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Abstract: This study aims to investigate the elastic–plastic response of a clamped-clamped beam
struck by a rigid heavy mass with a low velocity at any point on the span. The impact system is
simplified as a single-degree-of-freedom (SDoF) mass-spring model to formulate the beam’s equations
of motion during loading and unloading. With the consideration of material elasticity and large
deflection, elastic–plastic analytical solutions are derived to predict the global deformation behavior
of the beam. Validation and comparison are conducted against numerical simulations performed
using ABAQUS, and satisfactory agreement is achieved for the predictions of the structural dynamic
behavior. Meanwhile, a parametric study is presented to assess the influence of the impact location
on the characteristic response parameters, which suggests that the structural stiffness increases as the
impact location approaches the beam’s support. The findings drawn from analytical and numerical
studies can be useful in the anti-impact design of engineering structures.

Keywords: elastic–plastic beam; heavy-mass and low-velocity impact; at any point; SDoF model

1. Introduction

Impact on flexible structures is common in a wide range of engineering fields, such as
marine, automobile and civil engineering. In order to provide useful information on the
preliminary designs of structures and systems subjected to impact, the demand for deep
insight into the impact performance and response mechanism of main structural members,
such as restrained beams, has rapidly increased.

In order to predict the nonlinear response of dynamically loaded structures with high
efficiency, some efforts have been made to develop simplified analytical approaches. Most
theoretical analyses adopt the rigid-plastic approximations, reviewed and discussed in
detail by Jones [1]. Nevertheless, given that material elasticity is found to play a significant
role in accurate predictions of important response characteristics, such as the spring-back
and deformation energy dissipation [2–8], the incorporation of material elasticity is essential
in developing a more accurate analytical model for structures under impact.

The equivalent single-degree-of-freedom (SDoF) mass-spring model is an important
tool that has been widely used to predict the dynamic behavior of elastic–plastic structures
due to its simplicity and accuracy [9,10]. In fact, owing to the high complexity of the mate-
rial and geometric nonlinear behavior of the actual structures, the equivalent resistance
functions in the SDoF model are often determined by experimental and/or numerical
methods [11–13]. Hence, some simplifications are employed so as to develop an analytical
solution of the SDoF model. Several representative research studies on predicting the im-
pact response of beams using the SDoF model are reviewed here. For example, on the basis
of the traditional equivalent SDoF method considering only flexural behavior, while the
influence of the axial force on the bending moment is ignored [14], Stochino and Carta [15]
examined the dynamic responses of reinforced concrete beams under blast and impact
loads. In order to simulate the behavior of structures that undergo large displacements
more accurately, some improved SDoF models are proposed [16]. Wang et al. [17] numeri-
cally and theoretically investigated the dynamic response of axially loaded CFST members
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with the fixed-sliding boundary conditions subjected to lateral impact at its mid-span. A
constant axial force was applied to the sliding support. The effect of the axial force was
incorporated into the classical SDoF model to calculate the deflection, and reasonable
accuracy was obtained when compared with the numerical simulation. Heng et al. [18]
presented a non-linear elastic–plastic SDoF model for a steel beam-column subjected to
impact at any point on its span. Although this model assumes a linear yield surface to
account for the interaction between axial force and bending moment, the changes of axial
forces along the beam are ignored until the formation of the plastic hinges at the three
critical locations, i.e., the two fixed ends and the impact point. Noticeably, although the
influence of the material elasticity on the loading behavior of the structures is considered
in the previously mentioned SDoF methods, the unloading behavior is still neglected.
One such improvement in the SDoF model is made by Shi et al. [19] to predict the elastic–
plastic behavior of the clamped-clamped beam under the impact of a heavy mass with
a low velocity at its mid-span. The explicit expressions of the resistance functions of the
beam are proposed during the loading/unloading/elastic vibration stage. This model
adopts a non-linear relation between the axial force and the bending moment to account
for the membrane effect. In their recent study [20], the strain hardening effect on the struc-
tural resistance of an elastic-linear strain hardening beam is estimated for the problem of
repeated impacts.

It is clear from the review of the existing literature that limited elastic–plastic analytical
studies have been performed to estimate the deformation behavior of flexible structures
under impact. To contribute to the inadequate research in this aspect is the direct motivation
for undertaking the present work. Herein, for deep insight into the impact performance
and response mechanism of structures, an attempt is made to develop an improved SDoF
approach for a fully clamped beam under impact at any point along the span, which
extends the author’s previous work [19] focusing on symmetrical impact to a wider range
of impact cases, i.e., to include unsymmetrical impact. The organization of the paper is
as follows. Section 2 establishes a new SDoF model. Section 3 gives details of the finite
element model. Section 4 presents the comparisons between the analytical and numerical
predictions. Finally, Section 5 gives the conclusions of the present study. The primary
contribution of this paper is the development of the non-linear SDoF model to elucidate the
effect of impact location on some characteristic response parameters, which can be useful
in the preliminary design to protect the engineering structures against impact.

2. SDoF Model for Low-Velocity Heavy-Mass Impact

Consider a clamped-clamped beam of span l with a solid rectangular cross-section of
width B and thickness H, transversely struck by a rigid wedge with a heavy mass m0 and
a low velocity V0 at a point l1 from the left-hand support, as shown in Figure 1. Without
loss of generality, the dimension l1 is taken as smaller than l2 = l − l1. The contact width
between the wedge and the beam is assumed to be negligibly small in comparison to the
beam length. The beam is assumed to be made of elastic-perfectly plastic material, with the
mass density ρ, Young’s modulus E, the yield stress σ0 and Poisson’s ratio ν.
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It is common to simulate the impact process using a mass-spring system, which has
been demonstrated to provide reliable assessment of structural responses under impact [21].
The impact problem can be simplified as an equivalent SDoF model, of which the dynamic
equilibrium equation is written as Equation (1), the detailed derivation of which can be
found in [19].

(m0 + me
b)

..
W + F(W) = 0 (1)

where W,
.

W and
..

W are the transverse deflection, velocity and acceleration of the beam at
the impact point; F(W) is the quasi-static resistance of the beam; and me

b is the equivalent
mass of the beam, which can be calculated by an integration of the kinetic energy over the
length of the beam [15]:

1
2

me
b

.
W

2
=
∫
l

µ
.

w2
(x)dx (2)

where µ = ρBH is the mass per unit length of beam; x is the global coordinate along the
length direction of the beam, and the origin x = 0 is located at the impact point; and

.
w(x) is

the transverse velocity field of the beam.
The beam’s resistance is assumed to be governed by the bending moment M and

axial force N, while the transverse shear effect can be neglected [22]. This assumption
seems reasonable since the effect of axial force dominates the response for the transverse
deflections larger than the beam thickness even when the impact location is close to the
support of the beam. Thus, based on the moment equilibrium of the fully clamped beam
shown in Figure 2, the beam’s resistance in any regime can be expressed as:

F = F1 + F2 =

[
M1 + M0

l1
+

M2 + M0

l2

]
+ N

(
1
l1

+
1
l2

)
W (3)
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In what follows, a complete impact process is composed of two components, loading
and unloading, for which the analytical predictions of the beam’s behavior are given below.

2.1. Loading Stage

The loading stage is divided into a number of regimes corresponding to the formation
of plastic hinges when using the square yield condition Equation (4) relating M and N for
the plastic flow in a rectangular cross-section. The derivation of Equation (4) can be found
in [1]. The details of the response of the elastic–plastic beam during each are given below.

M
Mp

+

(
N
Np

)2
= 1 (4)

where Mp = σ0H2B/4 and Np = σ0HB are the fully plastic bending moment and fully plastic
axial force, respectively, for the beam with a rectangular-shaped cross-section.
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Regime I represents pure elastic deformations developed in the beam with the shape
function w1(x) approximated as

w1(x) =


W
2

[
1 + cos πx

l1

]
−l1 ≤ x < 0

W
2

[
1 + cos πx

l2

]
0 ≤ x ≤ l2

(5)

The explanation to illustrate this approximated shape function will be given later in
this section.

The axial force following Hooke’s law of elasticity in this regime can thus be given by

N = EA
∆l
l

=
EA

l

1
2

∫
l

(
dw
dx

)2
dx

 =
EAπ2

16l1l2
W2 (6)

The expressions for the elastic bending moment based on the simple technical theory
of bending are used here [18]:

M1 =
3EIl
l2
1 l2

W (7)

M2 =
3EIl
l1l2

2
W (8)

M0 =
6EI
l1l2

W (9)

where I = BH3/12 is the section moment of inertia and W is the displacement of the beam
at the loading location x = 0.

Regarding the assumed shape function, it is worth mentioning that in the elastic
regime, the maximum deflection does not occur at the loading point, but the maximum
deformation point gets closer to the loading point as the beam’s deformation increases. In
addition, the assumed shape function in this regime is only used to calculate the axial force
N, while the elastic bending moment M is obtained based on the classical bending theory
of beams to weaken the influence of the assumed shape function on the establishment of
the elastic loading path. The shape function defined in Equation (5), which satisfies the
boundary condition, therefore seems reasonable to facilitate a simplified analytical solution
that can take into account the influence of the elastic deformations.

Substitution of Equations (6)–(9) into Equation (3) gives the following:

F =
EIW
l1l2

[
3l

(
1
l2
1
+

1
l2
2

)
+

(
6 +

3π2W2

4H2

)(
1
l1

+
1
l2

)]
(10)

The velocity profile of the beam, taking the same form as the shape of the transverse
displacement profile (see Equation (5)), is substituted into Equation (2), and then the
equivalent mass of the beam can be given as the following:

me
b =

1
6

µ(l1 + l2) (11)

With the assumption that the striker and the struck region of the beam reach the same
velocity immediately after impact and maintain contact during impact [19,20], the initial
velocity of the beam at the impact location just after impact, V∗

0 , can be calculated from the
conservation of linear momentum:

V∗
0 =

2m0

µl + 2m0
V0 (12)
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Thus, substituting Equations (10) and (11) into Equation (1), the dynamic response in
this regime can be obtained with the initial conditions for Regime I, namely W(0) = 0 and

.
W(0) = V∗

0 .
The general conditions for Regime I are as follows: M0 < MN, M1 < MN and M2 < MN,

where MN is the bending moment at a plastic hinge related to axial force N:

MN(W) =

[
1 −

(
N(W)

Np

)2
]

Mp (13)

It is evident from Equations (7)–(9) that M1 > M0 > M2 for l1 < l2, which suggests that
the initiation of plastic yielding occurs at the left support x = −l1. Thus, the terminating
condition for Regime I is M1 = MT at the inception of yield t = t1y.

At t = t1y, the critical displacement W1y, obtained by substituting Equations (6) and (7)

into Equation (4), and the instantaneous velocity
.

W
(
t1y
)

are used as the initial condition
for Regime II.

Regime II represents the elastic–plastic deformations developed in the beam when the
plastic hinge has formed at the left support x = −l1.

To simplify the theoretical analysis of the unloading path, the deformation shape
function is assumed to remain the same as that defined in Equation (5) until the plastic
hinges are formed at the two supports and the impact point. As a result, the equivalent
mass of the beam in regimes II and III can be estimated by Equation (11).

In addition, owing to the fact that the bending moment dominates the beam’s be-
havior under a relatively smaller deformation, it is reasonable to assume that prior to the
plastic hinge formation at the impact point, the elastic behavior in terms of the axial force
persists [20].

With these assumptions, in this regime, the axial force can be calculated via Equation (6),
and the bending moments at x = −l1, l2 and 0 can be calculated via Equations (13), (8)
and (9), respectively. Then, when substituting the corresponding values of M and N into
Equation (3), the beam’s resistance during this regime can be obtained as

F =

[
MN + M0

l1
+

M2 + M0

l2

]
+ N

(
1
l1

+
1
l2

)
W (14)

The general conditions for Regime II are: M0 < MN, M1 = MN and M2 < MN. This
regime continues until a critical displacement W2y is attained to define the plasticity
hinge formation at x = 0 for M0 > M2. Thus, the terminating conditions for this regime
are M0 = MN at t = t2y. When the terminating conditions for Regime II have been reached,
the response of the beam is about to enter the next regime, with the initial conditions,
namely W = W2y and

.
W =

.
W
(
t2y
)
.

Regime III represents the elastic–plastic deformations developed in the beam when
the plastic hinges have formed at the left support and the impact point, and plastic yielding
is about to occur at the right point.

In this regime, the axial force N and the bending moment M2 are obtained via Equa-
tions (6) and (9), respectively, while the bending moments M0 and M1 are obtained by
Equation (13). Hence, the beam’s resistance during this regime can be formulated as

F =

[
MN

(
2
l1

+
1
l2

)
+

M2

l2

]
+ N

(
1
l1

+
1
l2

)
W (15)

The general conditions for Regime III are M0 = MN, M1 = MN and M2 < MN. This
regime continues until the plasticity hinge forms at the support x = l2, implying that the
terminating condition for this regime is M2 = MN at time t = t3y.

The critical displacement W3y when reaching the terminating condition of Regime
III is attained from Equation (4) with the substitution of Equations (6) and (9). The axial
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force N = N3y at W = W3y is obtained by Equation (6), which is used as the initial value to
determine the dependence of the axial force on the displacement of the beam in Regime IV.

Regime IV represents the elastic–plastic deformations developed in the beam when
the plastic hinges have formed at the supports and the loading point.

In order to ensure continuity of the transverse displacement profile at W = W3y and to
highlight the characteristic that plastic hinges have formed at the supports and the loading
point in this regime, the deformation shape function of the beam in this regime is given as

w2(x) =


W3y

2

[
1 + cos πx

l1

]
+
(
W − W3y

)(
1 + x

l1

)
−l1 ≤ x < 0

W3y
2

[
1 + cos πx

l2

]
+
(
W − W3y

)(
1 − x

l2

)
0 ≤ x ≤ l2

(16)

Here, based on the normality rule of plasticity, a similar method to that developed by
Campbell and Charlton [23] is adopted for the predictions on the elastic–plastic behavior
of the fully clamped beam loaded at any point on the span.

The total increment in axial tension is given as

∆εep =
d∆lep

dW
∆W = ∆W

d
dW

1
2

∫
l

(
dw
dx

)2
dx = W

(
1
l1

+
1
l2

)
∆W (17)

The total increment in axial extension can be divided into the elastic and plastic
components of axial tension, because the elastic extensions occur in the portions of the
beam between the plastic hinges. The increment in the elastic extension is expressed as
∆εe = ∆Nl/AE.

Thus, the increment in the plastic extension is given as

∆εp = ∆εep − ∆εe = W
(

1
l1

+
1
l2

)
∆W − ∆Nl

AE
, (18)

which predicts the rate of extension of the beam centre line as

.
ε =

∆εp

∆W
= W

(
1
l1

+
1
l2

)
− l

AE
∆N
∆W

(19)

The rate of rotation across all plastic hinges developing at the supports and the loading
point is given as

.
θ =

∆θ

∆W
= 2

(
1
l1

+
1
l2

)
(20)

The normality rule of plasticity requires the following:

.
ε
.
θ
=

2NMp

N2
p

(21)

Substitution of Equations (19) and (20) into Equation (21) gives

∆N
∆W

=

(
W −

4NMp

N2
p

)
AE

l

(
1
l1

+
1
l2

)
(22)

This first-order differential equation involving two variables, N and W, can be solved
with the initial conditions N = N3y at W = W3y using Mathematica software version 11.3. The
differential equation solution is valid from W = W3y until the establishment of a membrane
state, i.e., N = Np at W = Wp. Thus, the bending moment for a specific displacement W can
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be given via Equation (13). Consequently, from Equation (3), the beam’s resistance during
this regime is determined as

F = 2MN

(
1
l1

+
1
l2

)
+ N

(
1
l1

+
1
l2

)
W (23)

In such a case where W ≥ W3y, the transverse velocity field is obtained by taking the
derivative of w2(x) defined in Equation (16) with respect to time:

.
w2(x) =


.

W
(

1 + x
l1

)
−l1 ≤ x < 0

.
W
(

1 − x
l2

)
0 ≤ x ≤ l2

(24)

Substituting Equation (24) into Equation (2), the equivalent mass of the beam in this
regime is determined as

me
b =

3
16

µ(l1 + l2) (25)

The initial conditions are W3y and
.

W
(
t3y
)

at t = t3y. The general conditions for Regime
IV are M0 = M1 = M2 = MN and N < Np. The terminating conditions for this regime are
N = Np and M = 0 at time t = tp.

Regime V represents that full plastic deformation develops along the beam and a mem-
brane state is reached for impact with sufficiently large kinetic energy. Thus, substituting
M0 = M1 = M2 = 0 and N = Np into Equation (3) gives the following loading path:

F = Np

(
1
l1

+
1
l2

)
W (26)

Since the transverse velocity field remains unchanged, the equivalent mass of the
beam in this regime can be calculated by Equation (25).

The initial conditions for this stage are Wp and
.

W
(
tp
)

at t = tp. At the end of the
loading stage, say at tm, the displacement of the beam reaches its maximum value, and
the velocity of the impact system decreases to zero, namely, W(tm) = Wm and

.
W(tm) = 0,

which are also the initial conditions of the unloading stage.
With the obtained load-deformation relations and the equivalent mass of the beam

in each regime, the global dynamic response of the beam during loading can be obtained
analytically by solving Equation (1), when using W and

.
W at the end of the preceding

regime as the initial conditions. The loading regimes of the beam from elastic through
elastic–plastic to plastic deformation are summarised in Figure 3, the initial condition and
general condition given in each regime.

2.2. Unloading Stage

After attaining the maximum deflection, the beam rebounds due to the mate-
rial elasticity.

Equation (3) is rewritten to obtain the unloading path as

Fu =
[
(M1m−∆M1)+(M0m−∆M0)

l1
+ (M2m−∆M2)+(M0m−∆M0)

l2

]
+ (N − ∆N)

(
1
l1
+ 1

l2

)
Wu

= Fm −
(

∆M1+∆M0
l1

+ ∆M2+∆M0
l2

)
− ∆N

(
1
l1
+ 1

l2

)
Wu − Nm

(
1
l1
+ 1

l2

)
(Wm − Wu)

(27)

where M1m, M0m and M2m are the bending moments at x = −l1, 0 and l2 at the peak point
W = Wm, respectively; Nm is the axial force at the peak point W = Wm; ∆M1, ∆M0 and ∆M2
are the change of the bending moments at x = −l1, 0 and l2 during unloading; ∆N is the
change of the axial force during unloading; and Wu is the displacement of the beam at x = 0
during unloading.
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Figure 3. A summary of the loading regimes.

It is evident that the quantities Fm and Nm at the unloading point in Equation (27) can
be determined from the theoretical analysis of the loading path, while the changes of the
bending moment and the axial force are unknown, which is relevant to the change of the
shape function of the beam during the unloading stage.

Unloading is widely regarded as an elastic process [24], and thus the change of the
displacement profile during unloading is

∆w(x) =


∆W

2

(
1 + cos πx

l1

)
−l1 ≤ x < 0

∆W
2

(
1 + cos πx

l2

)
0 ≤ x ≤ l2

(28)

where ∆W = Wm − Wu.
Accordingly, the changes of the bending moment and the axial force related to ∆W are

∆M1 =
3EIl
l2
1 l2

(Wm − Wu) (29)

∆M2 =
3EIl
l1l2

2
(Wm − Wu) (30)

∆M0 =
6EI
l1l2

(Wm − Wu) (31)

∆N = AE∆ε (32)

where ∆ε is the change of the axial strain, given as

∆ε =
1
l

∫
l

dwm

dx
d∆wu

dx
dx +

1
2l

∫
l
−
(

d∆wu

dx

)2
dx (33)
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where wm(x) is the shape function at the maximum deflection Wm, and
wu(x) = wm(x) − ∆w(x) is the shape function during unloading.

For unloading from a maximum displacement Wm ≤ W3y, the first term at the right-
hand side of Equation (33), ∆ε1, can be determined by using the shape function w1(x)
defined in Equation (5):

∆ε1 =
Wm(Wm − Wu)

8l

(
1
l1

+
1
l2

)
π2 (34)

For unloading from a maximum displacement Wm ≥ W3y, ∆ε1 can be determined by
using the shape function w2(x) defined in Equation (16), expressed as

∆ε1 =
8Wm −

(
8 − π2)W3y

8l
(Wm − Wu)

(
1
l1

+
1
l2

)
(35)

On the other hand, the second term at the right-hand side of Equation (33), ∆ε2, only
depends on ∆w(x). Thus, ∆ε2 can be determined when using Equation (28), expressed as

∆ε2 = − π2

16l
(Wm − Wu)

2
(

1
l1

+
1
l2

)
(36)

Now, ∆N can be obtained from Equation (32) for unloading from any peak displace-
ment Wm. Thus, the unloading path from any loading regimes can be determined from
Equation (27) when using the values of Fm, Tm, ∆N and ∆M in the corresponding regime.

Since the velocity field of the beam during unloading takes the same form as that in
Regime I during loading, the equivalent mass of the beam can be calculated by
Equation (11).

At the end of this stage t = tf, the impact force applied to the beam decreases to zero,
and the velocity and displacement at the impact point of the beam are given as

.
W
(

t f

)
= −Vr W

(
t f

)
= W f (37)

where Vr is the absolute value of the rebound velocity of the striker, and the negative sign
denotes its direction being opposite to that of the initial velocity V0; Wf is defined as the
final displacement at the end of the restitution phase.

3. Finite Element Model

In the following, the proposed SDoF model is validated against the numerical simula-
tions performed using the commercial software ABAQUS/Explicit version 6.14.

The numerically examined beam with a size of l × B × H = 500 × 20 × 8 mm3 is
made of an elastic-perfectly plastic material with mass density ρ = 7850 kg/m3, yield
strength σ0 = 300 MPa, Young’s modulus E = 206 GPa and Poisson ratio v = 0.3. The beam
is modelled as deformable bodies using C3D8R, an eight-node linear brick element with
reduced integration. In order to model a clamped boundary condition, constraints limiting
all degrees of freedom are assigned to both ends of the beam.

The striker is modelled as a rigid wedge to ensure no deformation and is relatively
sharp with a small radius (r~1 mm) at the tip to model the concentrated force. Contact
between striker and beam is accounted for by applying the “Surface to Surface Contact.”

For the striker, the mass m0 = 30 kg and velocity V0 = 2.0 m/s are assigned to the
reference point to ensure a relatively larger ratio of m0/me

b and to weaken the influence of
the necking phenomenon [19]. The motion of the striker is allowed only in the horizontal
direction to transversely impact the beam at a point l1 from the left-hand support. To
analyse the influence of the impact location on the overall dynamic behavior of the beam,
numerical simulations are performed with four impact locations, i.e., l1/l = 1/8, 1/4, 3/8
and 1/2.
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Convergence tests on different mesh sizes are performed using the impact case with
l1/l = 1/2. The mesh sizes of 1 mm, 1.5 mm, 2 mm and 4 mm are tested. The dependence
of the characteristic response parameters, namely, the spring-back (i.e., Wm − Wf) and
maximum contact force on the mesh size, are plotted in Figure 4. To balance the simu-
lation accuracy and the computational cost, the mesh size is selected as 1.5 mm in the
numerical study.
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4. Validation of the Proposed SDoF Model

For the purpose of validating the proposed SDoF model, the analytical and numer-
ical results are compared in terms of the overall dynamic response histories and some
characteristic response parameters.

4.1. Overall Dynamic Response Histories

Figure 5a,b illustrates the velocity time history and the force-displacement relations
resulting from the SDoF and numerical models.
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It transpires from Figure 5a that the analytical results correlate well with the numerical
results in terms of the variation of the velocity of the striker with time. The velocity of the
impact system decreases to zero until reaching the maximum displacement at the end of the
loading stage and then increases to Vr with an opposite direction due to the elastic strain
energy stored in the beam. To study the influence of the impact location on the variation
of velocity with time, a parameter av = (V0 + Vr)/tf, which represents the average rate of
change of velocity over the response time, is introduced here. It is found from Figure 5a
that with the increasing l1/l, av becomes smaller and so does its changing rate.

One can see from Figure 5b that the proposed SDoF model can successfully predict
the relevance of the impact force to the beam deflection at the impact point, except for a
slight difference in the unloading path caused by the difference in the maximum deflection
and the change of the transverse displacement profile assumed in Equation (28). The main
characteristics of the predicted impact force-displacement responses can be summarised as
follows. The growth of the impact force is almost linearly proportional to further increases
in deflection for the sufficiently larger displacement behavior of a beam. Different from
the almost overlapping loading paths for the central impact cases with different impact
velocities analysed in [19], it is evident that the slope of the loading path becomes smaller
with the increase of l1/l. To illustrate this phenomenon, a fully plastic beam with T = Tp is
taken as an example. It is revealed from Equation (26) that as l1 approaches l2, the slope
of the loading path decreases and gets its minimum in the central impact case with l1 = l2.
Likewise, the variation of the slope of the unloading path with l1/l shows the same trend
as that of the loading path, which can be explained from the perspective of the elastic strain
energy. With the approximation of the unloading path as a linear function of ∆W, the slope
during unloading can be estimated as

Ku =
F2

m
2Ee

=
F2

m
m0V2

r
(38)

where Ee is the elastic strain energy stored in the beam.
It will be shown in Figure 6c that with an increase of l1/l, the rebound velocity Vr

increases while the maximum impact force Fm decreases, with detailed analysis referring
to Section 4.2. Thus, it follows from Equation (38) that the slope of the unloading path Ku
decreases with an increasing l1/l.

4.2. Characteristic Response Parameters of Beam under Impact at Any Point

The dimensionless external dynamic energy parameter is introduced in Equation (39)
to convert the influence of impact location on the beam’s behavior to that of the
impact energy.

λ =
m0V2

0 l1
2BH3σ0

(39)

It is evident from Equation (39) that λ is in proportion to l1/l, which ranges from zero
to 1/2.

Figure 6a–d illustrates the variation trends of the maximum/final displacement and
the impact duration with λ resulting from the SDoF and numerical models.

For comparison purpose, the dimensionless maximum and final displacements, i.e.,
δm = Wm/H and δf = Wf/H obtained from the theoretical and numerical predictions, are
plotted against λ in Figure 6a. Satisfactory agreement is observed, although the proposed
SDoF model predicts a slightly larger deflection with the increase of λ, owing to the neglect
of the thinning effect of the beam with a sufficiently larger displacement, as analysed for
the displacement-time history curve in Figure 5a. It is shown from Figure 6a that both
the maximum and final displacements show an increasing trend with an increase of λ.
Meanwhile, the spring-back ∆W = Wm − Wf corresponding to the gap between the δm − λ
and δf − λ curves is seen to increase with an increase of λ and attains its maximum value
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in the central impact. To explain this phenomenon, a similar analysis to that on the slope of
the unloading path can be conducted to approximate the spring-back ∆W, written as

∆W =
2Ee

Fm
=

m0V2
r

Fm
(40)
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It is revealed from the comparisons between Equations (38) and (40) that the variation
tendency of ∆W is opposite that of Ku with λ. Thus, the spring-back of the beam attains its
maximum value in the central impact with l1 = l2 and decreases with the increase of l1/l.

It is evident from Figure 6b that the SDoF analysis provides reasonable agreement
with the numerical predictions for the dependence of the maximum impact force on the
impact location. With an increase of λ due to an increasing l1/l, the maximum impact force
decreases, which can be attributed to the decrease of the beam’s resistance. Specifically
speaking, the dynamic loading path can be approximated as a linear model due to its
characteristics, as illustrated in Figure 6b. Thus, the maximum impact force Fm can be
approximated by

Fm =
√

2KEk (41)

where K is the slope of the loading path, and Ek = m0V2
0 /2 is the impact kinetic energy of

the striker.
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As pointed out in Section 4.1, there is an increase in K with a decreasing l1/l, which
implies a greater structural resistance mainly owing to the axial force when a relatively
large deformation develops in the beam. Thus, it follows from Equation (41) that a larger
l1/l inducing a smaller K will result in a smaller Fm.

However, it is found that in the impact cases with a relatively smaller λ, the maximum
impact force predicted by the proposed analytical model is evidently larger than the
corresponding numerical prediction. This is possibly caused by the neglect of the bending
wave propagation in the beam in the analytical model. In the early stage, when the beam is
accelerated to obtain the same velocity of the striking mass, the bending wave propagation
in the beam can result in the kinetic energy loss of the impact system. For the case with
a smaller λ, the bending wave propagation is somewhat significant due to the boundary
effect. Nevertheless, generally speaking, compared to the numerical results, the current
analytical model with a relative error within 5.4% gives a satisfactory prediction of the
maximum impact force.

It is observed from Figure 6c that the numerical and analytical results generally
show the same variation trends of the rebound velocity with λ, despite a slight difference,
especially for a smaller λ. It is notable that Vr increases with an increasing λ induced by
an increasing l1/l, which implies that the more symmetrical load allows for more elastic
energy absorbed by the beam. It can be explained as follows. With the aid of Equation (39),
a larger l1/l with a specific kinetic energy can be equivalent to a larger kinetic energy in a
central impact case. Besides, it has been demonstrated that a larger impact energy results in
a larger elastic strain energy, i.e., a larger rebound velocity [19]. Thus, the rebound velocity
attains its maximum value in the central impact corresponding to the largest λ amongst the
examined cases with different impact locations.

Furthermore, the variations of loading and unloading durations, namely tm and tr,
respectively, with λ are plotted in Figure 6d, which shows that tm and tr increase with an
increasing λ. This characteristic can be explained from the point of view of momentum. At
t = tm, the impact force reaches its maximum value, and the velocity of the striker decreases
to zero. Thus, it follows from the principle of momentum that the initial momentum I0 and
the residual momentum If of the impact system can be expressed as

I0 = m0V0 =
∫ tm

0
F(t)dt I f = m0Vr =

∫ t f

tm
Fu(t)dt (42)

For simplicity, two linear functions are adopted to model the variations of impact
force with time during loading and unloading. Thus, the duration during loading, tm,
and the duration during unloading, tr = tf − tm, can be approximated from Equation (42),
written as

tm =
2m0V0

Fm
tr =

2m0Vr

Fm
(43)

Now, combined with the variation tendencies of Fm and Vr with λ shown in Figure 6b,c,
respectively, it is revealed from Equation (43) that tm and tr both increase with an increase
of λ, which results in an increase of the impact duration tf.

Thus, it is revealed from Equation (43) that tm and tr both increase with an increase of
λ, which results in an increase of the impact duration tf.

In order to quantitatively assess the accuracy of the analytical model, it is necessary
to analyse the ratios of numerical to analytical predictions in terms of the characteristic
response parameters, i.e., Wm, Wf, Fm, COR, tm and tr. Table 1 presents the corresponding
mean values and the standard deviations of the ratios obtained for the four different values
of λ. It is notable that for all the analysed parameters, the mean values are quite close
to 1, while the standard deviations approach zero. This demonstrates that the proposed
analytical model, although with some simplifying assumptions, can offer a satisfactory
approximation of the dynamic response of a beam on condition of a heavy mass with a low
impact velocity, at least within the range of parameters examined (the largest value of λ
is 4.9). Nevertheless, it should be mentioned that the necking phenomenon can become
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significant with further increase in the structural deflection due to a larger λ. Thus, one
should be extremely cautious and careful when applying this model to the impact cases
with comparatively larger initial kinetic energy.

Table 1. Mean and standard deviation of the ratio between the numerical and analytical values.

Parameter Mean Standard Deviation

Wm 1.011 0.029

Wf 1.005 0.044

Fm 0.980 0.036

COR 0.966 0.076

tm 1.029 0.021

tr 1.063 0.162

5. Conclusions

In this study, a nonlinear SDoF model is presented to obtain the dynamic response of
an elastic-perfectly plastic beam subjected to low-velocity heavy-mass impact at any point
along the span. The nonlinear elastic–plastic behavior of the SDoF model is characterised by
a series of resistance functions during the loading/unloading process, which incorporates
the geometric and material nonlinearities.

The proposed model allows for investigation of the effects of impact location on the
dynamic performance of a beam. The results show that under the same initial impact energy,
by comparison with symmetrical impact on a clamped beam, an unsymmetrical situation
can lead to more plastic energy dissipation with a smaller maximum/final deflection,
owing to the increasing stiffness of the loading and unloading paths. It suggests that a
symmetrical impact case shall be given much focus in a displacement-based impact design
of structures.

This analytical model is validated by the ABAQUS simulations. It is demonstrated that
the proposed SDoF model can be an efficient and accurate tool for estimating the dynamic
response characteristics of an elastic–plastic beam under symmetrical and unsymmetrical
impacts. Nevertheless, in order to make this model applicable to a wider range of impact
energy, further research should include strain rate sensitivity and strain hardening effects,
which can improve the structural resistance.
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