
Citation: Mou, X.; Song, Y.; Wang, R.;

Tang, Y.; Xin, Y. Lightweight Facial

Expression Recognition Based on

Class-Rebalancing Fusion

Cumulative Learning. Appl. Sci. 2023,

13, 9029. https://doi.org/10.3390/

app13159029

Academic Editor: Douglas

O’Shaughnessy

Received: 5 May 2023

Revised: 4 August 2023

Accepted: 4 August 2023

Published: 7 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Lightweight Facial Expression Recognition Based on
Class-Rebalancing Fusion Cumulative Learning
Xiangwei Mou 1,2,*, Yongfu Song 1, Rijun Wang 2, Yuanbin Tang 2 and Yu Xin 2

1 College of Electronic and Information Engineering/Integrated Circuits, Guangxi Normal University,
Guilin 541004, China; yfsong@stu.gxnu.edu.cn

2 Teachers College for Vocational and Technical Education, Guangxi Normal University, Guilin 541004, China;
rijunwang@mailbox.gxnu.edu.cn (R.W.); gxnutyb@mailbox.gxnu.edu.cn (Y.T.); 15829309591@163.com (Y.X.)

* Correspondence: xwmou@mailbox.gxnu.edu.cn

Abstract: In the research of Facial Expression Recognition (FER), the inter-class of facial expression
data is not evenly distributed, the features extracted by networks are insufficient, and the FER
accuracy and speed are relatively low for practical applications. Therefore, a lightweight and efficient
method based on class-rebalancing fusion cumulative learning for FER is proposed in our research.
A dual-branch network (Regular feature learning and Rebalancing-Cumulative learning Network,
RLR-CNet) is proposed, where the RLR-CNet uses the improvement in the lightweight ShuffleNet
with two branches (feature learning and class-rebalancing) based on cumulative learning, which
improves the efficiency of our model recognition. Then, to enhance the generalizability of our model
and pursue better recognition efficiency in real scenes, a random masking method is improved
to process datasets. Finally, in order to extract local detailed features and further improve FER
efficiency, a shuffle attention module (SA) is embedded in the model. The results demonstrate that the
recognition accuracy of our RLR-CNet is 71.14%, 98.04%, and 87.93% on FER2013, CK+, and RAF-DB,
respectively. Compared with other FER methods, our method has great recognition accuracy, and the
number of parameters is only 1.02 MB, which is 17.74% lower than that in the original ShuffleNet.

Keywords: facial expression recognition; feature extraction; class-rebalancing; lightweight

1. Introduction

Facial expressions, as expressions of emotions, play a major role in interpersonal
communication. FER based on lightweight networks is very important for the implemen-
tation of human–computer interaction technology. With the continuous development of
FER technology, FER is popularly applied in autonomous driving, criminal investigation,
medical diagnosis, psychological assessment, and auxiliary classroom teaching and other
fields [1].

Recently, FER methods of deep learning based on the convolutional neural network
(CNN) have gained significant achievements [2,3]. Better results have been achieved for
FER on the facial expression datasets CK+ [4], JAFFE [5], and so on taken under controlled
conditions (laboratory, no complex background, etc.). However, it is difficult for natural
expression datasets affected by noise, lighting changes, posture, and occlusion such as
FER2013 [6] and RAF-DB [7] to achieve the expected effect in FER, and scholars have
studied this accordingly. Wang et al. [8] showed an attention network based on facial re-
gions, evaluated different region generation strategies, and adaptively integrated weighted
features from regions and the entire face through the attention module, which significantly
improved the performance of the network under occlusion and complex pose conditions.
Hamid et al. [9] showed a method to apply depth histogram metric learning to FER in
CNNs, which enhanced the accuracy of FER under uncontrolled conditions. Kim et al. [10]
showed a new FER framework based on a support vector machine (SVM) classifier and
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CNNs, which improved the ability of network feature extraction and expression classi-
fication. Gong et al. [11] showed a dual-branch multi-feature fusion network based on
deep learning, in which one branch extracts multi-level facial features to enhance feature
recognition capabilities and the other branch enhances the adaptability of learned features
to direction and scope changes, improving the ability of network feature extraction. Al-
though the above methods provide some effective research methods for FER in real scenes,
there are still some issues: (1) Due to realistic factors such as complexity, subtlety, and
occlusion of facial expression in real scenes, the robustness of the features extracted by
shallow networks is poor, and it is difficult to capture the local detailed facial expressions’
features. (2) The deep network model promotes the capacity of feature extraction and the
accuracy of expression recognition, but simultaneously, it greatly increases the number
of network parameters and computational costs. In practical applications, limited by the
cost of computing hardware configuration, the method of deepening the network depth in
exchange for recognition accuracy is not practical, which is not conducive to the further
development of FER.

In response to the aforementioned problems, a lightweight and efficient method of
FER is shown in this paper. The following is an overview of the main innovation points of
this paper:

1. To resolve the issue of the uneven inter-class distribution of facial expression data, a
dual-branch network (RLR-CNet) is designed in our paper.

2. To alleviate the issue of easily losing feature information and to cut down on the num-
ber of parameters of the RLR-CNet, a lighter Clip_K5_ShuffleNet inverted residual
structure is proposed in the RLR-CNet.

3. To facilitate the transfer of facial expression feature information and promote the gen-
eralization ability of the RLR-CNet, the β-Mish activation function and the improved
random masking method are used in the RLR-CNet, respectively.

4. To extract facial expressions’ local key features and further enhance the accuracy
of FER without significantly increasing computational complexity, a shuffle atten-
tion (SA) module is embedded into the RLR-CNet, which integrates spatial and
channel attention.

2. Related Work
2.1. FER in Real-World

In the study of FER, whether through early traditional methods or popular deep
learning methods, it contains three basic parts: facial recognition, feature extraction, and
feature classification. In general, most methods are able to recognize facial expressions
quickly and accurately in experimental situations, but the recognition performance in real
scenes is greatly reduced [12–14], which brings great challenges to the practical application
of FER.

In order to better recognize facial expressions in real scenes, more and more scholars
have adopted deep learning methods such as CNN in the study of FER. Based on an
existing pre-training model, Ng et al. [15] solved the problem of insufficient samples
and poor characterization through multi-round fine-tuning. In the literature [16], with
the complexity of the facial expression features in real scenes, a pseudo-tag generation
strategy with a multi-area attention conversion network was proposed to promote the
function of FER in the real scenes. Yao et al. [17] embedded a space and channel attention
mechanism with HPMI in a VGG-16 network, which facilitates the flow of information
between the image key information and network, and greatly solves the disappearance of
facial expression feature information in real scenes. Siqueira et al. [18] designed network
integration models with different structures for the datasets in the laboratory and real scenes
to enhance the accuracy of FER. Because of the inter-class differentiation of facial expression
data caused by various interference factors in real scenes, Shan et al. [19] proposed a method
of cleverly integrating shallow features into deep features and established a local retention
loss function to make the local parts in the expression class more compact and then promote
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the capacity of FER. Pan et al. [20,21] adopted adversarial learning methods, and guided
the network to improve the recognition of expressions containing obscured faces in real
scenes by combining multiple loss functions.

2.2. FER Based on Lightweight Network

Deep learning methods are highly favored in the study of FER. Deeper and more
abstract expression features are extracted through larger and deeper networks or fusion
attention mechanisms, and then promote the recognition accuracy. However, it also greatly
increases the parameters and computational complexity of the network, reduces the recog-
nition efficiency of the network, and affects the practical application of FER.

Therefore, in the study of FER, while improving the recognition accuracy as much
as possible, it is also essential to pay attention to the equipment configuration cost of
model operation in practical applications, and minimize the number of computing costs.
Mahmoudi et al. [22] offered a structure that decreases the parameter quantity of the
network and promotes network performance by extending the classical linear convolution
function to a higher-order kernel function, which has no other weights. Kong et al. [23]
utilized lightweight networks and incorporated attention mechanisms for key feature
extraction, which greatly reduced the model’s computational complexity. Nan et al. [24]
proposed a lightweight A-MobileNet that combines central loss and softmax loss functions
to optimize the model parameters, which appreciably promotes the recognition accuracy
over the original MobileNet without increasing the model parameters. Zhou et al. [25]
offered a method with a multi-task cascaded network for facial recognition. To make the
model more lightweight, they introduced depthwise separable convolution and residual
modules into the network.

3. Models and Methods

Due to the problem of FER in real scenes, a lightweight model for FER based on
class-rebalancing fusion cumulative learning is offered in this paper. Firstly, to promote the
generalization ability of the network in real scenes, an improved random masking method
is utilized to artificially introduce noise into the training dataset, while expanding the facial
expression datasets. Then, the masked expression images are input into the dual-branch
network (RLR-CNet); this network has a feature learning branch and class-rebalancing
branch. For each branch, two data samples are obtained using a conventional uniform
sampler and a reverse sampler, respectively, and are then fed into the corresponding branch.
Under the control of cumulative learning, each branch goes through convolution and global
average pooling to obtain feature vectors, which are then merged and weighted by channel
fusion, and finally classified using a softmax layer. The main structure of our method is
shown in Figure 1.
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3.1. Dataset Construction Based on Improved Random Masking Method

In the dataset construction stage, it is a common method to promote the recognition
accuracy and generalization ability of the network by optimizing the training datasets. In
this research, the improved random masking method is used for randomly masking the
expression images, artificially increasing the noise, expanding the training samples of the
dataset, and making it closer to the real scene. Up to a point, the issue of overfitting is
alleviated and the recognition efficiency of the model is enhanced [26].

Assuming the probability of masking is p, the area of the input facial expression image
is S = W × H, Sc is the area of random masking, the masking threshold is set as Sc/S, the
range of the masking threshold is in the interval (s l , sh), rc is the aspect ratio of the masking
rectangle, the range of rc is in the interval (r1, r2), and the height and width of the masking
matrix area are set as Hc and Wc, respectively. The specific calculation formula is as follows:

SC = Rand(sl , sh)× S (1)

rc = Rand(r1, r2) (2)

Hc =
√

Sc × rc, Wc =
√

Sc/rc (3)

In general, a randomly selected point P = (xc, yc) on the facial expression image,
and Ic = (xc, yc, xc + Wc, yc + Hc) is the area to be selected for masking. Point P can
be determined at any point of the target image, but considering that most of the key
information of facial expression features are concentrated in the top half of the image,
the coordinates of point P are limited to the point at the top left 1/4 of the target image
and the point at the top right 1/4 of the target image, which is recorded as P′ = (x′c, y′c).
The masking area is updated as I′c = (x′c, y′c, x′c + Wc, y′c + Hc). The process of taking the
coordinates of P and P′ is as follows:(

xc = Rand(0, W)
yc = Rand(0, H)

→
(

x′c = Rand(x, xi)
y′c = Rand(y, yj)

(4)

The parameter settings of the image random masking improved algorithm in this
paper are shown in Table 1. By improving the random masking method, the position of
each masking can be covered as much as possible in the facial area, and the improved
method is compared with the unimproved method, as shown in Figure 2.
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Table 1. Random masking parameters.

Parameter Value

sl 0.04
sh 0.3
p 0.5
rc 0.3

3.2. Design a Clip_K5_ ShuffleNet Inverted Residual Structure
3.2.1. Inverted Residual Structure

The general standard convolution has two main functions: one is to tune-up the size of
the upper layer’s feature map, and the other is to tune-up the number of the upper layer’s
feature maps (adjust the number of channels). Depth-separable convolution makes some
changes to the standard convolution, which is composed of depthwise (DW) convolution
and pointwise (PW) convolution. Given the same input as standard convolution, it outputs
the same result as the standard convolution after two steps of sequential operation. But the
number of parameters and the calculation cost are relatively decreased. Theoretically, the
computational cost of the standard convolution is 8–9 times that of the depth-separable
convolution, which largely contributes to the light weight of the network. The inverted
residual structure is used in Mobilenet_V2 [27], as shown in Figure 3, which first increases
the dimensionality of the input feature map using 1 × 1 convolution, performs a convolu-
tion operation using 3 × 3 DW convolution, and finally uses 1 × 1 convolution to reduce
its dimensionality, to reduce the amount of convolution operations while also reducing the
loss of feature information.
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Figure 3. Reverse residual structure.

The inverted residual structure is continued in ShuffleNet [28], and some networks’
parameters and calculations are reduced by stacking lightweight operators (DW convolu-
tion, etc.). And the inverted residual module in this network is divided into two structures:
BasicBlock and DownBlock. There are 3 basic units (Stage2, Stage3, Stage4) in ShuffleNet,
and each stage is repeatedly connected by a DownBlock and several BasicBlocks. As shown
in Figure 4 (taking Stage2 as an example), the DownBlock needs to downsample and
increase the dimension, so the input is copied into two copies, which are merged together
after branch1 and branch2, respectively, and the channels are cross-rearranged to improve
the information reuse of features. BasicBlock divides the input into two parts, and one part
is directly merged and rearranged with the part of branch1 after the convolution extraction
feature of branch2, to enhance the information communication between the two branches.
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3.2.2. Improved ShuffleNet_Block

In the inverted residual structure of ShuffleNet, to compensate for the lack of the
inter-channel information fusion function in DW convolution, a 1 × 1 convolution is used
before and after the DW convolution on branch2. There is no need for dimensionality
enhancement or reduction, and there is no obvious effect on improving model efficiency.
Therefore, to pursue a more lightweight network, the 1 × 1 convolution in the dashed box
in Figure 4 is cropped to reduce the network redundancy and is designed to implement
the Clip_ShuffleNet in this paper. Compared with the 1 × 1 convolution, DW convolution
has low computational complexity in networks, and Peng et al. [29] found that large
convolution kernels have a stronger characterization ability for feature information. So, the
convolution kernels of DW convolution in ShuffleNet are expanded in this paper, as shown
in Figure 5, all 3 × 3 DW convolutions are expanded to 5 × 5 DW convolutions on the basis
of Clip_ShuffleNet, and then the Clip_K5_ShuffleNet is designed and implemented.
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Since the ReLU activation function will suppress the neurons when the input is
negative, resulting in the model weights not being able to update, there is the issue of
gradient disappearance, which affects the expression of networks. Therefore, the ReLU



Appl. Sci. 2023, 13, 9029 7 of 17

function is replaced by the β-Mish activation function in our paper. The β-Mish function
uses α and β factors to normalize the region below the boundary of the Mish [30] function.
β-Mish is a smooth, continuous, and non-monotonic activation function that uses the
self-gating property to retain some negative information while eliminating the hard zero
boundary of ReLU. And the function also plays a good role in the flow of the gradient
and enhances the nonlinear expressive ability of networks. To some extent, the use of
this function reduces the overfitting phenomenon and promotes the recognition accuracy
and generalization ability of the network. The definition of the β-Mish function is as
follows, where the value of parameter α depends on parameter β, α/β = 1/5, and the
value of parameter β is between 1 and 200. In order to avoid saturation and slow down the
training speed, this paper takes α = 7 and β = 35. The β-Mish function formula is expressed
as follows:

F(x) = x · tanh(ln(1 + e
αx√
β+x2

)) (5)

3.3. Shuffle Attention Module (SA)

The extraction of facial expression features is the most critical step in FER, which has a
significant impact on recognition accuracy. The key to the extraction of facial expression
features is the extraction of local detail features, such as the eyebrows, eyes, mouth, and
other crucial parts that can best distinguish different expressions, and the human eye
also pays more attention to these parts when discriminating expressions. The attention
mechanism, as a theory proposed by a human-like cognitive behavior, focuses attention
on more important information, and it can also quickly filter out more critical information
from a lot of complex information and promote the efficiency of task processing. To
further promote the accuracy of lightweight networks in FER, this paper introduces a
lightweight and efficient Shuffle Attention module (SA) [31], which uses the replacement
unit to efficiently fuse the channel and spatial attention mechanism, in exchange for a
higher model recognition accuracy with a small increase in computational effort. Figure 6
shows the overall structure of the SA module, and the module mainly contains four points:
Feature Grouping, Spatial Attention, Channel Attention, and Aggregation. Among them,
Feature Grouping groups the input features, and each group of features is split into a Spatial
Attention branch and Channel Attention branch along the channel dimension, which are
used to learn channel features and spatial features, respectively. Aggregation fuses the two
branches through ‘Concat’ and communicates feature information between groups through
channel replacement operations to improve model performance.
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3.4. The Dual-Branch Network (RLR-CNet)

With the advancement of study in CNNs, there has been remarkable progress in image
classification, which is inseparable from lots of scientific, reasonable, and high-quality
datasets, such as MS COCO, ImageNet, and other datasets. These high-quality datasets
have a relatively uniform distribution of sample sizes for each category, which is conducive
to improving the representation ability of the network for feature extraction. However,
most classification datasets (such as facial expression dataset) in real scenes have an uneven
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distribution of sample sizes between classes, and exhibit a long-tail distribution [32] (a
few classes have larger sample sizes and most classes have smaller sample sizes), to some
extent, so the accuracy of model classification and recognition is affected. When extracting
complex and subtle features such as facial expression features, it is especially critical to
promote the quality of the dataset and the rationality of the sample distribution. Therefore,
in order to resolve the issue of the uneven inter-class distribution of facial expression data
and further promote the accuracy of FER in lightweight networks, RLR-CNet is proposed
in this paper. This network has two branches based on fusion cumulative learning.

Specifically, the two branches proposed in this paper are called the “feature learning
branch” and “class-rebalancing branch”. Figure 7 shows a schematic diagram of the
dual-branch network. The Clip_K5_ShuffleNet inverted residual structure is used into
two branches [33], the lightweight ShuffleNet as the backbone network is used in the
dual-branch network, and all blocks in Stage2, Stage3, and Stage4 are replaced with
the improved Clip_K5_ShuffleNet modules in this paper. All weights of the network
before Stage4 are shared between the two branches. In each convolutional layer, the input
images are convolved with the same filter to achieve weight sharing and cut down the
number of parameters. Good feature learning is beneficial for rebalancing the learning
of class-rebalancing branches and can greatly reduce the network’s computational load.
For the two branches, the conventional uniform sampler and the reverse sampler are
used, respectively, to obtain two data samples (x1, y1) and (x2, y2), which are used as the
input of the feature learning branch and class-rebalancing branch, respectively, and the
feature vectors f1 and f2 are obtained after the corresponding branch convolution and
global average pooling. Considering that class-rebalancing can significantly boost classifier
learning, it also impairs feature learning to some extent [34]. So, this paper introduces a
specific method of cumulative learning, which staggers the learning “attention” of the two
branches during network training. In other words, focusing on the learning of the feature
learning branch in the early stage and the class-rebalancing branch in the later stage, to
eliminate the effect of class-rebalancing on feature learning, achieves the goal of promoting
the recognition accuracy of the network. Specifically, an adaptive trade-off parameter α
is used to control the weights of f1 and f2, and the weighted feature vectors α ∗ f1 and
(1− α) ∗ f2 are input into the classifiers W1 and W2, which are finally integrated together
by channel merging. The output formula is as follows:

z = αWT
1 f1 + (1− α)WT

2 f2 (6)

where z is the final output and the predicted probability for each class i ∈ {1, 2, · · ·, C} can
be calculated by the following formula:

p̂i =
ezi

∑C
j=1ezj

(7)

Notated as p̂ = | p̂1, p̂2, · · ·, p̂C|T , the final category with the maximum probability is
used as the last recognition result of the dual-branch network.

The dual-branch network designed in our paper mainly has the following three
characteristics:

1. The improved Clip_K5_ShuffleNet module is used in the whole of the dual-branch in
this paper. Among them, the clipping of the 1 × 1 convolution reduces the model’s
parameters, and the use of 5 × 5 DW convolution is beneficial for extracting global
features. Pairing the β-Mish activation function in each block enhances the flow of
feature information. Moreover, in order to obtain the expressions’ key features to
ensure the validity of feature information, this paper incorporates the lightweight SA
module in the feature learning branch but, in order not to add too many additional
parameters as much as possible, only embeds the SA module between Stage 2 and
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Stage 3. These designs enable the model to promote the accuracy of recognition and
classification while ensuring light weight.

2. Weight sharing in the dual-branch network: The two branches share the weights of
the network before Stage 4. On the one hand, the good learning of the feature learning
branch is conducive to the learning of the class-rebalancing branch; on the other hand,
the shared weights greatly reduce the computational complexity of the network and
the speed of the model training, which in turn improves the recognition efficiency of
the network.

3. The dual-branch network that combines cumulative learning: Parameter α is set to
control the weights and loss functions for the two branches, and realize the transfer
of learning “attention” between two branches. In this way, the influence of class-
rebalancing on feature learning is eliminated, the recognition accuracy of small sample
size classes is enhanced, and the recognition accuracy of the network is comprehen-
sively improved. Where parameter α is adaptively adjusted according to the number
of iterations for training, indirectly determined by the total training time Ts of the
network and the current training time T, the formula is as follows:

α = 1−
(

T
Ts

)2
(8)
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4. Experiment and Analysis
4.1. Experimental Preparation and Evaluation Indicators
4.1.1. Experimental Preparation

To verify the accuracy and effectiveness of the proposed lightweight FER model based
on class-rebalancing fusion cumulative learning, this paper conducts ablation and compara-
tive experiments on the FER2013, CK+, and RAF-DB datasets. Especially, in order to ensure
the repeatability of the method proposed in this paper, the ablation, comparative, and other
experiments are conducted multiple times under the same experimental equipment and
parameter conditions, and the error rates of the final experimental results are all below
0.009%, which better proves the repeatability of the method proposed in this paper. And
in order to further prove the reusability of the method in this paper, all the experimental
results are verified under the conditions of the same experimental configuration and differ-
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ent experimental equipment, and the error rates of the experimental results are also kept
below 0.01%, proving that the method in this paper has great reusability.

The experimental training and testing are based on the PyTorch deep learning frame-
work on Pycharm. The configuration of the experimental server is as follows: Win10
operating system, Intel Core i5-12490F with 2.9 GHz CPU and 32 GB RAM, and NVIDIA
GeForce RTX 3080 (10 GB) graphics card. Additionally, the settings of experimental param-
eters are shown in Table 2.

Table 2. Experimental parameter settings.

Parameter FER2013 CK+ RAF-DB

Loss function Cross Entropy Cross Entropy Cross Entropy
Learning rate 0.01 0.01 0.01

Optimizer SGD SGD SGD
Batch size 16 16 16

Momentum 0.9 0.9 0.9
Learning rate decay 0.5/50 0.5/50 0.5/50

Epochs 300 300 300

4.1.2. Evaluation Indicators

The evaluation indicators commonly used by machine learning for classification
models are as follows: accuracy and confusion matrix (also known as the error matrix). The
accuracy refers to the proportion of the correct number of samples output by the model to
the total number of samples, which can be expressed as

Acc =
TP + TN

TP + FP + TN + FN
(9)

where TP, TN, FP, and FN represent the number of samples of True Positive, True Negative,
False Positive, and False Negative, respectively. Obviously, the sum of these four is the total
number of samples. The four indicators of TP, TN, FP, and FN are presented together in a
table called a confusion matrix, which can analyze the misclassification of each category.

The size of the model is generally measured by the number of parameters and cor-
responds to spatial concepts and spatial complexity. Because of the large number of
parameters in many models, they are usually measured in units of megabytes (MB). This
can be represented as

paramconv = kw ∗ kh ∗ cin ∗ cout (10)

param f c = nin ∗ nout (11)

where kw ∗ kh, cin, cout, nin, and nout represent the size of the convolution kernel, the number
of input channels, the number of output channels, the number of input channels of the
dense layer, and the number of output channels of the dense layer, respectively. Finally, the
parameter size of each layer is added together to obtain the total number of parameters.

4.1.3. Experimental Datasets

To verify the validity of the proposed model, we conduct experiments using FER2013,
CK+, and RAF-DB datasets. These datasets contain different data scales and image complexity.

The FER2013 dataset contains a total of 35,886 facial expression samples. In this paper,
the original sample is expanded to 60,000 based on the promoted random masking method.
Among them, there are 46,000 training sets and 14,000 testing sets, the size of each sample
is 48 × 48, and all samples are composed of grayscale images. And the dataset contains
seven expressions of disgust, fear, anger, sad, happy, surprised, and neutral.

The CK+ dataset contains a total of 123 participants and 593 image sequences, all
of which were collected under certain laboratory conditions. It is an upgraded version
of the Cohn Kanda dataset with seven expressions. In this paper, the promoted random
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masking method is used to expand its samples to 1500, including 1050 training sets and
450 testing sets.

The RAF-DB dataset contains a total of 29,672 facial expression samples, all of which
were sourced from real-life facial expression datasets. This dataset contains seven ba-
sic emoticon labels and twelve composite emoticon datasets. This paper selects a ba-
sic expression dataset for the experiment, and expands the basic expression sample to
23,008 pieces through the promoted random masking method, including 16,106 training
sets and 6902 testing sets.

4.2. Ablation Experiments

To show the availability and rationality of our method, ablation experiments are per-
formed for each module, and the experimental results are shown in Table 3. RM denotes the
promoted random masking method, Clip_K5_ShuffleNet denotes the improved inverted
residual structure, SA denotes the shuffle attention mechanism module, RLR-CNet de-
notes the dual-branch network with cumulative learning, and RM + Clip_K5_ShuffleNet +
SA + RLR-CNet denotes the lightweight network proposed in our paper.

Table 3. Performance comparison of different modules of network.

Model FER2013 CK+ RAF-DB Parameter

ShuffleNet 65.71% 95.23% 84.31% 1.24 MB
ShuffleNet + RM 67.87% 95.91% 85.11% 1.24 MB
ShuffleNet + RM + Clip_K5 67.84% 95.87% 84.98% 0.94 MB
ShuffleNet + RM + Clip_K5 + SA 69.35% 96.35% 86.44% 0.96 MB
RLR-CNet (ours) 71.14% 98.04% 87.93% 1.02 MB

Firstly, using ShuffleNet as the base network, the training samples are input into
the network through a promoted random masking operation, and in order to prevent
information loss and accelerate the speed of network operation, the lightweight ShuffleNet
is improved to obtain a lighter Clip_K5_ShuffleNet network. To further extract local facial
expression detail features, the SA module is integrated into the network to redistribute
the feature weights of facial expressions from the two channel and spatial dimensions.
To ensure the practicability and effectiveness of the network in real scenes, RLR-CNet is
proposed in this paper. The effectiveness of each improvement module in the network is
shown in Table 3.

In Table 3, it can be seen that after RM processing, the recognition accuracy of Shuf-
fleNet on FER2013, CK+, and RAF-DB datasets increases by 2.16%, 0.68%, and 0.80%,
respectively. The introduction of Clip_K5_ShuffleNet leads to a slight decrease in the recog-
nition accuracy of the network, but on the other hand, it reduces the number of parameters,
which is beneficial for accelerating the operation speed of the model. The introduction of
the SA module further improves the recognition accuracy of the network.

Compared to the original network, our RLR-CNet promotes the recognition accuracy
of the network by 5.43%, 2.81%, and 3.62%, and reduces the number of parameters by
17.74%. This shows that our method in the paper has some advantages in recognition
accuracy and lightweight parameters.

The experimental training process of the proposed method in this paper is shown in
Figure 8. For Figure 8a, the recognition accuracy growth of the model slows down at the
100th epoch, and the accuracy gradually becomes stable when it reaches the 200th epoch,
with the highest accuracy reaching 71.14%. For Figure 8b, the recognition accuracy of
the model rapidly increases at the beginning of the training, and when it reaches the
150th epoch, the accuracy tends to stabilize, with the highest accuracy reaching 98.04%. For
Figure 8c, the recognition accuracy of the model continues to increase, and when it reaches
the 180th epoch, the accuracy gradually becomes stable, with the highest accuracy reaching
87.93%. For Figure 8, the accuracy of the training set is always less than or equal to the
accuracy of testing sets, and the accuracy of the two sets is generally very close, indicating
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that the method proposed in this paper can better capture the data characteristics and fit
the data, and has better generalization.
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For exploring more accurately the recognition performance of our method for FER, the
confusion matrices are drawn based on the experimental results on the FER2013, CK+, and
RAF-DB datasets, as shown in Figure 9. For the FER2013 dataset, the recognition accuracy
of the happy and surprised expressions is relatively high, both exceeding 80%. For the
CK+ dataset, all facial expressions’ recognition accuracies are above 95%. For the RAF-DB
dataset, the happy, surprised, sad, and neutral expressions all have comparatively high
recognition accuracy. Overall, on the three datasets, the recognition accuracy of happy and
surprised expressions is relatively high, while the recognition accuracy of angry expressions
is relatively low. This is because happy expressions often have significant features such
as raised corners of the mouth and wrinkles around the eyes that are easy to recognize,
and surprised expressions have recognized features such as an open mouth and wide
eyes. Negative expressions such as anger and fear have strong similarities, which make it
difficult to distinguish subtle changes, resulting in low recognition accuracy. Overall, the
proposed method achieves good recognition performance for various facial expressions on
the FER2013, CK+, and RAF-DB datasets.
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4.3. Comparative Experiment of Mainstream Algorithms

To prove the effectiveness of the RLR-CNet proposed in this paper for FER, a com-
parative experiment is carried out with several mainstream algorithms such as ResNet18,
ResNet50, VGG16, VGG19, and AlexNet from the aspects of the number of parameters of
the model and the recognition accuracy. The experimental results are shown in Table 4.

Table 4. Comparison experiments of mainstream algorithms.

Model FER2013 (%) CK+ (%) RAF-DB (%) Parameter (MB)

ResNet18 70.09 89.39 84.10 11.69
ResNet50 71.26 92.46 86.01 25.56
VGG16 68.89 95.46 81.68 14.75
VGG19 68.53 92.18 81.17 20.06
AlexNet 67.51 87.59 55.60 60.92

ours 71.14 98.04 87.93 1.02

For the FER2013 dataset of the facial expressions’ recognition accuracy, the proposed
method in our paper achieves the highest accuracy among all the models, with an improve-
ment of approximately 1.05% compared to ResNet18. For the CK+ dataset, the recognition
accuracy of VGG16 is higher than those of other mainstream networks, while the proposed
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method in our paper achieves an improvement of 2.58% compared to VGG16. For the
RAF-DB dataset, the recognition accuracy of the proposed method in our paper reaches
87.93%. The improvement in the recognition accuracy further verifies the effectiveness
and strong generalization ability of the proposed method. In terms of model parameters,
the parameter size of the proposed model is 1.02 MB, which is lowest among the main-
stream algorithms. In general, while achieving a lightweight model, our method ensures
great recognition accuracy, and then it demonstrates the efficiency and superiority of this
paper’s method.

To further prove the effectiveness of our method, we conduct comparative experi-
ments with some existing advanced methods on FER2013, CK+, and RAF-DB datasets. The
advanced methods mainly include DCN and Inception V4, which are very novel in recent
years, as well as lightweight networks such as Mini-Xception, MFN, and MANet, and clas-
sification networks embedded with modules such as SE and CBAM attention mechanisms.
The experimental results are shown in Tables 5–7, respectively. It can be observed from the
experimental results that, for the FER2013 dataset, the recognition accuracy is above 65%,
while our method achieves an accuracy of 71.14%. For the CK+ dataset, the recognition
accuracy is above 94%, while our method achieves an accuracy of 98.04%. For the RAF-DB
dataset, the recognition accuracy is above 75%, while our method achieves an accuracy of
87.93%. This further proves that our method can ensure great accuracy in FER under the
condition of lightweight implementation.

Table 5. Performance comparison of different methods on FER2013 dataset.

Model Accuracy (%)

MANet [35] 69.46
Inception V4 [36] 66.80

DCN [37] 69.30
Minace [38] 70.20

ours 71.14

Table 6. Performance comparison of different methods on CK+ dataset.

Model Accuracy (%)

DeRL [39] 97.30
APRNET50 [40] 94.95
ResMasking [41] 98.46

DTAGN [42] 97.25
ours 98.04

Table 7. Performance comparison of different methods on RAF-DB dataset.

Model Accuracy (%)

Mini-Xception [43] 76.26
MFN [44] 85.39
SCN [45] 87.03

LA-Net [46] 87.00
ours 87.93

5. Conclusions

Aiming at the problems of a large number of parameters and a low accuracy of
the current FER model, a lightweight model of FER based on class-rebalancing fusion
cumulative learning is proposed in this paper. Through the proposed RLR-CNet, the
problem where the model’s recognition accuracy is affected, which is due to the imbalanced
inter-class distribution of facial expression data, is solved, and the reduction in the model’s
parameters also speeds up the operation speed of the model to a certain degree. And the
embedding of the SA module enhances the ability of the model to extract local details of
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facial expressions, and then improves the accuracy of FER on the lightweight network as
a whole. According to the experimental results, the accuracy of the proposed method is
71.14% on the FER2013 dataset, 98.04% on the CK+ dataset, and 87.93% on the RAF-DB
dataset. The model contains fewer parameters and achieves great recognition accuracy
while implementing a lightweight network, and its accuracy is better than most current
mainstream algorithms, demonstrating better effectiveness and applicability. In this paper,
the object of study is the single-label expression dataset. The single-label expression can
well represent the emotions contained in various expressions and has a good recognition
accuracy for common expression categories, but in real scenes, there are still some minor
expression categories that are not taken into account, such as tension and pride. The
recognition of these minor expressions needs to be achieved by studying composite multi-
label expressions. Therefore, in future research, more attention should be paid to the study
of compound multi-label facial expression recognition.
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