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Abstract: Due to the importance of rice (Oryza sativa) in food products, developing strategies to eval-
uate its quality based on a fast and reliable methodology is fundamental. Herein, near-infrared (NIR)
spectroscopy combined with machine learning algorithms, such as interval partial least squares (iPLS),
synergy interval PLS (siPLS), and artificial neural networks (ANNs), allowed for the development of
prediction models of pasting parameters, such as the breakdown (BD), final viscosity (FV), pasting
viscosity (PV), setback (ST), and trough (TR), from 166 rice samples. The models developed using
iPLS and siPLS were characterized, respectively, by the following regression values: BD (R = 0.84;
R = 0.88); FV (R = 0.57; R = 0.64); PV (R = 0.85; R = 0.90); ST (R = 0.85; R = 0.88); and TR (R = 0.85;
R = 0.84). Meanwhile, ANN was also tested and allowed for a significant improvement in the models,
characterized by the following values corresponding to the calibration and testing procedures: BD
(Rcal = 0.99; Rtest = 0.70), FV (Rcal = 0.99; Rtest = 0.85), PV (Rcal = 0.99; Rtest = 0.80), ST (Rcal = 0.99;
Rtest = 0.76), and TR (Rcal = 0.99; Rtest = 0.72). Each model was characterized by a specific spectral
region that presented significative influence in terms of the pasting parameters. The machine learning
models developed for these pasting parameters represent a significant tool for rice quality evaluation
and will have an important influence on the rice value chain, since breeding programs focus on the
evaluation of rice quality.

Keywords: artificial neural network; NIR spectroscopy; pasting parameters; rice

1. Introduction

The assessment of quality traits in rice (Oryza sativa L.) can be considered a very impor-
tant issue, as these parameters play an important role for both consumers and industry. The
assessment of these traits can be performed by the measurement of the physical parameters
of the grain, its biochemical composition, its cooking properties, and its milling perfor-
mance. The most interesting quality parameters are related to physical properties (weight,
grain volume), appearance (color, size, shape, smoothness, and hardness), flow properties,
biochemical composition (moisture, lipids, protein, ash, and amylose content), temperature
of gelatinization, pasting viscosity, and gel consistency [1]. The pasting properties of rice are
by far some of the most interesting rice quality traits, as they define the capacity of the rice
for applications in food processing and other industries, and they are also used to explain
rice aging [2]. The pasting profile displays the physicochemical changes in the aqueous
suspension of starch at a certain temperature and time, allowing for an evaluation of the
apparent viscosity [3]. In the food industry, the Rapid Visco Analyzer (RVA) is a suitable
tool used to obtain information linked to the apparent viscosity, allowing for simulations of
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processing focusing on the structural properties and functionality [4]. The final viscosity
(FV) is usually used to characterize the quality of samples and their capacity to develop
into a viscous gel after cooking and cooling processes. The setback (ST) region is commonly
defined as the pasting curve region between the trough (TR) and FV. The breakdown
(BD) parameter, which represents the difference between the pasting viscosity (PV) and
TR, evaluates the ease of upsetting swollen starch granules, showing the stability degree
through cooking [5]. The peak time and PV, as integral parts of the pasting profile, have
been linked with water absorption capacity—which is considered an important parameter
for the development of rice-based products—as they may inform the future behavior of
a paste during and after processing. Pasting properties are also related to other sensory
qualities of rice besides texture, as rice with a higher taste evaluation tends to present a
significant amylose content, which presents a correlation with PV, hold viscosity, FV, and
BD, as well as the pasting temperature, peak time, and protein content [6]. The viscosity of
a gel depends on the gelatinization stage of the starch and the extent of its molecular BD.
Starch gelatinization and degradation can be related to a decrease in the PV and the FV,
depending on the rice type. The end-use quality of food, such as the texture of cooked rice
and noodles, has also been evaluated on the basis of its pasting properties [4].

Considering that the RVA procedure is a time-consuming process, rapid method-
ologies, such as near-infrared (NIR) spectroscopy, have been explored through routinary
models for the evaluation of quality properties in cereals [7]. The infrared spectra method-
ology is considered a detailed analysis tool for quality control and represents excellent
potential for use in the assessment of sample properties in breeding programs and in-
dustry based on reliable and fast techniques [8]. For agricultural product analysis, NIR
spectroscopy has been broadly used due to its advantages related to sample preparation,
including being faster and easier to manipulate, non-destructive, and accurate. This tech-
nology, based on a single spectrum, also allows for the evaluation of several properties
relating to rice quality [9,10].

Partial least squares (PLS) regression is an algorithm that estimates and quantifies
the components in a particular sample [11]. By using suitable algorithms, it is possible to
select the spectral region associated with a significant improvement in the performance
of the full-spectrum calibration techniques, preventing non-modelled interference and
creating an adjusted model [12]. A significant improvement to the calibration step, using
the full spectrum, is possible based on a suitable algorithm [12]. These methods can be
categorized as one wavelength or interval wavelength selection, such as interval PLS (iPLS)
and synergy interval PLS (siPLS) [13].

Artificial neural networks (ANNs) are defined as non-parametric regression models
that take any phenomenon to any accuracy degree without previous data on the phenom-
ena. ANNs are especially useful for classification and function approximation/mapping
problems, which are tolerant of some imprecision and have many training data available,
but to which hard and fast rules cannot easily be applied [14]. A neural network is an adapt-
able system that learns relationships from input and output data sets and then can predict
previously unseen experimental results with similar characteristics to the input set. ANNs
accurately fit nonlinear variables, which is an advantage compared to multivariate linear
analysis [14]. The quality analysis methods used in the food industry are time-consuming
and highly expensive, as they require specific equipment and specialized labor. For this
reason, the main goal of this study was to develop different models based on machine
learning algorithms, such as iPLS, siPLS, and back-propagation ANN, combined with NIR
spectroscopy to examine the rice pasting properties BD, FV, PV, TR, and ST, with each
model characterized by a specific spectral region that presents a significative influence in
terms of these pasting parameters. This strategy represents an important impact on the rice
value chain (breeding programs, industry, and consumers), focusing on a non-destructive
technique for the evaluation of rice quality.
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2. Materials and Methods
2.1. Rice Sample Preparation and Quality Evaluation

The 166 rice samples used in this study belonged to the Portuguese Rice Breeding
Program and were harvested in three regions (Alcácer do Sal, Salvaterra-de-Magos, and
Montemor-o-Velho, Portugal) in 2014–2016. Samples were previously de-husked in a Satake
mill (THU, Satake, Taito, Japan) and polished (Suzuki MT98, Santa Cruz do Rio Pardo,
São Paulo, Brazil) to assess the milling yields and obtain milled (polished) rice. A Cyclone
Sample Mill (falling number 3100, Perten, Stockholm, Sweden) with a 0.8 mm screen was
used to obtain ground rice samples. The quality evaluation of the samples was performed
immediately after the harvesting process. The moisture content of the rice samples ranged
within 12–12.5%, as determined by the AACC International Method 44-15.02. A viscos-
ity analyzer (RVA-4, Newport Scientific, Warriewood, Australia) was used to assess the
paste gelatinization and viscosity properties. The AACC International Approved Method
61-02.01 was used to evaluate the PV, ST, BD, TR, and FV parameters [15].

2.2. Near-Infrared Spectroscopy Analysis

An NIR transflection MPA apparatus (Bruker Optics, Ettlingen Germany) was used
to register the infrared spectra of the rice flours. To register the spectrum for each sample,
around 5 g of flour was introduced in the specific NIR container and compacted to obtain a
similar packing density. NIR spectra were acquired in the range of 12,000–4000 cm−1, with
a spectral resolution of 16 cm−1 and 16 scans [9]. The wavenumber range was segmented
into 1154 data sets, where each interval represents 6.93 cm−1.

2.3. Data and Multivariate Analysis

Different algorithms, such as standard normal variate (SNV) transformation, mul-
tiplicative scatter correction (MSC), and smoothing derivative (1st and 2nd derivative),
were used to improve the signal of the NIR raw spectra. This strategy is fundamental to
obtaining reliable quantitative models [16]. MSC first performs a regression of a measured
spectrum against the reference spectrum and then corrects the measured spectrum using
the constructed linear regression model. MSC is carried out using Equations (1) and (2):

xi = 1ai + Xbi (1)

xi(MSC) = (xi − 1ai)/bi (2)

where xi represents the spectrum of sample i; ai and bi denote the intercept and slope,
respectively; X is the mean of all spectra registered; the corrected spectrum is denoted
by xi(MSC); and 1 is a vector of ones. The SNV transformation allows us to reduce the
multiplicative effects of scattering of the particle size and, consequently, the differences
in the global signals. Each spectrum is centered and scaled by dividing by its standard
deviation. SNV is calculated using Equations (3) and (4):

xi =
∑m

j=1 xij

m
(3)

xij(SNV) =
xij − xi√

∑m
j=1(xij−xi)

2

m−1

(4)

where m represents the number of wavelengths, while xij and xij (SNV) are the measured
and corrected reflectance, respectively, of the jth wavelength for sample i.

2.4. Partial Least Squares—Selection of the Wavenumber Interval

The PLS algorithm relies on the entire NIR spectrum to estimate the sample composi-
tion, being based on latent variables (LVs) [11]. The iPLS and siPLS algorithms allow an
improvement in PLS performance and the elimination of inappropriate spectral variables.



Appl. Sci. 2023, 13, 9081 4 of 14

The iPLS models were constructed in 20 spectral intervals of a similar width, generating a
graphical representation indicating the optimum number of LV and RMSECV values in
each interval. The selected sub-intervals presented the lowest RMSECV values. The siPLS
models were developed based on the spectral set divided into 20 intervals and combina-
tions of 3 intervals. The combined sub-intervals defined by the lowest RMSECV values
were selected [13]. The performance of the final PLS model was evaluated based on the
RMSECV and the correlation coefficient (R), defined by

RMSECV =

√
∑n

i=1(yi −ŷi)
2

n − 1
(5)

where n is the number of samples in the test set validation, yi corresponds to the reference
measurement for the test set of sample i, and ŷi represents the estimated values for test
sample i. The performance of the final iPLS and siPLS models was evaluated using the
root-mean-square error of prediction (RMSEP) and the coefficient of determination (R2).
RMSEP is defined as

RMSEP =

√
∑n

i=1(yi −ŷi)
2

n
(6)

The correlation coefficient (R) for calibration and test set evaluation is related to the
predicted and measured data (Equation (7)). The parameter ȳ is the average of the reference
data for all samples.

R =

√√√√1 − ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − y)2 (7)

2.5. Artificial Neural Network (ANN)

An ANN is defined by input, hidden, and output layers. The number of nodes in the
input layer corresponds to the variables evaluated, while the number of neurons in the
output layer is related to the parameters. In the hidden and output layers, each neuron is
connected to all the nodes by an associated numerical weight. The input layer receives the
initial data (spectral segment), the hidden layer processes the data, and the output layer
presents the results of the model [14]. The number of neurons in the hidden layers was
determined herein once the maximum values of the correlation coefficients were observed.
Neural structures characterized by 10 hidden layers were selected. The wavenumber inter-
val [12,000–4000 cm−1] was segmented into 1154 data sets, which were used as the input
data for the ANN model. The output layer (1) was similar for all the models (1154:10:1).
Multilayer perceptron (MLP) was used for the regression models, namely, the backprop-
agation learning algorithm. The Levenberg–Marquardt algorithm was used to train the
neural networks, using 70% of a total of 326 input spectra. For each validation and testing
step, 15% (49 spectra) were used. The multilayer feed-forward was trained using the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) learning algorithm (200 epochs). According to
the correlation and root-mean-square error (RMSE), the best ANN models were developed,
as defined by n (the number of observations) and ŷ (the output values in the test data),
while y corresponds to the predicted output value (Equation (8)). A significance level of
α = 0.05 was defined.

RMSE =

√
∑n

i=1(ŷ − y)2

n
(8)

2.6. Statistical Analysis

The iPLS, siPLS, and ANN models were defined and tested using MATLAB® software
(R2017a) (MathWorks, Inc.; Natick, MA, USA). The iToolbox for MATLAB was used for
interval selection URL (https://ucphchemometrics.com/186-2/algorithms/, accessed on
23 April 2023). The pasting properties were assessed in triplicate.

https://ucphchemometrics.com/186-2/algorithms/
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3. Results and Discussion
3.1. iPLS and siPLS Models

Different strategies were used to develop a suitable model for the evaluation of rice
quality for industrial purposes. The raw NIR spectra of native rice flour were subjected
to pre-processing procedures such as MSC plus second derivative and SNV plus second
derivative, allowing for the removal of spectral noise and highlighting the differences
among them (Figure 1).
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Figure 1. Representation of NIR spectra after MSC processing. Each color represents the spectra for
each samples rice.

The irrelevant spectral variables were removed by applying the iPLS and siPLS algo-
rithms. The subintervals characterized by the optimum number of LVs and lowest RMSECV
values were selected (Figures 2 and 3). The iPLS algorithm allowed us to split the spectral
region into 20 intervals of the same width; consequently, several PLS regression models
were developed (Figure 2). The R and RMSECV for each sub-interval were established, and
the region with the lowest RMSECV was selected (Table 1). The iPLS model for grain BD
was developed after MSC plus second derivative spectral pre-processing and was charac-
terized by R = 0.84, RMSECV = 102, and LV = 10. The RMSECV values were registered
along several spectral intervals, being lowest at the region defined by 4784–4395 cm−1

(Figure 2A,B). The correlation between the reference and predicted values is presented in a
scatter plot in Figure 2C. Meanwhile, the siPLS models were constructed after the spectrum
was split into 20 equal intervals, characterized by high R and the lowest RMSECV values
(Table 1). The model for the BD parameter (R = 0.88; RMSECV = 180, and 10 LV) was
developed as a combination of different intervals characterized by the lowest RMSECV
values, for wavenumber ranges 8480–8180 cm−1 and 5280–4640 cm−1, obtained after SNV
plus second derivative (Figure 3; Table 1). According to Bao et al. (2007), BD at 5176 cm−1

and 4363 cm−1 was characterized by R = 0.98 and 0.65, respectively, being defined at
6548 cm−1 and 4764 cm−1 [17]. The absorption peaks at 10,792 cm−1 and 6872 cm−1 are
related to the C–H second overtone and combinations of amylose. The main absorption
bands at wavelengths 8340 cm−1, 5714 cm−1, 4776 cm−1, and 4357 cm−1 can be attributed
to PV, which is similar to the results reported by Osborne et al. (1993) [18]. The C–H, O–H,
and N–H vibrational bands found in the infrared spectra describe the combination of CH
stretching and CH bending in amylose molecules [19]. The BD parameter represents the
capacity of rice flour paste to reorganize, influenced by high temperature and by shear
force, representing the strength of reconstituted rice paste and the damage degree of the
particles through gelatinization [20].
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Figure 3. Evaluation of the RMSECV values related to each spectral region. The dotted line represents
the RMSECV (10 LVs). Italic numbers represent the optimal number of LVs in each interval model (A).
For the siPLS model, specific regions in the NIR spectra present the lowest RMSECV values (B).
Correlation between measured and predicted BD values after SNV plus 2nd derivative spectral pre-
processing treatment and RMSECV evaluation in several spectral intervals (R = 0.88; RMSECV = 180;
8480–8180 cm−1; 5280–4640 cm−1) (C).
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Table 1. Statistical parameters determined for each pasting model after specific pre-processing steps.

Parameter Spectral Processing Rcal RMSEC RMSECV Rpred RMSEP Spectral Region (cm−1)

BD
iPLS (MSC + 2nd Derivative) 0.84 238 102 0.77 284 4784–4395.5
siPLS (SNV + 2nd Derivative) 0.88 182 180 0.73 308 8480–8180; 5280–4640

FV
iPLS (SNV+ 2nd Derivative) 0.57 273 270 0.47 358 5970–4395.5
siPLS (SNV + 2nd Derivative) 0.64 253 251 0.65 233 7840–7520; 4960–4320

PV
iPLS (SNV + 2nd Derivative) 0.85 289 332 0.86 321 4784–4395.5
siPLS (SNV + 2nd Derivative) 0.90 259 275 0.90 321 5280–4320

ST
iPLS (2nd Derivative) 0.85 299 332 0.81 325 4784–4395.5
siPLS (SNV + 2nd Derivative) 0.88 253 297 0.75 329 5280–4320

TR
iPLS (2nd Derivative) 0.85 152 332 0.64 255 4784–4395.5
siPLS (SNV + 2nd Derivative) 0.84 141 154 0.88 119 5280–4320

BD—breakdown; FV—final viscosity; PV—pasting viscosity; ST—setback; TR—trough; MSC—multiplicative scat-
ter correction; SNV—standard normal variate; RMSECV—root-mean-square error of cross-validation; RMSEC—
root-mean-square error of calibration; RMSEP—root-mean-square error of prediction; LVs—latent variables.

The iPLS model for the parameter FV was developed after spectral processing based on
the SNV plus second derivative algorithm and was characterized by R = 0.57, RMSECV = 270,
and LV = 10 for the spectral region 5970–4396 cm−1. Meanwhile, the siPLS model for FV was
characterized by R = 0.64, RMSECV = 251, and 10 LVs for the spectral regions 7840–7520 cm−1

and 4960–4320 cm−1. FV is the most useful parameter to represent the quality of the sample,
displaying the capacity of the material to produce a gelatinous gel after cooking and cooling.
The siPLS model for the parameter FV showed a strong dependence on the species that
absorb energy in the spectral regions 7515 cm−1, 7591 cm−1, 6385 cm−1, and 6094 cm−1,
while the TR model was based on the bands characterized by peaks at 7515 cm−1, 6530 cm−1,
5947 cm−1, 4909 cm−1, and 4867 cm−1. The quantity and quality of these factors may affect the
gelatinization and retrogradation processes of rice flour. The protein content is one of the main
factors affecting the gelatinization properties of starch [1]. The iPLS model for the parameter
PV, characterized by R = 0.85, RMSECV = 332, and LV = 10, was developed after SNV plus
second derivative processing for the spectral region 4784–4396 cm−1. Meanwhile, the optimal
siPLS model for PV was defined for the spectral region 5280–4320 cm−1 and was characterized
by R = 0.90, RMSECV = 275, and 10 LVs. The peaks registered at 7882 cm−1, 5997 cm−1,
4908 cm−1, and 4867 cm−1 presented a strong influence on the model. The correlation
with amylose showed an opposite behavior due to the specific properties Finally, for both
parameters ST and TR, the iPLS models defined after second derivative pre-processing were
characterized by R = 0.85 and RMSECV = 332 (Table 1). Both iPLS models were defined for the
spectral region 4784–4396 cm−1. The bands at 6545 and 4762 cm−1 are typically due to starch,
the major component of rice, showing a significant correlation with pasting properties [7,18].
The siPLS model for ST was characterized by R = 0.88, RMSECV = 297, and 9 LVs, defined by
the spectral region 5280–4320 cm−1, while, for the TR, the model was developed for a similar
spectral region and characterized by R = 0.84, RMSECV = 154, and 10 LVs. The parameter
ST showed a significative and positive correlation with amylose. Prior studies showed a
correlation between pasting properties, such as PV and ST, and amylose fractions [7,21].
Focusing on these parameters, the siPLS regression models presented significant accuracy
compared with the iPLS models and can thus be considered a suitable tool for determining
pasting properties in a huge variety of rice (Figure 3A,B). The pasting properties can explain
the performance of rice flour and starch during processing (heating and/or cooling) once the
rice pasting quality is defined on the basis of starch quality.

In the models, selecting spectral intervals that include significant biochemical informa-
tion allowed us to develop predictive models characterized by high correlation and low
prediction error. The second overtone for the methyl group (–CH3), characterized by the
interval 8941–8194 cm−1, is close to the interval 8183–6850 cm−1 (Figure 3B). The spectral
region defined by the C–H second overtone corresponds to the amylose molecules [22].
The selected spectral range 5592–5054 cm−1 is close to the interval 5875–5495 cm−1, which
can be related to amylose molecules [23,24]. The appearance and eating quality of rice
cultivars are directly correlated with their fat content [25]. Higher amounts of fat represent
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higher rice quality, representing an excellent target attribute in breeding programs [20].
The fat models at 7503–5447 cm−1 are defined by the primary components C–H, N–H, and
O–H. The pasting parameters and specific biochemical traits showed a negative correlation
between amylose and PV, TR, and BD, while ST was characterized by a positive correlation.
In terms of specific loading, the models showed strong spectral regions at 8200–7440 cm−1,
6500–5700 cm−1, 5095, and 4570 cm−1. Several works have revealed that PV, BD, FV, and
ST values are directly proportional to the protein present in rice flour [26]. The viscos-
ity registered during heating or pasting processes is associated with the PV. This value
is reached at the end of the heating phase when a significant number of swollen starch
granules results in pasting. PV indicates the water-holding capacity of the starch or mixture
and is commonly linked with other quality components [27]. Previous studies showed a
positive correlation between amylose and ST [28] but a negative correlation with PV and
BD [29].

Meanwhile, the rheological properties related to the rice varieties are dissimilar not
only because of the different amylose and amylopectin contents but also due to the molecu-
lar structures and properties of starch molecules [30]. Studies carried out by Burestan et al.
(2021) showed that the suggested technique had acceptable performance in predicting
several parameters such as BD and ST, being characterized by a suitable accuracy for rice
quality parameters (R2 ≥ 0.80 and R2 ≥ 0.71). The results of the present research demon-
strated that NIRS is a suitable technique for predicting the quality characteristics of rice and
its flour [31]. Based on the siPLS and iPLS models, similar spectral regions were selected,
which proves that the biomolecular data present in those intervals is fundamental for the
construction of the respective models, reinforcing the importance of fractional analysis of
the spectrum. Meanwhile, the siPLS models showed unparalleled advantages by combin-
ing three intervals, achieving better models defined by a reduced total number of variables
(elimination of spectral noise) and better predictive capacity.

3.2. Artificial Neural Network

Artificial neural networks (ANNs) based on the full spectra were also studied, allowing
for the development of a regression model of rice pasting properties. The noise present
in the spectral data was previously eliminated using pre-processing methods (SNV, MSC,
and smoothing derivative). Five models were developed separately to predict the pasting
parameters (BD, ST, TR, PV, and FV) based on the NIR spectra. The best ANN models were
characterized by a network model with 10 hidden nodes, presenting higher R values for the
calibration step—BD (0.99; 38.7), FV (0.99; 161), PV (0.99; 107), ST (0.99; 5.1), and TR (0.99;
5.7)—than those attained by Burestan et al. (2021) in rice flour (0.96 for BD and ST) [10].

The correlation coefficient (R = 0.99) showed a suitable fit between the observed and
predicted data, showing that the MLP algorithm associated with the Broyden–Fletcher–
Goldfarb–Shanno learning algorithm can be helpful in modeling the pasting properties,
as compared with iPLS and siPLS (Table 2, Figure 4A–D). The ANN algorithm was also
applied to develop models to predict the pasting profiles as part of a faster and more
accurate method for rice quality analysis [31]. Based on the ANN model, we constructed
an optimized regression model characterized by low prediction error and, consequently, a
suitable accuracy. Neural networks may recognize complex relationships and generalize
outcomes from a specific pattern of data and are therefore considered a suitable technique
for modeling complex systems. Compared with the iPLS and siPLS models for the different
pasting parameters, the models developed using ANNs can be considered appropriate tools
for industrial agents for rice quality evaluation, allowing them to save time and reduce
associated costs. This strategy, due to its feasibility and quickness, could be replicated in
other products to examine industrial parameters.
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Table 2. ANN models for different rice pasting parameters.

Pasting Parameter RCalibration RMSE RValidation RMSE RTesting RMSE

BD 0.99 38.7 0.66 297 0.70 296
FV 0.99 161 0.55 380 0.85 330
PV 0.99 107 0.80 146 0.80 455
ST 0.99 5.1 0.77 350 0.76 424
TR 0.99 5.7 0.62 289 0.72 911

BD—breakdown; FV—final viscosity; PV—pasting viscosity; ST—setback; TR—trough; RMSE—root-mean-
square error.
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3.3. External Testing of the Models

The iPLS, siPLS, and ANN models were tested using 93 external rice spectra and
evaluated in terms of their R2 and RMSE values (Table 3, Figure 5). According to the
values obtained, the ANN method is significantly acceptable and suitable for pasting
parameter prediction and, consequently, rice quality evaluation (Table 3). These models can
be considered a significant strategy for rice quality evaluation, characterized by accuracy for
different rice types. This shows the applicability of NIR spectroscopy and machine learning
tools to fast-mode rice quality assessments. In the food industry, the methodologies applied
to evaluate the quality of products are considered time-consuming and highly expensive
due to the special testing methodologies required. For this reason, the main goal of this
study was to develop different prediction models, based on machine learning algorithms,
relating to the rice pasting properties BD, FV, PV, TR, and ST, which define the quality
of rice.
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Table 3. Models for different parameters determined after model development.

Pasting Parameter Model Experimental Data Predicted Data R2 RMSE % (RMSE)

BD
iPLS

1238 ± 396
1155 ± 459 0.95 76 6.8

siPLS 1134 ± 413 0.97 43 3.8
ANN 1133 ± 423 0.98 43 3.8

FV
iPLS

2984 ± 349
2887 ± 433 0.95 91 3.1

siPLS 2903 ± 468 0.91 117 4.0
ANN 2889 ± 419 0.95 87 3.0

PV
iPLS

2657 ± 652
2474 ± 720 0.97 97 19.0

siPLS 2503 ± 785 0.96 140 9.6
ANN 2468 ± 738 0.97 125 7.6

ST
iPLS

327 ± 514
436 ± 558 0.97 66 4.0

siPLS 419 ± 536 0.98 53 6.0
ANN 407 ± 528 0.99 50 5.0

TR
iPLS

1419 ± 282
1344 ± 313 0.95 66 5.0

siPLS 1326 ± 330 0.97 57 4.2
ANN 1333 ± 306 0.98 42 3.1

iPLS—interval PLS; siPLS—synergy interval PLS; ANN—artificial neural network.
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of breakdown.

After the development of the prediction models, testing with selected samples allowed
us to estimate with significant accuracy the values of each pasting property. The rice
samples were of different varieties, which proves that the models are suitable for rigorous
evaluation regardless of rice origin or composition. From the evaluation comparing the
experimental and estimated values for each property, it should be noted that the difference
was greater for the models developed using the iPLS algorithm, while the difference
between the experimental and estimated data was smaller for the models developed using
an ANN (Table 4).
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Table 4. Pasting properties predicted using the various developed models.

Rice Type Breakdown (cP) iPLS siPLS ANN

Sprint 957 958 957 952
Sprint 941 940 941 936
OP 1203-Ceres 1654 1735 1665 1673
OP 1203-Ceres 1748 1840 1760 1770
ARIETE 104 1249 1284 1254 1254
ARIETE 105 1242 1276 1247 1247

Rice type Final Viscosity (cP) iPLS siPLS ANN

Sprint 3235 3248 3292 3238
Sprint 3261 3277 3323 3266
OP 1203-Ceres 3143 3146 3182 3139
OP 1203-Ceres 3249 3263 3309 3253
ARIETE 104 3080 3077 3107 3072
ARIETE 105 3051 3044 3072 3041

Rice type Peak Viscosity (cP) iPLS siPLS ANN

Sprint 2235 2215 2219 2201
Sprint 2264 2245 2253 2232
OP 1203-Ceres 3229 3241 3339 3248
OP 1203-Ceres 3401 3418 3531 3428
ARIETE 104 2774 2772 2826 2769
ARIETE 105 2745 2742 2793 2738

Rice type Setback (cP) iPLS siPLS ANN

Sprint 1000 1075 1032 1010
Sprint 997 1071 1028 1007
OP 1203-Ceres −87 −103 −98 −102
OP 1203-Ceres −152 −173 −166 −169
ARIETE 104 306 323 310 299
ARIETE 105 306 322 309 299

Rice type Trough (cP) iPLS siPLS ANN

Sprint 1278 1278 1258 1265
Sprint 1323 1325 1306 1310
OP 1203-Ceres 1576 1583 1578 1561
OP 1203-Ceres 1652 1661 1660 1638
ARIETE 104 1525 1531 1523 1511
ARIETE 105 1503 1509 1499 1489

Sprint, OP1203-Ceres, and ARIETE correspond to the rice varieties tested in the study. iPLS—interval PLS;
siPLS—synergy interval PLS; ANN—artificial neural network.

4. Conclusions

The results obtained herein for different rice varieties show that NIR spectroscopy
in combination with machine learning algorithms, such as ANN, is suitable for the de-
velopment of prediction models for rice pasting properties. This represents a promising
approach to estimating rice quality and is considered an interesting advancement for in-
dustry and consumers. The strategy developed in this study could be applied to other
systems, allowing for the evaluation of physicochemical parameters of commercial interest
and saving time and resources in the process.
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