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Featured Application: This article demonstrates the implementation of a new approach to weak
supervision techniques for better reservoir properties prediction in the Malaysian Basin in order
to improve seismic inversion in this region.

Abstract: The conventional seismic inversion approach is practical for operational work, as it only
uses simple linearized algorithms and assumptions, but may be less applicable when dealing with a
complex geological setting, especially in the Malay basin fields, as it may introduce non-linear noises
and non-unique solutions. In the Malay basin, we also frequently struggle with a scarcity of reliable
well data when performing seismic inversions. This makes finding an accurate prior model for
inversion challenging and contributes to high uncertainty in properties’ estimation. Implementation
of deep learning for seismic inversion has become routine and has shown increasing capability
in addressing nonlinearity in inverse problems. In this work, we develop a robust approach to
deep learning-based seismic inversion to predict elastic properties from seismic data. The approach
incorporates synthetic well and seismic data generation from a set of rock physics knowledge called
the rock physics library, which plays a significant role in dataset input for network training, validation,
and testing to improve elastic properties in this field. The deep learning network architecture
comprising UNET and RESNET-18 with weak supervision networks has proven to be useful to
enhance computational work efficiency and prediction accuracy while handling the non-linearity of
the data and the non-uniqueness of the solutions. We successfully validated the proposed method on
actual field data from a clastic fluvial-dominated field in the Malay basin. Upon comparative analysis
with the conventional method, both inversion results are comparable and capable of identifying the
reservoir occurrence and distribution. The conventional method exposed the presence of scattered
amplitude noises and prominent seismic imprints masking the reservoir. Meanwhile, the proposed
method showed more stable, clearer definition and fewer noise inversion results but with a faster
turn-around time and a more efficient workflow. There are substantial improvements of up to 31%
in correlation accuracy achieved upon implementing the proposed method for elastic properties
prediction compared to the conventional. The result implies that the proposed method can provide a
good elastic properties prediction framework while addressing data limitations and sparsity issues in
typical deep learning-based inversions.

Keywords: seismic inversion; weak-supervision deep learning; rock physics

1. Introduction

Seismic data is essential to reservoir characterization studies for providing optimal
estimation of elastic rock properties of the subsurface. Seismic forward modeling is used to
transform elastic rock properties into seismic reflection amplitudes. The transformation
involves a convolution between reflectivity series, i.e., a product of impedance contrast,
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with a band-limited wavelet [1,2]. Seismic inversion deals with estimating elastic properties
from seismic reflection amplitudes that are achieved by solving an inverse problem [3].

Two common approaches in seismic inversion fall generally onto deterministic and
stochastic-probabilistic techniques. The generalized linear inversion is the most common
deterministic seismic inversion technique [4]. This technique requires the existence of an
accurate initial estimate of elastic properties models, which will be later refined iteratively
during the inversion process based on the similarity between the measured seismic data.
The output of the inversion process consists of only single elastic properties models [5,6].
On the other hand, stochastic inversion attempts to search for all statistically acceptable
earth elastic models that can generate synthetic seismic data that fit well with the input
seismic data. The outcomes of stochastic-based inversion comprise the best-fit properties
model represented from the average of all the high correlation elastic properties models [7].

The deterministic method is reasonably practical for operational work, as it only
uses simple linearized algorithms and assumptions. However, the method may be less
applicable when dealing with a difficult geological setting, such as the complex clastic
channelize system in the Malay basin, because it may introduce non-linearity and noises,
which will violate the simple assumption of linearity between seismic amplitude and elastic
properties used in the convolutional model. The method also can only partially address the
problem with a non-unique solution, as it has difficulty finding an accurate prior model,
contributing to high uncertainty in properties estimation. An alternative way of dealing
with non-linearity and non-unique solutions is by applying stochastic-probabilistic inver-
sion. However, stochastic inversion requires large numbers of reliable well data to work
efficiently. The technique also demands high computational power and time consumption.
In the Malay basin, we often deal with limited numbers of quantitative interpretation (QI)
compliance well data to conduct seismic inversion. This makes the method less practical for
extensive and rapid production works to solve large-scale nonlinear inverse problems [8].

Deep learning-based predictive methods have recently been applied to solve the
seismic inverse problem. Kim and Nakata [8] investigated a unique approach of inverting
the reflection coefficient from seismic tracing by utilizing a deep learning method trained
on synthetic data. They showed that the machine learning-based inversion can provide
inverted reflectivity section with a higher resolution and can better resolve geological
thin beds compared to conventional least-squares-based reflectivity inversion. However,
the synthetic generation data strategy allows only to predict reflectivity and can only be
used with limited resolution to predict elastic properties. The approach also demands
sufficient training data with the relevant hyper-parameter optimization to obtain good
quality predictive network models.

Attempts to estimate elastic properties using a machine learning technique have
also been proposed by Jaya et al. [9]. Their work used a supervised decision-tree-based
Gradient Boosting with knowledge-driven feature augmentation strategy to construct a
predictive network. Similarly, Mustafa et al. [10] also presented a different type of deep
learning architecture, namely a temporal convolutional network (TCN), to construct a direct
supervised predictive network for elastic properties estimation. Purves [11] has further
improved supervised convolutional neural networks (CNN)-based network architecture
implementation for elastic properties estimation using an abundance of real well logs and
seismic data from the Sleipner Vest study area on the Norwegian Continental Shelf. A
different approach was suggested by Zhang et al. [12]. They proposed a unique neural
network method that can map full-stack seismic data into a broader frequency spectrum
before mapping into impedance.

Different approaches that attempt to incorporate prior knowledge such as synthetic
datasets input for deep learning network training to increase the space of the solution was
introduced among others by Vishal Das et al. [13,14]. They implemented a series of CNN
layers to train synthetic datasets that use facies information built upon prior knowledge
of physics, geology, and geostatistics. The approach was successfully applied in a real
dataset with decent prediction accuracy while using a predictive network trained based on
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a synthetic labeled dataset. Downton [15] proposed a similar method utilizing a hybrid
theory-guided data science (TGDS) model which contains a series of dense neural networks
(DNN) as a predictive network and statistical rock physics-based synthetic labeled well
and seismic dataset training input. The approach was successfully applied to the North
Sea dataset to predict elastic and reservoir properties comparable to those obtained from
deterministic inversion.

Most examples mentioned earlier utilize relatively simple deep learning model archi-
tectures such as CNN and DNN to establish the predictive network. These simple model
architectures tend to be saturated easily and can lead to accuracy degradation and vanish-
ing gradient as we increase the layers. Deeper architecture, like U-Net, can be implemented
to solve the problem. For instance, the U-Net architecture has been successfully utilized
by Gao [16] as self-supervised deep learning to obtain low-frequency envelope data as
part of the nonlinear seismic full waveform inversion process. The proposed nonlinear
operator can mitigate the typical issue of initial model dependency while achieving sta-
ble convergence. Besides U-Net, there are other attempts to utilize more complex deep
learning network architecture, such as the Generative Adversarial Network (GAN) for
seismic impedance inversion, as proposed by Meng [17]. The proposed method successfully
predicts acoustic impedance with much higher resolution and at a better consistency than
conventional deep learning inversion. However, the testing is only limited to synthetic
data environments and requires extensive data labeling for training.

The traditional approach to deep learning application requires abundant data avail-
ability for network training to produce a promising predictive network. The application
of these approaches for elastic property prediction in a green field or frontier exploration
where (well) data is limited and sparse becomes less practical. Application of theory-
based synthetically generated data can be helpful when dealing with sparse data envi-
ronments. However, the predictive network models may encounter issues in mimicking
the actual seismic data characteristic, for instance, due to amplitude scaling, dynamic fre-
quencies content, phase shift, and embedded noises. This data domain discrepancies (syn-
thetic and real data characteristics) will significantly deteriorate the prediction accuracy of
elastic properties.

Inspired by the works of [13-15,18], we attempt to establish a reliable seismic inversion
method that integrates prior knowledge into deep learning network architecture to estimate
elastic properties from seismic with better accuracy. The approach includes synthetic
data generation from a set of rock physics knowledge, which is called the rock physics
library, and building a combination of U-Net and ResNet-18 architecture. The rock physics
library is a compilation of pseudo-well logs and seismic datasets that simulate the true
subsurface reservoir condition. This is done as part of the initiative to reduce dependency
of utilizing scarcity actual well data as input thus preventing bias. Meanwhile, the complex
U-Net and ResNet-18 deep learning architecture is used to further improve the prediction
estimation accuracy while handling data non-linearity and non-uniqueness solution. Deep
learning network training consists of two steps. First, the rock physics-driven deep learning
network training is trained using synthetic data to ensure that the neural network can
apprehend the behavior between seismic amplitude characteristics concerning various
rock physics combinations possibilities. The second step of the training is to conduct
weak supervision based on available (commonly limited and sparse) field data, with the
pre-trained network from the first step serving as a base model to allow the model to learn
field data characteristics. This is done as part of an effort to combat issues with actual
data quality imitation, hence preventing prediction accuracy deterioration due to data
domain discrepancies.

2. Study Area

In this study, we utilized field data located at the southwestern flank of the Malay
basin. The depositional environment of the study area is dominated by a clastic fluvial
system. The lithology in this field is mainly composed of shale, sand, and a minor presence
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of coal layer. The reservoir consists of meandering channels and a point bars system, which
is dominated by clean sand with only up to 30% clay content and porosity ranging from
15% to 30%. The thickness of the reservoir ranges from 12 m to 24 m. The field contains
both oil and gas reservoirs. The reservoir geological age covers from the middle to lower
Miocene. The trap style comprises structural and stratigraphic. There are in total data from
six good quality exploration wells available in the study area, as illustrated in Figure 1.
Each well has complete coverage of petrophysical and geophysical logs and has undergone
detailed conditioning appropriate for quantitative seismic interpretation. Three out of
the six wells were used as a reference to generate a synthetic well and seismic dataset
library. Hereafter, we call this dataset the rock physics library. Meanwhile, the remaining
three wells are used for blind testing. There are also four pre-stack time migration (PSTM)
angle seismic stacks, i.e., 0-12, 12-24, 24-36, and 3448, which are used as input for elastic
properties prediction.

e Reference
Well

@ Blind Well

Figure 1. The location of the study area and actual data availability.

3. Methodology

The methodology comprises three essential parts. The first part focuses on under-
standing generalized rock physics knowledge by utilizing actual well data as references.
This process involves data gathering, conditioning and selection, diagnosing and modeling,
and establishing a generalized rock physics template (RPT). The second part involves
synthetic dataset library generation driven by the rock physics library. The rock physics
library is a compilation of 1D pseudo-well logs and seismic data that simulate the true
subsurface reservoir conditions. The third part includes designing UNET and ResNet-18
deep learning model topology, input, and output data pre-processing, and subsequently,
network training, validation, and testing with hyperparameters sensitivity analysis. This
is to ensure the network can apprehend the subtle behavior between seismic amplitude
characteristics concerning various combinations possibilities among elastic and reservoir
properties. Later, the final trained deep learning network model is then used to predict
elastic properties on the whole field of seismic data.
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3.1. Modeling Rock Physics

Ideally, the rock physics model should describe the underlying physics behind rocks
as much as possible and be associated with a geological element such as depositional
processes and compaction, as well as provide a reliable estimation of the rock elastic
properties directly from petrophysical properties. This study treats rock as a compound
material of two fundamental elements: rock matrix and pore fluid. The rock matrix is
composed of quartz and clay. Elastic properties of the rock matrix are estimated based on the
Voigt—Reuss-Hill average formulation [19]. Once we form the rock matrix, we can establish
a dry rock frame by introducing pore space within the rock matrix by implementing a
generalized Xu-White model [20]. We can express the formulations as follows:
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The K, Ky, and K’ are the bulk moduli of the dry frame, the rock matrix, and the pore
inclusion material, respectively, and jy, pm, and p' are the corresponding shear moduli. ¢s
and ¢ are the aspect ratios for the stiff and compliant pores. Meanwhile, Tj;;;(a,) and F(a,)
are pore aspect ratio functions derived from the tensor Tijkl that relate the uniform strain
field from infinity toward within the elastic ellipsoidal inclusion. In the meantime, we
estimate the bulk modulus and density of individual fluid phases using the Batzle-Wang
formulation [21]. The bulk modulus of the mixed pore fluid phases (K) can be determined
using Wood'’s equation, known as inverse bulk modulus averaging. [22], and the density of
the mixed pore fluid phases (pf) can be estimated using arithmetic averaging of densities
of mixed fluids. Next, we use the Gassmann fluid substitution [23] to model the fluid filling
process. The formulations are as follows:
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where K, K;, K iz and Ky are the bulk modulus of the fluid-saturated rock, dry rock frame,
pore fluid, and rock matrix, respectively, u and j; are the shear modulus of the fluid-
saturated rock and dry rock, p, p s and pg are the density of the fluid-saturated rock, pore
fluid, and rock matrix, respectively, and ¢ is for total porosity. Then, the rock physics model
needs to be calibrated with in-situ well logs to ensure that it is relevant to represent the
study area. Once calibrated, the model can establish a generalized rock physics template
(RPT) and use it as a reference for the next part.

3.2. Synthetic Dataset Library

The second part of this study involves establishing a rock physics-based synthetic
dataset library, utilizing a systematic workflow introduced by Dvorkin et al. [24]. This
library is a collection of pseudo-wells and seismic data that simulate the actual subsurface
situation. We considered sand and shale as the two dominant facies in the study area. Then,
using the available in-situ well information, we examined the range and distributions of
several reservoir properties for each predefined facies, such as porosity, water saturation,
and clay volume. Next, we applied the Monte Carlo simulation technique to perturb
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the reservoir properties within allowable predefined petrophysical limits to account for
reasonable geological differences in the subsurface, which is also to better explain the
geological possibilities in the actual reservoir condition. Since there is an explicit connection
between the attributes of the reservoirs, we also included a spatial sequential Gaussian
simulation [25] to correlate sample points within and among the various properties to
prevent an unreasonable geological sequence. The spatial correlation is a vital concept in
geostatistics that measures the relationship of property at two different points within the
same reservoir. The coefficient can be plotted as a function of the distance between two
points to obtain the data’s vertical correlation function, p(h). From here, we can generate
an experimental variogram model by using the formulation as given:

y(h) = o [1—p(h)] (6)

where o2 is the variance of the entire dataset. The distance in which the correlation function
approaches zero is called correlation length, where this length would be one of the key
parameters needed for simulation. Typically, experimental variograms are noisy due to
limited data issues and errors in measurement. This study used a spherical analytical
variogram model to regulate the experimental variogram function. Once the variogram is
ready, the next step is to form a 1D spatial symmetrical covariance matrix, C, given as:

7(0) o Y (dimax)
c=| & )
Y(dmax) -+ 7(0)

Next, we computed the Cholesky decomposition, R, of the matrix as:
R = chol(C) ®)

Later, we used the Cholesky decomposition matrix as the input to compute the vertical
random correlated vector by multiplying the matrix with a random uncorrelated vector, u,
as part of the process to simulate the random residual spatial reservoir properties variation.

At the same time, we also need to determine the background trend of reservoir
properties. A small number of actual wells were chosen and utilized as references to
extract low-frequency information and produce such trends. The reference wells should
have acceptable log data quality, good coverage of the investigation intervals, and good
seismic calibration. Subsequently, we combined each reservoir property’s background
trend and residual spatial variation to produce the absolute version of synthetic reservoir
logs. Once the pseudo reservoir logs are ready, the next step was to exploit them as input to
approximate pseudo elastic properties logs, including density, P-wave, and S-wave velocity,
by adopting the generalized RPT from the first part of the methodology. Eventually, this
will create a pseudo-well with a complete set of petrophysical and geophysical logs. Then,
the populated elastic properties were applied to compute the angle-dependent reflectivity at
incident angles from 0° up to 50° with angle stepping for every 1°, based on full Zoeppritz
(1919) formulation [26], and convolve with frequencies dependent source wavelets to
transform into synthetic seismic gathers. The same procedure was repeated in up to
1000 cases to produce a comprehensive set of pseudo-wells and seismic gathers with
proper labeling.

The proposed deep learning model architecture requires further conditioning of the
synthetic dataset library prior to network training. From a total of 1000 scenario examples,
we randomly clustered 800 cases for training and data validation, while the remaining
cases became testing data. For each case scenario, we divided it into several mini sequences
of 32 samples for the synthetic data to match the deep learning network architecture
during training. For training data, we divided the primary sequence of 500 ms interval for
each scenario into 200 mini sequences by using a random sampling process, generating
160,000 random mini-sequence cases for network training. Meanwhile, for validation and
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testing data, we have divided the major sequence of 500 ms interval into 218 mini sequences
by using a tile-based sampling process with stepping every 1 sample for each case scenario,
creating a total of 130,800 and 43,000 tile-based mini sequence cases of both validation and
testing data, respectively. The data for prediction accuracy benchmarking and sensitivity
analysis were later utilized.

3.3. Deep Learning Network Training

The proposed architecture consists of UNET and RESNET-18 networks for feature
extraction, followed by a series of 5 dense layers for classification and dimensionality
reduction, as shown in Figure 2. For the feature extraction part, the input dimension is
1 x 32 x 32. The first block permits the input into down-sampling trend and comprises
one convolutional layer with 64 channel features, and 7 x 7 filter kernel and strides 2,
followed by batch normalization and rectified linear unit (ReLU) activation function. This
produces an output dimension of 64 x 16 x 16. The second block consists of a max pooling
layer with 3 x 3 filter kernel and strides 2, followed by 4 convolutional layers where each
layer comprises of 64 channel features, and 3 x 3 filter kernel and strides 1, along with
batch normalization and ReLU activation in which the output dimension is reduced to
64 x 8 x 8. The third block contains 4 convolutional layers; the first layer comprises
128 channel features, and 3 x 3 filter kernel and strides 2, along with Batch normalization
and ReLU activation. The output from the second layer is concatenated with another
convolutional layer of 128 channel features, 1 x 1 filter kernel and strides 2, along with
Batch normalization, that act as identity mapping to establish a skip connection. The output
dimension from this block is further reduced to 128 x 4 x 4. The same process from
the third block is repeated for fourth and fifth blocks, which further reduces the output
dimension while increasing the channel features to 256 x 2 x 2 and 512 x 1 x 1, respectively.
Similarly, the decoder section also consists of 5 residual blocks. Each block permits the
input into up-sampling trend and poses a similar number of convolutional layers as the
respective encoder block with the same number of channel features and filter kernels, along
with batch normalization and ReLU activation, but the strides remain 1 since we expand
the output dimension. After passing each decoder block, the number of feature maps are
reduced to half and appended by the feature maps” output from the corresponding encoder
block, which acts as an identity mapping to establish skip connections among sections. The
output dimension of the decoder section is similar to the input dimension i.e., 1 x 32 x 32.

The training was done in 2 steps, as shown in Figure 3. The first step is called rock
physics driven training that trains the network to apprehend the behavior between seismic
amplitude characteristics and various rock physics combination possibilities [13,14]. The
input, X, is the synthetic seismic gathers in 32 sample mini sequences and the output, Y, is
the pseudo-elastic properties logs of density, P, and S-Impedance at a mid-point of the mini-
sequences. The second step, on the other hand, is called weak supervision training. The
weak supervision idea was adopted from tensor flow in transfer learning and fine-tuning
tutorials to ascertain that the weakly supervised network undertakes the transfer learning
process to recognize the unique character of actual seismic data, i.e., amplitude noise and
scaling, attenuation, phase rotation, etc., which is based on the rock physics combination of
actual logs at the reference wells. Here, the input, X, is the actual seismic and the output, Y,
is the real elastic properties logs taken from 3 actual reference wells.

Prior to the network training, both input X and output Y were scaled using a min-max
scaler and simple normalization respectively, to ensure faster convergence during network
training optimization. During training, we used the learning rate of 0.0001 with a cosine
scheduler criteria for a more efficient convergence. We implemented the mean-square error
(MSE) loss function to estimate the error of a set of weights in a neural network, since
we are dealing with regression problems to predict pseudo elastic logs. We utilized the
ADAM optimization algorithm to update the model weights during backpropagation and
the ReLU activation function [27] to introduce a nonlinear transformation during network
training. We also set the epoch hyperparameter to 100, the first 50 epochs mainly focused
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on the rock physics part. Meanwhile, the next 50 epochs focused on the weak supervision
part, utilizing a pre-trained network from the first part training as a base model to further
fine-tune and update the model weights within the network [28]. Finally, we selected the
best model at the end of the training and used it as blind testing on actual seismic survey
data to produce pseudo elastic properties volumes of density, P, and S-Impedance. To
demonstrate that our proposed method works well, we also performed a conventional
seismic pre-stack deterministic inversion using the same 3 reference wells and seismic
survey data and conducted comparison exercises between both inversion results.

(_output ]
1x32x32
Conv(16,1,3,1,1)

16 x 32 x 32
[ conv(16,16,3,1,1), BN, ReLU
| conv(32,16,3,1,1), BN,ReLU |
[ conv(32,32,3,1,1), BN, ReLU

Conv(128,32,3,1,1), BN, ReLU
1x32x32 A
| C_Conv(1,64.7,2.3), BN, ReLU__}-| »<_concat
Skip Connection A
v 64 x 16 x 16 For ilizati ‘ 64x8x8
MaxPool(3,2,1), Dilation=1 and to ensure [ conv(64,64,3,1,1), BN,ReLU |
Conv(64,64,3,1,1), BN, ReLU output not deviate Conv(192,64,3,1,1), BN, ReLU
Conv(64,64,3,1,1), BN, ReLU away from input A
Conv(64,64,3,1,1), BN, ReLU
—+H___Conv(64,64,3,1,1), BN, ReLU concat
Skip Connection Y
v 64 x 8 x |
i [ conv(64,128,3,2,1), BN, ReLU | | 128 x 4 x4
c i [_conv(128,128,3,1,1), BN, ReLU | Conv(128,128,3,1,1), BN, ReLU
i] | Conv(384,128,3,1,1), BN,ReLU |
Conv(64,128,1,2,0), BN >® ’
(" conv(128,128,3,1,1), BN, ReLU | }
——{ Conv(128,128,3,1,1), BN, ReLU | concat
N 128 x 4 x 4 Skip Connection A
Residual (_conv(128,256,3,2,1), BN, ReLU | | 256x2x2
Connection __Conv(256,256,3,1,1), BN, ReLU | [ conv(256,256,3,1,1), BN, ReLU |
| Conv(768,256,3,1,1), BN, ReLU |
A

- Conv(128,256,1,2,0), BN | >®

[ conv(256,256,3,1,1), BN, ReLU |

[ Conv(256, 256,3,1,1), BN, ReLU j P concat —
. 256x2x2 Skip Connection ¥ 512x1x1
Conv(256,512,3,2,1), BN, ReLU ] [ Conv(512,512,3,1,1), BN, ReLU

Conv(512,512,3,1,1), BN, ReLU _} —»{__Conv(512,512,3,1,1), BN, ReLU
Residual
b -
»(__Conv(256,512,1,2,0), BN

Figure 2. U-Net architecture with ResNet-18 as encoder.
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Figure 3. Detailed workflow to conduct the deep learning network training.

4. Results and Discussion

To evaluate the effectiveness of the proposed method, we have conducted blind testing
by utilizing actual seismic data from wells from a field in the Malay basin. We gauged the
predicted results qualitatively and quantitatively. The qualitative analysis was conducted
by examining the background trend fitting and relative variation between predicted and
actual elastic properties logs. Meanwhile, the quantitative analysis was mainly performed
via the cross-correlation method to estimate correlation accuracy between predicted and
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actual elastic properties logs. Figure 4 exhibits the Loss vs. Epoch diagnostic cross plot
between training and validation loss trends for the network training. The training loss
indicates the adaptability of the network model to fit the training data. In contrast, the
validation loss indicates the flexibility of the trained network model to fit the new data. In
general, a very good network model performance was observed for training and validation
Loss trends for each elastic property, as the trends decrease with an increase in Epoch trends
and start to stabilize around some point. Only marginal error contrast between validation
and training trends was observed.
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Figure 4. Loss vs. Epoch diagnostic cross plot with between training and validation loss trend of

(a) P-Impedance, (b) S-Impedance, and (c) density.

Figures 5 and 6 demonstrate the well section window for the prediction results from
two actual blind wells. The first column represents the litho-fluid log, which comprises
the logs” normalization between clay volume, coal volume, and water saturation. The
grey, blue, red, and black colors indicate clay, brine sand, hydrocarbon sand, and coal,
respectively. The second column is P-Impedance, the third column is S-Impedance, and the
fourth column is density. In each of these columns, the black line indicates the measured
elastic properties logs, the blue line is the inversion results from the conventional approach,
and the red line indicates inversion results from the proposed approach. The last column
is actual seismic pseudo-gathers used as input for inversion. Overall, moderate to good
correlation accuracy can be observed between measured elastic properties predicted and
predicted elastic properties from both approaches qualitatively. Both approaches can
capture the background trend and detect the relative variation of each elastic property.
However, the inversion results from the proposed approach are relatively more stable, with
less presence of ringing noises and closer proximity to the measured well logs compared to
the inversion results from the conventional approach, where many mismatches and ringing
noises were observed. Table 1 demonstrates the correlation accuracy between inversion
results and measured logs for both approaches at blind well 1 and 2. There are significant
improvements of up to 31% in correlation accuracy for elastic properties prediction based
on the proposed approach compared to the conventional, especially for density. This
indicates that the trained network model can efficiently capture the background trend and
relative variation with proper magnitude and scaling for all elastic properties.
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Figure 5. Actual well logs (black), inversion result from conventional method (blue) and proposed
method (red) of (b) P-Impedance (Al), (c) S-Impedance (SI), (d) density (RHO), predicted based on
(e) actual seismic as input at blind well 2. Column (a) represents the litho-fluid log normalization
that comprises of water saturation (SWT), clay volume (VCL), and coal volume (COAL) logs.
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Figure 6. Actual well logs (black), inversion result from conventional method (blue), and proposed
method (red) of (b) P-Impedance (Al), (c) S-Impedance (SI), (d) density (RHO), predicted based on
(e) actual seismic as input at blind well 2. Column (a) represents litho-fluid log normalization of
water saturation (SWT), clay volume (VCL), and coal volume (COAL) logs.
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Table 1. Elastic properties correlation coefficient comparison between proposed and conventional
approach at blind well 1 and 2.

Well Approach P-Impedance S-Impedance Density
. Proposed 0.84 0.79 0.67
Blind 1 Conventional 0.83 0.76 0.51
. Proposed 0.82 0.81 0.63
Blind 2 Conventional 0.76 0.75 0.44

Figures 7 and 8 demonstrate the map view of the seismic inversion results of P-
Impedance and density from both methods at the specified reservoir interval. Both outcomes
are encouraging, comparable, and able to highlight the reservoir presence and distribution.

Inpedance.
(f)*gha)

(a) Proposed Method (b) Conventional Method

& Artefacts

Amplitude . &
noises
[ 1:10,8421 4000 m

Figure 7. Comparison between (a) proposed method and (b) conventional method toward predicting
P-Impedance from actual angle stacks seismic survey.

(a) Proposed Method

(b) Conventional Method

BRRdatitacaad

Amplitude ,
noises 2 . .

0 1:10,8421 4000m

Figure 8. Comparison between (a) proposed method and (b) conventional method toward predicting
density from actual angle stacks seismic survey.
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However, the conventional method reveals the presence of scattered amplitude noises
and prominent seismic imprints masking the reservoir, especially for density results. The
proposed method, on the other hand, produces inversion results with a more stable, clearer
definition and fewer noises. This is accomplished without the use of an initial model or
wavelet extraction, unlike the standard approach.

Despite better correlation, it is observed that the trained network model cannot accu-
rately capture the relative variation closer to the actual elastic properties. This may indicate
that the full correlation between the rock-physics driven synthetic data and real data used
was not contextualized during the training. The unique characteristic signatures of syn-
thetic and real seismic and well logs” data need to be investigated further. The introduction
of noise modeling in catching the unique difference between synthetic and real data into
the deep learning training process may be useful for prediction accuracy enhancement.
In addition, the generation of rock-physics-driven synthetic data library may need to be
refined. The current data simulation approach is only limited to two predominant facies.
Utilization of more geologically realistic facies into the modeling can aid in establishing
more realistic subsurface conditions and potentially enhance prediction accuracy. The ap-
proach also could be further improved by incorporating spatial neighboring input data for
network training, since the current approach is only limited to trace-based input training.
In doing so, the deep neural network may not only comprehend the relationship between
seismic and rock physics but also be capable of capturing the structural and stratigraphical
information of the subsurface. Aside from spatial-based input training, exploring more
complex image-based deep learning algorithms techniques such as Generative Adversarial
Networks (GAN), Graphomer, Etc., might also enhance the accuracy estimation.

5. Conclusions

We have successfully developed a new approach of deep learning-based seismic
inversion by incorporating seamlessly the rock physics model to generate a vast amount
of synthetic pseudo rock properties and their seismic responses. The rock physics library
plays a significant role as a comprehensive synthetic dataset input for network training,
validation, and testing. Meanwhile, the complex deep learning network architecture, which
includes a weakly supervised network, has proven to be useful to enhance computational
work efficiency and prediction accuracy while handling data non-linearity and the non-
uniqueness of the solutions.

Application of the proposed method on the clastic fluvial-dominated region in the
Malay basin reveals the applicability of the method for accurate rock properties prediction.
Comparison with the conventional method demonstrated the advantage of the proposed
deep learning-based inversion in identifying the reservoir occurrence and distribution. The
conventional method exhibited the presence of scattered amplitude noises and prominent
seismic imprints masking the reservoir, whereas the proposed method showed more stable
and less noises inversion results, yet with faster turn-around time. There are substantial
improvements of up to 31% in correlation accuracy achieved upon implementing proposed
method for elastic properties prediction compared to conventional method. The trained
network model can apprehend the behavior between seismic amplitude characteristics
concerning various rock physics combination possibilities and is competent to recognize
the unique characteristics and relationships between actual references seismic and well
data during the weak supervision transfer learning process. This implies that the proposed
method can provide good elastic properties prediction framework and is able to address
data limitation and sparsity issues in typical deep learning-based inversion.
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