(N, k) (1)

C(N, k) =
N!

(k!(N − k)!)
, N = total number o f provisioning resources

If this was applied to the 12 provisioning resources used in the case study and calcu-
lated, a total of 4095 virtual-machine combinations were derived. The above results show
the flexibility corresponding to the case in which provisioning resources are independent.

Dependencies may also exist between provisioned resources. For example, if the
OS is Windows, software that can operate on Windows should be selected. This type of
relationship can be resolved by creating a combination table (Table 7) because the cases
differ depending on the OS, software and data that must be selected. Table 7 lists some of
the combined cases based on the web-class case study and the case study system presented
in this study.

As listed in Table 7, meaningful cases indicate cases in which a virtual machine
combination is configured to meet the user’s requirements in consideration of dependencies
(for example, in Case 1 (web-class case study), selecting software for web classes and OS,
and data compatible with the corresponding software), and unmeaningful cases indicate
cases in which dependencies are not resolved or are unclear.

To demonstrate the reusability of BVMO, the application of a virtual machine built
into the web class introduced above is presented. If a DB class is newly created and only
the applied software and data are different, the VM components of the OS of the existing
web class can be reused and applied to create a new VM. Figure 13 shows the change from
web-class VM to DB-class VM through reuse.

Figure 13 shows that the VM’s OS and other specific elements were reused, and the
provisioned resources were changed to support the type of class to be performed. In
addition, it can be confirmed that keypairs were newly specified to support additional
security performance.

Appl. Sci. 2023, 13, 9161 15 of 21

Table 7. Resource Coupling Table.

Category OS Software Data Empty

Resources Ubuntu20.04
CentOS7

MySQL-CentOS
Node.Js-CentOS
MySQL-Ubuntu
Node.Js-Ubuntu

DB Class Video
DB Class Data

Web Class Video
Web Class Data

Default Vol 1
Default Vol 2

Meaningful Cases

Case 1
(Web-class
case study)

Ubuntu20.04 Node.Js-Ubuntu Web Class Video
Web Class Data -

Case 2
(Web-class case
with CentOS)

CentOS7 Node.Js-CentOS Web Class Video
Web Class Data -

Case 3
(Ubuntu System

with addi-
tional storage)

Ubuntu20.04 - - Default Vol 1

. . .

Unmeaningful Cases

Case n-1 Ubuntu20.04 MySQL-CentOS DB Class Video Default Vol 1
Default Vol 2

Case n CentOS7 MySQL-Ubuntu
Node.Js-Ubuntu

DB Class Video
Web Class Data

Default Vol 1
Default Vol 2

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 21

…
Unmeaningful Cases

Case n-1 Ubuntu20.04 MySQL-CentOS DB Class Video Default Vol 1
Default Vol 2

Case n CentOS7 MySQL-Ubuntu
Node.Js-Ubuntu

DB Class Video
Web Class Data

Default Vol 1
Default Vol 2

As listed in Table 7, meaningful cases indicate cases in which a virtual machine com-
bination is configured to meet the user�s requirements in consideration of dependencies
(for example, in Case 1 (web-class case study), selecting software for web classes and OS,
and data compatible with the corresponding software), and unmeaningful cases indicate
cases in which dependencies are not resolved or are unclear.

To demonstrate the reusability of BVMO, the application of a virtual machine built
into the web class introduced above is presented. If a DB class is newly created and only
the applied software and data are different, the VM components of the OS of the existing
web class can be reused and applied to create a new VM. Figure 13 shows the change from
web-class VM to DB-class VM through reuse.

Figure 13. Web-Class VM to DB-Class VM.

Figure 13 shows that the VM�s OS and other specific elements were reused, and the
provisioned resources were changed to support the type of class to be performed. In ad-
dition, it can be confirmed that keypairs were newly specified to support additional secu-
rity performance.

4.3. Quantitative Evaluation
A comparative analysis of the method of applying BVMO, the system proposed in

this study, and the method of creating a VM using only existing IaC tools was performed.
OpenStack, a private cloud, was used for the experiment. In addition, to establish time
measurement standards for each case, the log analysis process that occurred when creat-
ing a VM in OpenStack was performed.

Figure 14 shows an excerpt of the parts that can be utilized among the logs generated
when creating a VM in OpenStack.

Figure 13. Web-Class VM to DB-Class VM.

4.3. Quantitative Evaluation

A comparative analysis of the method of applying BVMO, the system proposed in
this study, and the method of creating a VM using only existing IaC tools was performed.
OpenStack, a private cloud, was used for the experiment. In addition, to establish time
measurement standards for each case, the log analysis process that occurred when creating
a VM in OpenStack was performed.

Figure 14 shows an excerpt of the parts that can be utilized among the logs generated
when creating a VM in OpenStack.

As shown in Figure 14, the OpenStack Nova component undergoes a two-step process
to create an instance. The instance-creation process starts at the instance-create start
time and provides the information received for VM creation to the hypervisor. Instance-
spawning time measures the time taken to spawn an instance that Nova can control by

Appl. Sci. 2023, 13, 9161 16 of 21

receiving the VM created by the hypervisor. The Instance-build time refers to the time
required to build a runnable VM during the verification process of the spawned instance.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 21

Figure 14. OpenStack Logs for Quantitative Evaluation.

As shown in Figure 14, the OpenStack Nova component undergoes a two-step pro-
cess to create an instance. The instance-creation process starts at the instance-create start
time and provides the information received for VM creation to the hypervisor. Instance-
spawning time measures the time taken to spawn an instance that Nova can control by
receiving the VM created by the hypervisor. The Instance-build time refers to the time
required to build a runnable VM during the verification process of the spawned instance.

The VM created above performs an initialization to build an environment that users
can utilize. Cloud-init is currently used as a cloud-instance-initialization tool. Figure 15
shows an excerpt from the cloud-init logs that can be utilized.

Figure 15. Cloud-Init Logs for Quantitative Evaluation.

In the case of cloud-init-execution logs, the data that can be utilized are the start and
end times. The process of measuring the VM creation time based on the log-analysis re-
sults derived from Figures 14 and 15 is shown in Figure 16.

Figure 16. VM-Creation Flow for Quantitative Evaluation.

Based on the time-measurement elements shown in Figure 16, the configuration of
the experiment was divided into two cases when creating a VM: (1) when creating an
empty instance with only the OS installed and (2) when performing software installation
in the user-environment-initialization stage.

In the case of the method using IaC listed in Table 8, the spawn time was 1.94 s on
average, and the build time was 2.216 s on average. When using the BVMO presented in
this study, the average spawn time was 3.154 s, and the average build time was 5.384 s.

Figure 14. OpenStack Logs for Quantitative Evaluation.

The VM created above performs an initialization to build an environment that users
can utilize. Cloud-init is currently used as a cloud-instance-initialization tool. Figure 15
shows an excerpt from the cloud-init logs that can be utilized.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 21

Figure 14. OpenStack Logs for Quantitative Evaluation.

As shown in Figure 14, the OpenStack Nova component undergoes a two-step pro-
cess to create an instance. The instance-creation process starts at the instance-create start
time and provides the information received for VM creation to the hypervisor. Instance-
spawning time measures the time taken to spawn an instance that Nova can control by
receiving the VM created by the hypervisor. The Instance-build time refers to the time
required to build a runnable VM during the verification process of the spawned instance.

The VM created above performs an initialization to build an environment that users
can utilize. Cloud-init is currently used as a cloud-instance-initialization tool. Figure 15
shows an excerpt from the cloud-init logs that can be utilized.

Figure 15. Cloud-Init Logs for Quantitative Evaluation.

In the case of cloud-init-execution logs, the data that can be utilized are the start and
end times. The process of measuring the VM creation time based on the log-analysis re-
sults derived from Figures 14 and 15 is shown in Figure 16.

Figure 16. VM-Creation Flow for Quantitative Evaluation.

Based on the time-measurement elements shown in Figure 16, the configuration of
the experiment was divided into two cases when creating a VM: (1) when creating an
empty instance with only the OS installed and (2) when performing software installation
in the user-environment-initialization stage.

In the case of the method using IaC listed in Table 8, the spawn time was 1.94 s on
average, and the build time was 2.216 s on average. When using the BVMO presented in
this study, the average spawn time was 3.154 s, and the average build time was 5.384 s.

Figure 15. Cloud-Init Logs for Quantitative Evaluation.

In the case of cloud-init-execution logs, the data that can be utilized are the start and
end times. The process of measuring the VM creation time based on the log-analysis results
derived from Figures 14 and 15 is shown in Figure 16.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 21

Figure 14. OpenStack Logs for Quantitative Evaluation.

As shown in Figure 14, the OpenStack Nova component undergoes a two-step pro-
cess to create an instance. The instance-creation process starts at the instance-create start
time and provides the information received for VM creation to the hypervisor. Instance-
spawning time measures the time taken to spawn an instance that Nova can control by
receiving the VM created by the hypervisor. The Instance-build time refers to the time
required to build a runnable VM during the verification process of the spawned instance.

The VM created above performs an initialization to build an environment that users
can utilize. Cloud-init is currently used as a cloud-instance-initialization tool. Figure 15
shows an excerpt from the cloud-init logs that can be utilized.

Figure 15. Cloud-Init Logs for Quantitative Evaluation.

In the case of cloud-init-execution logs, the data that can be utilized are the start and
end times. The process of measuring the VM creation time based on the log-analysis re-
sults derived from Figures 14 and 15 is shown in Figure 16.

Figure 16. VM-Creation Flow for Quantitative Evaluation.

Based on the time-measurement elements shown in Figure 16, the configuration of
the experiment was divided into two cases when creating a VM: (1) when creating an
empty instance with only the OS installed and (2) when performing software installation
in the user-environment-initialization stage.

In the case of the method using IaC listed in Table 8, the spawn time was 1.94 s on
average, and the build time was 2.216 s on average. When using the BVMO presented in
this study, the average spawn time was 3.154 s, and the average build time was 5.384 s.

Figure 16. VM-Creation Flow for Quantitative Evaluation.

Based on the time-measurement elements shown in Figure 16, the configuration of the
experiment was divided into two cases when creating a VM: (1) when creating an empty
instance with only the OS installed and (2) when performing software installation in the
user-environment-initialization stage.

In the case of the method using IaC listed in Table 8, the spawn time was 1.94 s on
average, and the build time was 2.216 s on average. When using the BVMO presented in
this study, the average spawn time was 3.154 s, and the average build time was 5.384 s. The

Appl. Sci. 2023, 13, 9161 17 of 21

execution time, according to the specification interpretation, occurred in the process of the
BVMO reusing existing resources.

Table 8. Test 1—VM with OS.

Method Iteration
(Count)

VM-Creation Phase
Total

(Seconds)
Instance
Spawn

(Seconds)

Instance
Build

(Seconds)

Initialization
(Seconds)

IaC

1st 1.89 2.16 112.73 120

2nd 1.86 2.09 106.9 114

3rd 1.93 2.2 111.75 118

4th 2.06 2.32 109.14 117

5th 1.96 2.31 110.76 117

BVMO

1st 3.06 5.2 81.12 91

2nd 3.11 5.29 82.98 93

3rd 3.13 5.27 84.24 95

4th 3.29 5.63 83.6 95

5th 3.18 5.53 92.76 104

In addition, in the case of the initialization time, the method using IaC averaged
110.256 s, and the method using BVMO averaged 84.94 s, resulting in a reduction of
approximately 25.316 s in the proposed BVMO. The initialization time of the OS, which
is a major element of the computing system among existing resources, affects the initial
creation speed of the VM. Therefore, it can be confirmed that the approach of pre-creating
the combined OS resources proposed by the BVMO is effective.

For the total execution time, the results include the spawn time, build time, initial-
ization time and idle time according to the progress of the VM-creation flow. An average
of 117.2 s for the IaC method and 95.6 s for the BVMO method were measured. It was
confirmed that the proposed BVMO method could perform as fast as 21.8 s.

Table 9 lists the experimental results for performing the software installation required by
the user during the user-environment-initialization step. The software used in the experiment
was performed by adopting npm, which can be installed from a Linux package repository.

Table 9. Test 2—VM with Software.

Method Iteration
(Count)

VM Creation Phase
Total

(Seconds)
Instance
Spawn

(Seconds)

Instance
Build

(Seconds)

Initialization
(Seconds)

IaC

1st 1.95 2.2 278.01 305

2nd 1.89 2.13 286.37 314

3rd 1.78 2.06 280.65 312

4th 1.73 1.99 275.57 304

5th 1.81 2.12 282.66 311

BVMO

1st 3.05 5.39 90.33 101

2nd 3.12 5.39 88.67 99

3rd 3.08 5.22 89.41 100

4th 3.05 5.24 96.71 107

5th 3.14 5.35 95.56 106

Appl. Sci. 2023, 13, 9161 18 of 21

In the case of the method using IaC, as listed in Table 9, the spawn time was 1.832 s on
average, and the build time was 2.1 s on average. When using the BVMO presented in this
study, the average spawn time was 3.088 s, and the average build time was 5.318 s. This
result was similar to the experimental results derived from Test 1.

In addition, in the case of initialization time, the average execution time of the method
using IaC was 280.652 s, and that of the method using BVMO was 92.136 s. It was confirmed
that a difference of 188.489 s appeared between the cases where software was used among
the provisioning resources and those where it was not. In the case of OS, there are various
supports in terms of platforms and hypervisors, except for special cases (e.g., Baremetal
system); however, in the case of software that operates internally, a large difference appears
as the time required to download and set up the software, and this is reflected in the
user-environment-initialization stage.

The total execution time of Test 2 was 309.2 s for the method using IaC and 102.6 s for
the method using BVMO.

Table 10 lists the experimental results for increasing the number of software packages
when creating a VM following Test 1 and Test 2.

Table 10. Test 3—VM with Number of Two Software.

Method Iteration
(Count)

VM Creation Phase
Total

(Seconds)
Instance
Spawn

(Seconds)

Instance
Build

(Seconds)

Initialization
(Seconds)

IaC

1st 2.64 2.89 461.26 469

2nd 2.7 3 440.83 449

3rd 2.55 3.16 455.66 451

4th 2.1 2.96 460.43 455

5th 2.62 3.2 458.74 466

BVMO

1st 3.13 5.39 93.95 105

2nd 3.09 5.31 89.91 101

3rd 3.17 5.42 93.24 105

4th 3.06 5.57 92.83 104

5th 3.16 5.28 91.34 101

As listed in Table 10, in the case of the method using IaC, the average spawn time was
2.522 s, and the average build time was 3.042 s. When BVMO was used, the average spawn
time was 3.122 s, and the average build time was 5.394 s. In the previous IaC method, the
spawn time was approximately 1.9 s, and the build time was approximately 2.1 s; however,
the average values differed by about 0.6 s and 0.9 s, respectively. This appears to occur
because the IaC specification analysis process is added according to the software addition.
However, because the BVMO method performs only volume connections, it is confirmed
that there is no significant difference from the previous results.

In addition, the initialization time of the method using IaC was 455.384 s on average,
and that of the method using BVMO was 92.584 s. This was confirmed by an increase in
the load on the system as the software was added. However, it was confirmed through
several experiments that BVMO, which only performs volume connections, produces
consistent results.

As for the total execution time according to the increase in software, it was confirmed
that IaC had an average of 458 s and BVMO had an average of 103.2 s.

Figure 17 shows the results of each experiment performed.

Appl. Sci. 2023, 13, 9161 19 of 21Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 21

Figure 17. All Test Comparison Results.

As a result, it was confirmed that BVMO consistently has a time-reduction effect com-
pared with the method using IaC. In contrast to the IaC method, which differs in time
depending on the software provision, BVMO showed a consistent required time in each
experiment. This is assumed to occur because BVMO utilizes provisioned resources, does
not require additional resource-preparation time and operates consistently to create vir-
tual machines (volume mapping after instance preparation).

5. Conclusions
We propose BVMO, a method that can increase reusability and flexibly create user-

customized virtual machines. In contrast to existing virtual-machine-creation methods, a
process and architecture for constructing a new customized virtual machine by configur-
ing and combining a resource volume pool were established. The proposed method was
specified by applying OpenStack, an actual open-source platform, and it was confirmed
that this approach cloud reduce time and cost compared with existing methods. There-
fore, the proposed BVMO can be applied to create a VM that satisfies user requirements
and promotes the introduction of private clouds by organizations or companies by solving
the technical difficulties in building a virtual machine. Currently, research is in progress
on a mechanism that introduces artificial intelligence (AI) technology and recommends
various provisioning resources in the resource pool of the proposed BVMO according to
user needs. Additionally, research on a management structure that collects and manages
historical data related to the resource pool, such as the frequency of use of the provisioned
resources of the resource pool by users when creating VMs, requirements and mapping
information for VM resources selected by requirements, is underway. In the future, we
plan to expand the proposed BVMO to a virtual-machine-mediation framework that clas-
sifies and recommends VMs and research-related technologies.

Author Contributions: Conceptualization, J.P.; methodology, J.P.; software, S.J.; validation, S.J.; pro-
ject administration, K.Y.; funding acquisition, K.Y. All authors have read and agreed to the pub-
lished version of the manuscript.

Figure 17. All Test Comparison Results.

As a result, it was confirmed that BVMO consistently has a time-reduction effect
compared with the method using IaC. In contrast to the IaC method, which differs in time
depending on the software provision, BVMO showed a consistent required time in each
experiment. This is assumed to occur because BVMO utilizes provisioned resources, does
not require additional resource-preparation time and operates consistently to create virtual
machines (volume mapping after instance preparation).

5. Conclusions

We propose BVMO, a method that can increase reusability and flexibly create user-
customized virtual machines. In contrast to existing virtual-machine-creation methods, a
process and architecture for constructing a new customized virtual machine by configuring
and combining a resource volume pool were established. The proposed method was
specified by applying OpenStack, an actual open-source platform, and it was confirmed
that this approach cloud reduce time and cost compared with existing methods. Therefore,
the proposed BVMO can be applied to create a VM that satisfies user requirements and
promotes the introduction of private clouds by organizations or companies by solving
the technical difficulties in building a virtual machine. Currently, research is in progress
on a mechanism that introduces artificial intelligence (AI) technology and recommends
various provisioning resources in the resource pool of the proposed BVMO according to
user needs. Additionally, research on a management structure that collects and manages
historical data related to the resource pool, such as the frequency of use of the provisioned
resources of the resource pool by users when creating VMs, requirements and mapping
information for VM resources selected by requirements, is underway. In the future, we plan
to expand the proposed BVMO to a virtual-machine-mediation framework that classifies
and recommends VMs and research-related technologies.

Appl. Sci. 2023, 13, 9161 20 of 21

Author Contributions: Conceptualization, J.P.; methodology, J.P.; software, S.J.; validation, S.J.;
project administration, K.Y.; funding acquisition, K.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIP) (No. NRF-2021R1A2C1006177).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the authors upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Singh, R.P.; Haleem, A.; Javaid, M.; Kataria, R.; Singhal, S. Cloud Computing in Solving Problems of COVID-19 Pandemic. J. Ind.

Integr. Manag. 2021, 6, 209–219. [CrossRef]
2. Parast, F.K.; Sindhav, C.; Nikam, S.; Yekta, H.I.; Kent, K.B.; Hakak, S. Cloud computing security: A survey of service-based

models. Comput. Secur. 2022, 114, 102580. [CrossRef]
3. Jamsa, K. Cloud Computing, 2nd ed.; Jones & Bartlett Learning: Boston, MA, USA, 2022; pp. 1–23. ISBN 978-1-284-23397-1.
4. Lehwess, M. Future Networks, Services and Management; Toy, M., Ed.; Springer: Cham, Switzerland, 2021; pp. 213–243. ISBN 978-3-030-81960-6.
5. Amazon Elastic Compute Cloud Documentation. Available online: https://docs.aws.amazon.com/ec2/index.html?nc2=h_ql_

doc_ec2 (accessed on 24 May 2023).
6. Open Cloud|Google Cloud. Available online: https://cloud.google.com/open-cloud?hl=en (accessed on 24 May 2023).
7. Open Source Cloud Computing Platform Software—OpenStack. Available online: https://www.openstack.org/software/

(accessed on 24 May 2023).
8. Apache CloudStack: Open Source Cloud Computing. Available online: https://cloudstack.apache.org/about.html (accessed on

24 May 2023).
9. Kai, Z.; Youyu, L.; Qi, L.; Hao, S.C.; Liping, Z. Building a private cloud platform based on open source software OpenStack. In

Proceedings of the 2020 International Conference on Big Data and Social Sciences (ICBDSS), Xi’an, China, 14–16 August 2020;
pp. 84–87.

10. Barhate, S.M.; Dhore, M.P. Hybrid Cloud: A Cost Optimised Solution to Cloud Interoperability. In Proceedings of the 2020
International Conference on Innovative Trends in Information Technology (ICITIIT), Kottayam, India, 13–14 February 2020;
pp. 1–5.

11. Alonso, J.; Echevarria, L.O.; Huarte, M. CloudOps: Towards the Operationalization of the Cloud Continuum: Concepts,
Challenges and a Reference Framework. Appl. Sci. 2022, 12, 4347. [CrossRef]

12. Gupta, S.; Iyer, S.; Agarwal, G.; Manoharan, P.; Algarni, A.D.; Aldehim, G.; Raahemifar, K. Efficient Prioritization and Processor
Selection Schemes for HEFT Algorithm: A Makespan Optimizer for Task Scheduling in Cloud Environment. Electronics 2022,
11, 2557. [CrossRef]

13. Belgacem, A. Dynamic resource allocation in cloud computing: Analysis and taxonomies. Computing 2022, 104, 681–710.
[CrossRef]

14. Verma, A.; Bhattacharya, P.; Bodkhe, U.; Saraswat, D.; Tanwar, S.; Dev, K. FedRec: Trusted rank-based recommender scheme for
service provisioning in federated cloud environment. Digit. Commun. Netw. 2023, 9, 33–46. [CrossRef]

15. Funika, W.; Koperek, P.; Kitowski, J. Automated cloud resrouces provisioning with the use of the proximal policy optimization.
J. Supercomput. 2022, 79, 6674–6704. [CrossRef]

16. Rong, C.; Geng, J.; Hacker, T.J.; Bryhni, H.; Jaatun, M.G. OpenIaC: Open infrastructure as code—The network is my computer.
J. Cloud Comput. 2022, 11, 12. [CrossRef]

17. Ansible Use Case. Available online: https://www.ansible.com/use-cases (accessed on 24 May 2023).
18. Boot Stages—Cloud-Init 23.2 Document. Available online: https://cloudinit.readthedocs.io/en/latest/topics/boot.html

(accessed on 24 May 2023).
19. Chiari, M.; Pascalis, M.D.; Pradella, M. Static Analysis of Infrastructure as Code: A Survey. In Proceedings of the 2022 IEEE 19th

International Conference on Software Architecture Companion (ICSA-C), Honolulu, HI, USA, 12–15 March 2022; pp. 218–225.
20. Awasthi, A.; Gupta, R. Multiple hypervisor based Open Stack cloud and VM migration. In Proceedings of the 2016 6th

International Conference—Cloud System and Big Data Engineering (Confluence), Noida, India, 14–15 January 2016; pp. 130–134.
21. Martinez, J.; Ziadi, T.; Bissyandé, T.F.; Klein, J.; Traon, Y.L. Bottom-Up Technologies for Reuse: Automated Extractive Adoption

of Software Product Lines. In Proceedings of the 2017 IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), Buenos Aires, Argentina, 20–28 May 2017; pp. 67–70.

22. Shen, H.; Chen, L. A Resource-Efficient Predictive Resource Provisioning System in Cloud Systems. IEEE Trans. Parallel Distrib.
Syst. 2022, 33, 3886–3900. [CrossRef]

https://doi.org/10.1142/S2424862221500044
https://doi.org/10.1016/j.cose.2021.102580
https://docs.aws.amazon.com/ec2/index.html?nc2=h_ql_doc_ec2
https://docs.aws.amazon.com/ec2/index.html?nc2=h_ql_doc_ec2
https://cloud.google.com/open-cloud?hl=en
https://www.openstack.org/software/
https://cloudstack.apache.org/about.html
https://doi.org/10.3390/app12094347
https://doi.org/10.3390/electronics11162557
https://doi.org/10.1007/s00607-021-01045-2
https://doi.org/10.1016/j.dcan.2022.06.003
https://doi.org/10.1007/s11227-022-04924-3
https://doi.org/10.1186/s13677-022-00285-7
https://www.ansible.com/use-cases
https://cloudinit.readthedocs.io/en/latest/topics/boot.html
https://doi.org/10.1109/TPDS.2022.3172493

Appl. Sci. 2023, 13, 9161 21 of 21

23. Rajan, D.; Thain, D. Designing Self-Tuning Split-Map-Merge Applications for High Cost-Efficiency in the Cloud. IEEE Trans.
Cloud Comput. 2017, 5, 303–316. [CrossRef]

24. Wei, Y.; Blake, M.B. Proactive virtualized resource management for service workflows in the cloud. Computing 2016, 98, 523–538.
[CrossRef]

25. Nadeem, S.; Amin, N.; Zaman, S.K.; Khan, M.A.; Ahmad, Z.; Iqbal, J.; Khan, A.; Algarni, A.D.; Elmannai, H. Runtime
Management of Service Level Agreements through Proactive Resource Provisioning for a Cloud Environment. Electronics 2023,
12, 296. [CrossRef]

26. Alwada’n, T.; Al-Tamimi, A.K.; Mohammad, A.H.; Salem, M.; Muhammad, Y. Dynamic congestion management system for cloud
service broker. Int. J. Electr. Comput. Eng. 2022, 13, 872–883. [CrossRef]

27. Li, X.; Pan, L.; Liu, S. An online service provisioning strategy for container-based cloud brokers. J. Netw. Comput. Appl. 2023,
214, 103618. [CrossRef]

28. What Is Terraform|Terraform|HashiCorp Developer. Available online: https://developer.hashicorp.com/terraform/intro
(accessed on 26 July 2023).

29. HashiStack. Available online: https://hashistack.readthedocs.io/en/latest/ (accessed on 26 July 2023).
30. Welcome to the Heat Documentation!—Openstack-heat 20.1.0.dev63 Documentation. Available online: https://docs.openstack.

org/heat/latest/ (accessed on 26 July 2023).
31. Documentation|Vault|HashiCorp Developer. Available online: https://developer.hashicorp.com/vault/docs?product_intent=

vault (accessed on 7 August 2023).
32. Consul Documentation|Consul|HashiCorp Developer. Available online: https://developer.hashicorp.com/consul/docs?

product_intent=consul (accessed on 7 August 2023).
33. Documentation|Nomad|HashiCorp Developer. Available online: https://developer.hashicorp.com/nomad/docs?product_

intent=nomad (accessed on 7 August 2023).
34. Keystone, the OpenStack Identity Service—Keystone 23.1.0.dev57 Documentation. Available online: https://docs.openstack.org/

keystone/latest/ (accessed on 7 August 2023).
35. Welcome to Neutron’s Documentation!—Neutron 23.0.0.0b3.dev257 Documentation. Available online: https://docs.openstack.

org/neutron/latest/ (accessed on 7 August 2023).
36. OpenStack Compute (Nova)—Nova 27.1.0.dev103 Documentation. Available online: https://docs.openstack.org/nova/latest/

(accessed on 7 August 2023).
37. GCC, the GNU Compiler Collection—GNI Project. Available online: https://gcc.gnu.org/ (accessed on 7 August 2023).
38. What Is Java and Why Do I Need it? Available online: https://www.java.com/en/download/help/whatis_java.html (accessed

on 7 August 2023).
39. Our Documentation|Python.org. Available online: https://www.python.org/doc/ (accessed on 7 August 2023).
40. Virtual Machine Instances|Compute Engine Documentations. Available online: https://cloud.google.com/compute/docs/

instances?hl=en (accessed on 3 June 2023).
41. Amazon EC2 Instance Type—Amazon Web Service. Available online: https://aws.amazon.com/en/ec2/instance-types/en

(accessed on 3 June 2023).
42. VM Sizes—Azure Virtual Machines|Microsoft Learn. Available online: https://learn.microsoft.com/en-us/azure/virtual-

machines/sizes/en (accessed on 3 June 2023).
43. Launch and Manage Instances—Horizon 23.2.0.dev55 Documentation. Available online: https://docs.openstack.org/horizon/

latest/user/launch-instances.html (accessed on 3 June 2023).
44. About Working with Virtual Machines—Apache CloudStack 4.18.0.0 Documentation. Available online: https://docs.cloudstack.

apache.org/en/latest/adminguide/virtual_machines.html#managing-virtual-machines (accessed on 3 June 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TCC.2015.2415780
https://doi.org/10.1007/s00607-014-0419-4
https://doi.org/10.3390/electronics12020296
https://doi.org/10.11591/ijece.v13i1.pp872-883
https://doi.org/10.1016/j.jnca.2023.103618
https://developer.hashicorp.com/terraform/intro
https://hashistack.readthedocs.io/en/latest/
https://docs.openstack.org/heat/latest/
https://docs.openstack.org/heat/latest/
https://developer.hashicorp.com/vault/docs?product_intent=vault
https://developer.hashicorp.com/vault/docs?product_intent=vault
https://developer.hashicorp.com/consul/docs?product_intent=consul
https://developer.hashicorp.com/consul/docs?product_intent=consul
https://developer.hashicorp.com/nomad/docs?product_intent=nomad
https://developer.hashicorp.com/nomad/docs?product_intent=nomad
https://docs.openstack.org/keystone/latest/
https://docs.openstack.org/keystone/latest/
https://docs.openstack.org/neutron/latest/
https://docs.openstack.org/neutron/latest/
https://docs.openstack.org/nova/latest/
https://gcc.gnu.org/
https://www.java.com/en/download/help/whatis_java.html
https://www.python.org/doc/
https://cloud.google.com/compute/docs/instances?hl=en
https://cloud.google.com/compute/docs/instances?hl=en
https://aws.amazon.com/en/ec2/instance-types/en
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/en
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes/en
https://docs.openstack.org/horizon/latest/user/launch-instances.html
https://docs.openstack.org/horizon/latest/user/launch-instances.html
https://docs.cloudstack.apache.org/en/latest/adminguide/virtual_machines.html#managing-virtual-machines
https://docs.cloudstack.apache.org/en/latest/adminguide/virtual_machines.html#managing-virtual-machines

	Introduction
	Related Works
	Private Cloud Platform
	Software-Product-Line Engineering
	Provisioning Cloud Resources
	Cloud-Service Brokerage
	Infrastructure as Code
	Discussion

	Bespoke Virtual Machine Orchestrator
	Conceptual Process for Bespoke Virtual Machine Orchestrator
	Analysis of Cloud Resource Features and Cloud Functional Flow
	Architecture of Bespoke Virtual Machine Orchestrator
	Application Scenario for BVMO

	Case Study and Evaluation
	Case Study
	Qualitative Evaluation
	Quantitative Evaluation

	Conclusions
	References

