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Featured Application: Prediction of orthopedic implant stability, particularly pedicle screws, as
an index comparable to insertion torque.

Abstract: To prevent pedicle screw implant failure, a diagnostic technique that allows surgeons
to evaluate implant stability easily, quickly, and quantitatively in clinical orthopedic situations is
required. This study aimed to predict the insertion torque equivalent to laboratory-level evaluation
accuracy. This serves as an index of the implant stability of pedicle screws placed in cadaveric bone,
which relies on laser resonance frequency analyses (L-RFA) when irradiating with two types of
lasers. The machine learning analysis was optimized using a dataset with artificial bone as teaching
data. In this analysis, many explanatory variables extracted from the laser-induced vibration spectra
obtained during an analysis/RFA evaluation were predicted by selecting important variables using
the least absolute shrinkage and selection operator and performing a non-linear approximation
using support vector regression. It was found that combining both artificial and cadaveric bone data
with the bone densities as teaching data dramatically improved the determination coefficient from
R2 = −0.144 to R2 = 0.858 as the prediction accuracy and reduced the influence of differences between
artificial and cadaveric bones. This technology will contribute to the development of preventive
diagnostic technologies that can be used during surgery, which is necessary in order to further
advance treatment technologies.

Keywords: laser; resonance frequency; vibration; orthopedic implant; pedicle screw; computed
tomography; machine learning

1. Introduction

With the advent of an aging society, the use of orthopedic implants with pedicle screws
in the field of orthopedic surgery has increased [1,2]. Orthopedic surgery for pedicle screw
placement aims to achieve spinal stabilization during spinal procedures. After visualizing
the spinal bone, a pilot hole is created to guide the pedicle screw implant, which can
be expanded by tapping. Thereafter, a pedicle screw is inserted into the tapping hole.
The screw is preselected based on its diameter and length and positioned to ensure bone
fixation. Once the screw is properly positioned, it is secured using a fixation device, such as
a plate, rod, or nut, which stabilizes the spine. However, this procedure is performed based
on the hand feeling and experience of the primary surgeon. Implant failure has become
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problematic, with reported incident and revision rates of 12% [3] and 40% [4], respectively.
To overcome this problem, the initial implant stability is evaluated as an index [5,6]. The
pullout force [7] and insertion torque tests [5,8] were used to evaluate the initial implant
stability as an index. Pullout force tests are destructive laboratory tests that cannot be used
in clinical situations. Although the insertion torque can be measured during surgery, it is a
one-time, non-repeatable measurement, and is influenced by factors attributable to each
surgeon, such as the implantation speed and applied force. To address this problem, laser
resonance frequency analysis (L-RFA) was used to measure the implant stability of pedicle
screws [9,10] and acetabular cups [11]. The L-RFA with laser technology was developed
to replace hammering tests used for structural infrastructure [12]. Vibrations induced by
active excitation are used as a basic principle of hammering inspection, and the induced
vibration is detected by the ear, where the condition is determined by the sound information.
For tunnel inspections, a hammering test is used to survey nonvisible internal defects in
concrete walls and detect loose bolts. The principle of L-RFA is to replace active excitation
with laser irradiation to induce vibrations via laser ablation or laser-induced photoacoustic–
elastic waves (LIPTEW) [13]. By measuring and analyzing the LIPTEW with a laser Doppler
vibrometer, the L-RFA realizes high-speed, remote, and quantitative evaluations.

Implant stability diagnosis using RFA is widely used in the dental field with magnetic
excitation [14]. This method is widely used because the oral cavity can be opened widely
and still allows for fine magnet installation [15]. However, orthopedic implants are not
used because of the low strength of magnetic excitation and the difficulty of intraoper-
ative placement of fine magnets [16]. Because of the difficulty of excitation by magnets,
the use of mechanical vibrators has been considered, but no clear correlation has been
obtained [17–19]. However, the L-RFA reported in 2019 shows the potential for use in the
orthopedic field [11].

The natural vibrations in the audible frequency range of the experimental sample were
measured using L-RFA. The natural vibration frequency obtained using L-RFA indicates
implant stability determined by the interaction between the implant surface and the bone
texture on which it is placed, similar to conventional pullout force and insertion torque
tests. Therefore, the implant stability estimated in the L-RFA is predicted from the corre-
lation expressed in terms of the natural vibration frequency and mechanical strength to
be evaluated in the L-RFA [9–11]. However, the correlation between the natural vibration
frequencies measured by the L-RFA and the insertion torque experiences reduced predic-
tion accuracy, with a coefficient of determination of R2 = 0.867 for artificial bone using
a logarithmic approximation, and R2 = 0.513 for cadaveric bone [10]. In addition to the
difference between artificial and cadaveric bones, another issue with L-RFA is that the
natural vibration frequency varies depending on the mechanical properties and shape of
the evaluation sample, which can easily lead to errors. In recent years, highly accurate
L-RFA has been performed using machine learning-based analyses that utilize multiple
explanatory variables instead of one index of natural vibration frequency. It was reported
that for a polyaxial screw with a movable neck, whose natural frequency is unstable ow-
ing to changes in the sample shape, machine learning-based analysis provides the same
accuracy for implant stability as that of a monoaxial screw with a fixed shape [20].

Machine learning-based analysis techniques require large amounts of high-quality
teaching data. Because L-RFA is based on the evaluation principle of measuring the natural
vibration of orthopedic implants, teaching data must be prepared for each implant. How-
ever, accumulating teaching data in the clinical field is difficult because of their mechanical
strength, which can be obtained through destructive testing. In addition, it is challenging
to conduct non-clinical tests using cadaveric bone because the variation in donors is biased
and a limited number of tests can be conducted. Therefore, it is desirable to utilize data
obtained from artificial bones as teaching data, similar to previous studies [9–11]. Although
differences in the structure and composition of artificial and cadaveric bones are expected
to affect the accuracy of implant stability estimation, a combined analysis of these types of
bone data has not been considered in previous studies [10]. In addition, although the L-RFA
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in previous studies was determined via the relative relationship between the implant and
the bone; it did not utilize bone information, and only the natural vibration frequency of
the implant was examined. Therefore, by introducing density, which provides information
on the foundation, higher accuracy in estimating implant stability is anticipated.

In this study, a machine learning analysis method combining L-RFA data of artificial
bone, as well as the bone-density data of cadaveric bone obtained using micro-computed
tomography, was used to verify the prediction accuracy of stability for a pedicle screw
implant installed in cadaveric bone using L-RFA. Computed tomography (CT) is a widely
used imaging modality in the field of medicine, providing detailed cross-sectional images
of the human body. Since its introduction in the 1970s, CT has revolutionized diagnostic
medicine by offering a non-invasive and rapid imaging technique that allows for the de-
tection, characterization, and monitoring of various diseases and conditions. Micro-CT is
a specialized imaging technique designed for the high-resolution imaging of small speci-
mens or samples. It employs a micro-focus X-ray source and detector to generate detailed
three-dimensional images of structures with sub-millimeter or even sub-micrometer spa-
tial resolutions. Micro-CT is particularly useful in research and preclinical studies as it
provides valuable insights into the microscopic structures of tissues, bones, biomaterials,
and small animal models. By augmenting the L-RFA data evaluated using artificial bone
and introducing bone-density data, which is a clinical parameter, an analytical method
that is comparable to the estimation accuracy reported for ideal artificial bone data was
developed. The results of this study connect the results of laboratory-level evaluation using
artificial bone with those of clinical-level evaluation obtained from biological bone. This
study will contribute to the development of diagnostic techniques for implant stability.

2. Methods and Materials

The proposed analysis scheme based on machine learning uses the L-RFA dataset
reported in a previous study [10]. The machine learning-based analysis method proposed
in this study is based on improving generalizability by introducing bone density, a clinical
parameter, into a previously reported scheme [20]. First, the detail of dataset [10] and
the conventional machine learning-based analysis method [20] are presented. After that,
bone-density analysis using CT is described to obtain the key-data for the analysis method.

2.1. Detail of Dataset and Analysis Method
2.1.1. Analyzed Materials

Five types of solid polyurethane foams were prepared as artificial bones, which
represented the vertebrae used for the measurement data. Each type represented a different
density and was cut to a size of 60 × 40 × 60 mm, with a screw placed at the center of the
material on a 60 × 40 mm surface, after which 27 measurements were conducted. Unfrozen
cadaveric bone was used after receiving approval from the Ethical Review Committee of
Keio University School of Medicine (approval number 20150385), and written informed
consent was obtained from each donor in accordance with the guidelines. Nine sections
of the two human lumbar spines (L1–L5; 10 vertebrae) were used in this study, excluding
one vertebra that was damaged during preparation. Two pedicle screws were placed per
vertebra for a total of 17 conditions measured, excluding one missed placement.

The screws to be placed in the artificial and cadaveric bones were monoaxial titanium
alloy (Ti-6Al-4V, ASTM F136) screws (catalog no. CMS05135, Kyocera, Corp., Kyoto, Japan).
The pedicle screw was inserted at a length of 40 mm, with 5 mm remaining at the base of
the screw. Paik et al. reported that when a screw head is inserted until it contacts the bone,
it causes bone fracture and reduces the fixation force [21]. Therefore, the technique used in
this study did not allow the screw heads to contact the specimen in a manner similar to
that used in clinical practice. All screws were inserted at the same depth (40 mm) using
a depth gauge.

The torque at the time of insertion was measured using a digital torque gauge (HTGA-
5N, IMADA Co., Ltd., Aichi, Japan) to evaluate the insertion torque (peak torque) at
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a 40 mm insertion. This method of measuring insertion torque is identical to that of the
conventional method [16,22–24].

2.1.2. L-RFA Evaluation

In the L-RFA, two lasers are used: an impact laser to induce vibration on the screw and
a measurement laser to evaluate the induced vibration. An Nd: YLF laser was used as the
impact laser. A laser Doppler vibrometer (PDV-100, Polytec GmbH, Baden-Württemberg,
Germany) was used as a measurement laser. Both lasers were irradiated at the neck of
the screw, and the measurement laser was irradiated. The vibration time-series data were
synchronized to the Q-switched signal of the laser pulse irradiation, and the data (1.6 s) for
16 pulse irradiations were stored. The obtained signals were divided into 16 pulses of laser-
induced vibration for each pulse irradiation, and the laser-induced vibrational frequency
spectrum was obtained using a fast Fourier transform with a rectangular window function
by trimming the data for 4.5 ms after the impact laser pulse irradiated. The purpose of the
data trim was to obtain a clear frequency peak arising from the natural vibrations in the
audible region. This was achieved by eliminating the noise associated with the burst sound
caused by plasma formation arising from laser ablation.

2.1.3. Machine Learning-Based Analysis Scheme

In previous studies on the L-RFA evaluation of orthopedic implants, a correlation
evaluation between implant stability and the strongest vibration frequency obtained by
L-RFA was performed. From this correlation evaluation, it was found that the vibration
frequency obtained via L-RFA increased as implant stability increased [9–11]. However,
using only this correlation evaluation has been shown to reduce the estimation accuracy
of cadaveric bones [10]. Multivariate analysis is effective because there are many modes
of natural vibration, from basic to a higher order, each of which contains information on
implant stability. In general, deep learning requires a large amount of high-quality training
data. However, the amount of data managed in this study was limited because of the data
requirements for each implant type and the repeatability limitations associated with clinical
practices. Therefore, it is necessary to consider a machine learning scheme that can achieve
high accuracy even with a small amount of training data. To date, methods were proposed
using machine learning, the least absolute shrinkage and selection operator (LASSO), and
support vector regression (SVR) for multivariate analyses [20].

Our proposed machine learning-based analysis process consists of two main schemes,
the first of which introduces LASSO [25,26] as an explanatory variable selection process. In
the conventional method, the only explanatory variable evaluated for correlation with the
embedded torque is the peak vibration frequency. However, many explanatory variables,
such as the intensity and dispersion, are stored in the vibration frequency spectrum and
spread over the entire measurement frequency range. Therefore, it was possible to divide
the frequency range in which the analysis was performed and extract each explanatory
variable for each range. Eight variables (peak frequency, peak intensity, frequency center of
gravity, intensity center of gravity, average intensity, variance, kurtosis, and skewness) were
extracted for eight frequency ranges (30–150 Hz, 150–500 Hz, 500–1000 Hz, 1000–5000 Hz,
5000–10,000 Hz, 10,000–15,000 Hz, 15,000–20,000 Hz, and 30–20,000 Hz). In this study,
explanatory variables of total 64 explanatory variables were prepared from the L-RFA
dataset reported in a previous study [10]. As a specific procedure, regularization was
performed to smooth the orders of the explanatory and objective variables. The lasso was
performed 2000 times with multiple regularization strengths, and 40 data points were
extracted to determine the regularization strength at the best decision coefficient. The
important explanatory variables were ranked by the regularization strength determined by
sorting the data in the order of the number of times they were selected.

The second scheme uses SVR to perform non-linear regression, which is an adaptation
of the support vector machine (SVM) [27,28], a pattern recognition method for regression
that can be adapted to non-linear problems by incorporating a kernel function. In this study,
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a radial basis function (RBF) kernel, which is computationally fast and accurate, was used.
Here, a promising regression technique in addition to SVR is multiple regression analysis.
Multiple regression analysis provides an intuitive interpretation of the relationship between
multiple explanatory and objective variables, indicating the magnitude and direction of the
effect of the coefficient of each explanatory variable on the objective variable. However,
multiple regression analysis assumes that a linear relationship exists between explanatory
and objective variables. The predictive performance of the model may be affected for data
with non-linear relationships. In addition, in multiple regression analysis, multicollinearity
problems can occur when high correlations exist among the explanatory variables. This
can make it difficult to accurately assess the impact of explanatory variables. Furthermore,
multiple regression analysis assumes that the explanatory and objective variables follow
a normal distribution. However, for non-normal data, this can affect the interpretation of
results and predictive performance. Therefore, SVR was used in this study.

The hyperparameters required to train the SVR are determined by cross validation
on a total of 15,750 pattern presented by grid search, insensitivity coefficient ε in the range
2−20 to 29, regularization coefficient C in the range 2−10 to 210, and RBF kernel function
γ in the range 2−15 to 29. The combination with the highest coefficient of determination
was used as the adequate hyperparameter. As with LASSO, standardization was used
to smooth the orders of the explanatory and objective variables when performing SVR,
and the explanatory variables ranked by importance in LASSO were changed to search for
regression results with the highest coefficient of determination.

2.2. Bone-Density Observation by Micro-CT Analysis

The bone densities of the artificial bones were those specified for the product, which are
5, 10, 12, 20, and 30 pcf, respectively. On the other hand, the bone density of the cadaveric
bone was determined using micro-CT. Figure 1 shows an example of a micro-CT image
of a cadaveric bone. Bone-density estimation using micro-CT image data extracted from
digital imaging and communications in medicine (DICOM) data consists of preprocessing
for image noise removal, bone region extraction based on thresholding and morphology
processing, and a comparative analysis of the bone region volume and high-intensity
region volume inside the bone region. DICOM, which was initially developed in the
1980s, provides a unified format for storing, transmitting, and sharing medical images and
associated patient information across different healthcare systems and devices. DICOM
has become the de facto standard for medical imaging because of its comprehensive
specifications and support for a wide range of imaging modalities, including X-rays, CT,
magnetic resonance imaging (MRI), ultrasound, and nuclear medicine. Preprocessing
uses a mid-value filtering process with a spherical kernel of radius one voxel. The bone
region extraction procedure consisted of binarization at luminance values of 4000 or higher,
extraction of the connected component of the largest volume, and filling of the extracted
region. The connected component of the maximum volume was obtained based on the
results of the 3D labeling process for the area obtained by binarization (3D labeled image).
Bone regions were extracted by closing and hole-filling processes to obtain the maximum
volume component. First, a 3D morphological closing process using a spherical kernel
with a radius of 4.5 voxels was applied to the extracted maximum volume component
region. Next, 2D hole-filling of the region was performed on each axial slice. The same 3D
morphological closure process was repeated to determine the final bone region. Finally,
the volume of the extracted bone region and the high-intensity region within the bone
region with a luminance value of 4000 or higher were measured, and the volume ratio of
the high-intensity region to the bone region was calculated. Each parameter employed in
the above process was experimentally optimized.
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Figure 1. Example of a micro-CT image of cadaveric bone.

The percentage of luminance values greater than 4000 obtained from micro-CT scans
ranged from 0.486 to 0.664, with a mean value of 0.537 and a standard deviation of 0.0513.
The absolute value of the bone density was determined from the proportions obtained
from phantom measurements [25] in previous studies. In this study, an approximation was
made by fitting a high coefficient of determination of the peak torque and bone density
at the time of implantation obtained from the simulated bones, as shown by the circular
plot in Figure 2. The percentage of the peak torque evaluation results for each cadaveric
bone with a luminance value of 4000 or higher was used as the bone density to determine
the bone density shown in the square plots to minimize the squared error with fitting. As
a result, the bone density of the cadaveric bones was estimated to be equivalent to 7.73 pcf
to 10.5 pcf. The bone density was included into the dataset as a clinical parameter, yielding
a total of 65 variables and utilizing a dataset standardized by each explanatory variable.
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For bone-density information in this study, only the value averaged over the entire
bone was used as a feature. In the future, accuracy may be improved by introducing
information on the fine reticular structure and structure of the cortical and trabecular bones.
However, because the information to be used in clinical practice will be obtained from
multislice CT, it is expected to be more convenient to use the overall average value, as in
the present study. It is also possible to introduce values measured using dual-energy X-ray
absorptiometry (DEXA).

3. Result and Discussion

The proposed analysis scheme is based on machine learning and uses the L-RFA
dataset reported in a previous study [10]. When assuming clinical derivation, it is desirable
to use the evaluation results of the L-RFA measured at the laboratory level to predict the
implant stability of screws in cadaveric bones. Therefore, in this study, the possibility
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of analyzing the stability of screws installed in cadaveric bones was verified using the
results of the L-RFA evaluations of artificial bones. The analysis method was examined,
and bone-density data were introduced to improve prediction accuracy.

3.1. Performance of Teaching Data with Only Biomechanics Materials

Using the machine learning scheme described in Section 2.1.3, the L-RFA measurement
dataset of the artificial bone was used as teaching data to predict the peak torque from
the L-RFA data of the cadaver bone and was compared with the measured peak torque.
Three cases of validation were performed using only artificial bone as teaching data: the
first was simple, with no data processing; the second was limited to training data below
1.04 Nm in the low peak torque range where cadaver bone data existed; and the third
was data augmentation of the training data by linear interpolation. Table 1 shows the
results obtained using the three analysis schemes, including the number of explanatory
variables obtained using LASSO, coefficient of determination, and mean squared error
(MSE) methods at the time of the highest SVR performance.

Table 1. Experimental results obtained using the three analysis schemes with only the artificial
bone dataset.

Analysis Scheme Number of
Explanatory Variables

Determination
Coefficient

Mean Squared
Error (MSE)

Simple data set 4 −0.144 0.0275
Data augmentation

by linear interpolation 2 −0.230 0.305

Range limitation of torque 2 −4.38 1.61

3.1.1. Simple Data Set

The first analysis method, the L-RFA dataset of artificial bones, was analyzed as
teaching data without additional processing. The predicted results for cadaver bones are
shown in Figure 3. Figure 3a shows the correlation between the measured and predicted
values, with the solid line indicating the ideal result and the measured and predicted values
match. Figure 3b is a Bland–Altman plot, which is a method used to evaluate the agreement
between two measurement methods. In this study, the agreement between the measured
and predicted values was evaluated. The horizontal axis represents the measured and
predicted mean values for each data point, and the vertical axis represents the difference
between them. The dotted line in the figure represents the limits of agreement, which
is the statistical 95% confidence interval obtained by subtracting the standard deviation
multiplied by 1.96 from the mean of the difference between the two datasets, which can
be interpreted as equivalent if found within this dotted line. As shown in Figure 3a, the
coefficient of determination R2 = −0.144 indicates no relationship. The four explanatory
variables used were peak frequency (1000–5000 Hz), peak frequency (30–20,000 Hz), vari-
ance (500–1000 Hz), and skewness (500–1000 Hz). The Bland–Altman plot in Figure 3b
shows that there was a weak fixed error of up to 0.4 on the horizontal axis, followed by
a proportional error. This result indicates that the influence of random errors is small
and that systematic errors due to fixed and proportional errors lead to lower prediction
accuracy. Therefore, by correcting for this uniform error in advance, it is possible to predict
implant stability in cadaveric bone using L-RFA data of artificial bones obtained at the
laboratory level. However, it is preferable to avoid adding further data processing to correct
errors because of concerns regarding generalizability and prediction accuracy degradation.
Therefore, the improvement in the prediction accuracy should be investigated by devising
teaching data in advance.
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3.1.2. Data Augmentation by Linear Interpolation

In general, machine learning is expected to improve the accuracy of analysis as the
amount of training data increases. Therefore, an attempt was made to augment the training
data using linear interpolation. In this linear interpolation, 30 data points were assumed
with two peak torques and intermediate values of explanatory variables in the middle of
each data point for the 31 training data points. Figure 4 shows the results of the analysis of
the 31 teaching data points and 30 linearly interpolated data points for 61 teaching data
points. The correlations in Figure 4a exhibit the same trends as those in Figure 3a. The
explanatory variables used in this case were the same as before data augmentation: peak
frequency (1000–5000 Hz) and frequency center of gravity (150–500 Hz). However, both
the coefficient of determination and MSE resulted in inferior performance. For the Bland–
Altman plot shown in Figure 4b, a clear systematic error with fixed and proportional errors
was identified, as shown in Figure 3b. This clearly indicates that data augmentation using
simple linear interpolation was ineffective. This suggests that the analytical performance
shown in Figure 3 is not due to an insufficient amount of teacher data, but rather because
of the difference in the potential foundation between the artificial and cadaveric bones.
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3.1.3. Range Limitation of Torque

In machine learning, the teaching data must be close to the range of the analyzed data
for prediction as well as the number of such data. Therefore, because the peak torque of the
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artificial bone was up to approximately 5 Nm, whereas the peak torque of the cadaveric
bone data was up to approximately 1 Nm, the artificial bone data were analyzed using the
teaching data by reducing the number of data to 18, limiting the peak torque range to the
same as that of the cadaveric bone. The results of this analysis are shown in Figure 5. As
shown in Figure 5a, different correlations were obtained from those in Figures 3a and 4a,
although the accuracy of the analysis was worse because of the data range restrictions. The
two variables used were frequency weighted (5000–10,000 Hz) and frequency weighted
(1000–5000 Hz). The Bland–Altman plot shown in Figure 5b indicates that while systematic
errors disappeared because of the limited data range, random errors appeared. This can be
attributed to the small amount of available teaching data.
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The method of analyzing L-RFA data using an artificial bone as a teaching dataset
to predict the peak torque by validating L-RFA data using cadaveric bone was found to
have a clear emergence of systematic errors. However, there is a concern that an a priori
evaluation and correction of the error will increase the data analysis process and reduce its
generalizability, convenience, and accuracy. Therefore, it is necessary to improve accuracy
by applying further innovations.

3.2. Improvement of Prediction Performance by Data Augmentation

To predict the peak frequency—an indicator of implant stability in cadaveric bone—
using machine learning-based analysis, the accuracy was improved by adding data other
than those obtained by L-RFA using artificial bone to the teaching data. As shown in
Figures 3 and 4, it is possible that the difference in foundation between the artificial
and cadaveric bones potentially influenced the L-RFA results. Using this experimental
finding as a guide, the artificial bone-teaching dataset was augmented using a small
amount of cadaveric bone data. Furthermore, bone density was introduced as a parameter
obtained in clinical practice, and an explanatory variable was obtained outside the L-
RFA assessment. As a validation method, a three-fold cross validation was performed by
combining 31 datasets from artificial bones with L-RFA evaluation and 17 datasets from
cadaveric bones. Each fold was created equally, such that the peak torque was unbiased,
and the percentage of data from the donated bones was approximately 35%. Table 2
summarizes the results of this three-fold validation of the machine learning performance
with and without the introduction of bone density.
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Table 2. Experimental results of the three-fold validation of machine learning performance with and
without the introduction of bone density.

Analysis Data Fold
Number of
Explanatory

Variables

Determination
Coefficient MSE

Without bone density

1

4

0.629 0.233
2 0.869 0.125
3 0.591 0.268

Average 0.697 0.208

With bone density

1

8

0.972 0.0355
2 0.885 0.104
3 0.718 0.169

Average 0.858 0.103

3.2.1. Without Bone Density

Figure 6 shows the results of a three-fold cross validation using a mixed dataset of
artificial and cadaveric bones without introducing bone density. As shown in Figure 6a,
the regression performance was dramatically improved compared to the dataset obtained
in the previous L-RFA evaluation using artificial bone, as shown in Figures 3–5. The
average coefficient of determination for the three-fold cross validation was R2 = 0.697,
yielding an MSE of 0.208. The four explanatory variables utilized were peak frequency
(1000–5000 Hz), skewness (500–1000 Hz), frequency center of gravity (1000–5000 Hz), and
variance (500–1000 Hz). The variables selected in this LASSO were a combination of the
explanatory variables used in the two types of analyses: the simulated bone data-only
teacher dataset shown in Figure 3; and the teaching dataset restricted to the peak frequency
range of the cadaveric bones shown in Figure 5. This suggests that explanatory variables
that are more representative of cadaveric bone validation data may have been utilized with
the teaching data from the artificial bone dataset as a substrate. As shown in Figure 6b, the
Bland–Altman plot describes the prediction results for the artificial and cadaveric bones
separately, and the cadaveric bone data showed a rightward proportional error, indicating
the need for a correction for the prior error, as shown in Figure 4b.
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3.2.2. With Bone Density

Previous analyses have shown that differences between potential artificial and ca-
daveric bones can affect the analysis results. Therefore, the analysis was conducted by
introducing the bone density of the clinical data, which is foundational information, as
a feature of the teaching data. Each fold was the same as that in the analysis without bone
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density, as shown in Figure 6. The evaluation results are shown in Figure 7. The highest
prediction accuracy was obtained in this analysis, as shown in Figure 7a. A three-fold
average coefficient of determination R2 = 0.858 and MSE of 0.103 was obtained, which is
comparable to the prediction accuracy of the simulated bone in a previous study [10]. The
Bland–Altman plot shown in Figure 7b indicates that the proportional error that appeared
before the introduction of bone density, as shown in Figure 6b, disappeared, resulting
in a prediction with less error. In addition, 96% of all predictions (46 of 48) were within
the 95% confidence interval, and 100% of the cadaver bone predictions were within the
confidence interval of the analysis method. The width of this confidence interval of 1.7 Nm
(−0.91 to 0.79 Nm) was the best among the data processing. Moreover, it was a dramatic
improvement over the 8.9 Nm (−5.1 to 3.8 Nm) obtained with the log approximation of
one explanatory variable for only artificial bone in the previous study [10].
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Table 3 presents the explanatory variables used in this study. Newly introduced bone
density was employed as the explanatory variable with the highest priority, and the highest
performance was obtained with SVR using eight variables, which is the largest number
to date. However, the peak frequency (1000–5000 Hz), which was previously the most
important variable, was given the sixth highest priority by LASSO. Figure 8 shows the
performance changes in the (a) coefficient of determination and (b) MSE when introducing
SVR for the explanatory variables prioritized by LASSO. In this study, the coefficient of
determination, which is the index for optimizing SVR, showed approximately the same
value for up to ten variables. However, the MSE showed the lowest value among the six
variables when the peak frequency (1000–5000 Hz) was introduced. From these results, it
was possible to verify the SVR optimization index. In future work, further performance
improvements can be recognized by examining the percentage of cadaveric bone data that
should be included in the training data and SVR optimization index. Furthermore, it is
possible to introduce explanatory variable selection through sequential selection, without
using LASSO. However, in this study, a prediction accuracy in cadaver bones was achieved
that was comparable to that of simulated bones by using a uniquely simple selection of
explanatory variables by LASSO and SVR optimization, consistent with the coefficient
of determination. This achievement is a dramatic improvement over the conventional
analysis method, as shown in Figure 3. This analysis method, which can link artificial bone
and cadaveric bone, will reduce the number of clinical trials in which data accumulation
is difficult, and will contribute to the expansion of implant strength diagnosis through
vibration analysis.
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Table 3. Explanatory variables utilized at analysis as shown in Figure 7.

Explanatory Variables Frequency Range (Hz)

Bone density -
Gravity of frequency 150–500

Skewness 500–1000
Peak frequency 15,000–20,000
Peak frequency 30–20,000
Peak frequency 1000–5000

Dispersion 500–1000
Gravity of frequency 30–150
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The limitation of this study is the use of micro-CT, and it is necessary to verify whether
equivalent results would be obtained if multislice CT or DEXA results were used. In
addition, this study used monoaxial screw analysis, and it was necessary to verify the
performance when a polyaxial screw was used. The introduction of artificial bone test
data was verified against the background of difficulty in obtaining test data with cadaveric
bones. Approximately 35% of the dataset was obtained from cadaveric bones, thereby
demonstrating the validity of this method. The reduction in the amount of cadaveric bone
data is a future challenge, and the amount of required data is the most essential limitation
of the L-RFA for the diagnosis of implant stability. In addition, whether this dataset can be
used in other facilities should be verified. If this trained model is available regardless of
location, it could be a useful tool for hospitals without experimental infrastructure. If this
analysis method is introduced into routine clinical practice, it will improve the accuracy of
implant placement procedures and contribute to better patient outcomes. In the future, it is
most important to validate the analysis method through clinical trials as it is introduced
into clinical practice.

4. Conclusions

In this study, a machine learning analysis was optimized using the L-RFA dataset with
artificial bone as teaching data, aiming at a highly accurate prediction of peak insertion
torque, equivalent to laboratory-level measurement accuracy, which is an indicator of
pedicle screw stability for cadaveric bone installation. In this machine learning-based
analysis, many explanatory variables extracted from the laser-induced vibration spectral
data obtained from the L-RFA evaluation were predicted by selecting important variables
using LASSO and performing a non-linear approximation using SVR. When only the L-
RFA evaluation results from the artificial bone were used as teaching data, systematic
errors occurred because of the potential differences between the artificial and cadaveric
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bones. It was found that combining artificial and cadaveric bone data in the teaching data
dramatically improved the prediction accuracy and reduced the influence of potential
differences between artificial and cadaveric bones. Furthermore, by introducing bone
density, which reflects the bone information underlying the clinical data, a high prediction
accuracy was achieved, comparable to that achieved with simulated bone alone, as reported
in a previous study [10].

In the future, the L-RFA evaluation dataset using cadaveric bones will become a more
useful clinical technology if validated using the necessary amount of L-RFA evaluation
data. When this technology is realized, it can contribute to the medical technology required
to further advance the treatment of musculoskeletal diseases. As society ages, it can be used
as a preventive diagnostic technology for bone-fusion defects during surgery. In addition,
this technology can be applied not only to medical care, but also to the inspection of buried
objects in a wide range of fields, including industrial and social infrastructure, such as
concrete bolts. The optimization guidelines for machine learning-based analyses based on
the results of this study could be a milestone in L-RFA technology.
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