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Abstract: Proper operation of the grid-tie transformerless converters under unbalanced and distorted
conditions entails a precise detection of the frequency and fundamental component of the grid voltage.
One of the main problems that could arise during the estimation of grid parameters is the existence
of a DC offset generated from measurement and A /D conversion. This undesirable induced DC
offset could appear as a part of the reference sinusoidal current of grid-tie converters. Although
literature has proposed the use of an extended complex Kalman filter (ECKF) for the estimation of
positive and negative sequence voltage components as a promising competitor to phase locked loops,
mitigating the effect of possible DC offsets when a Kalman filter is employed remains scarce. This
paper proposes a new extended complex Kalman filter to improve the filter stability for estimating the
frequency and the fundamental positive and negative symmetrical components of the grid voltages,
where DC offset, scaling error, and noise can successfully be rejected. The theoretical findings are
experimentally validated.

Keywords: extended complex Kalman filter; grid-tie converter; DC offset and scaling errors;
harmonic mitigation

1. Introduction

It is crucial to know the phase angle, frequency, and amplitude of grid voltage in order
to properly operate and control a variety of grid-tie converters, including photovoltaic
(PV) converters, pulse width modulation rectifiers, uninterrupted power supplies (UPSs),
distributed power systems, and others. This process is commonly known as grid syn-
chronization [1-7]. A precise and quick algorithm is required to measure the symmetrical
components, particularly in a harmonically contaminated, unbalanced three-phase system.
When estimating the grid characteristics, particular attention should be paid to the presence
of possible DC offsets in the observed grid voltage. Voltage sensing, filtering, and A/D
conversion are generally the three functions that the grid interface circuit should carry out.
Even if the grid interface circuit is correctly constructed, the non-linearity of voltage sensors,
A /D conversion, and thermal drift of analog components commonly yields DC offsets in
measured grid voltages [8]. Typically, the maximum allowable dc current injection in a
grid-tie converter should not exceed 0.5% of the full rated output current at the point of
common coupling [9].
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Three main categories can be used to group the techniques for suppressing dc current
injection: blocking dc current with a capacitor [10,11], voltage (and/or) current detection
control [12-18], and innovative converter topologies with dc current suppression capabili-
ties [19-21]. However, the first strategy requires a bulky and expensive capacitor and may
produce extra losses and poor power quality. Moreover, the dynamic response and system
stability have been affected when the virtual capacitor technique is used [11]. Additionally,
the grid distortion and the scaling errors in the measured grid voltages continue to have
an impact on the grid current performance under this strategy [22]. On the contrary, the
detection strategy may increase the system footprint, increasing cost and power loss [23]. In
fact, this strategy has been frequently employed in motor drive applications for compensat-
ing the errors in measured currents [14,19-21,23,24]. However, there are major challenges
when applying this technique to grid-tie converter applications because measurement
errors might occur on both current and voltage signals, leading to inaccurate compensation
results if only current or voltage measurement errors are compensated [22]. In the third
strategy, current controllers with the ability to reject DC offsets have been introduced. This
method seems to be simpler to practically implement since the DC offset and the scaling
error in measured voltages do not need to be detected or estimated. Several converter
control techniques are used to estimate positive and negative fundamental components
from unbiased and unbalanced three-phase signals based on phase-locked loop implemen-
tation [25-30]. However, there are challenges facing the design of PLL, such as instability
problems [31-34], complexity in the case of abnormal grid conditions [35], and a large
calculation burden [36].

In [37], the positive sinusoidal signal in a grid with white noise is estimated using
the extended complex Kalman filter (ECKF). Using Kalman filter algorithms, the works
in [38—40] have suggested determining the power frequency in distorted grids based on
their estimated sequence components. The concept of employing a modified Kalman filter
to make up for the DSP computation delay is covered in [41]. To estimate the symmetrical
components from unbalanced grid voltages without a PLL, the ECKF suggested in [42]
is applied. As a result, as compared to previous methods, better noise rejection has been
obtained while avoiding tuning and delay concerns. In [43], authors presented a new space
vector-based model predictive current controller to deal with unbalanced and distorted
grid conditions. The current references in this model-predictive algorithm are computed
based on symmetrical fundamental components of grid voltages. The important note is
the use of the conventional ECKF to estimate these sequence voltages. The prior methods,
however, have not been investigated under biased, unbalanced, and distorted scenarios.

The main contributions of this paper are summarized in the following bullets:

e A modified extended complex Kalman filter is presented to improve the filter’s perfor-
mance for estimating symmetrical components in the presence of DC offset and noise.

e  Harmonic free current references are calculated based on the estimated positive and
negative symmetrical components of grid voltages for both ECKF strategies. The finite
control set model predictive control (FCS-MPC) current control structure is presented
such that the grid currents follow exactly the pure sinusoidal current references
generated by the current reference generator.

e  The principle of FCS-MPC is to drive the converter switches by minimizing the cost
function without the need for PWM techniques. As a result, FCS_MPC features a
simple real-time hardware implementation, a quick response, a higher stability margin,
and the ability to handle of multiple objectives and nonlinear constraints [44].

The paper is organized as follows: Section 2 describes the problem statement. Section 3
presents the mathematical model of conventional ECKF and also presents the proposed
ECKE. In Section 4, the simulation results are presented using MATLAB/SIMULINK 9.4
(R2018a) software to validate the effectiveness of the proposed ECKF over the conven-
tional one under DC offset and distorted conditions. Section 5 includes the experimental
validation of the proposed ECKE.



Appl. Sci. 2023,13, 9023

30f15

2. Problem Statement

There are typically no even or triplen harmonics in three-phase power systems; as
a result, the three-phase grid voltages only contain the harmonic component & = 6n F 1
n=1,2,3,...).

Ugj = V1 cos <(Ust - (1 - 1)2;[> +ZZ°:1 thos<(61’l T 1) <ws£ B (l a 1)2;[>) (1)

Vi and V}, are the amplitudes of fundamental and harmonic components, respectively,
j€{ab,.c},i=1,2 and 3 forj = a, b, and ¢, respectively, and w; is the fundamental
angular frequency of the grid.

Monitoring three-phase grid voltages using some type of amplifier circuits and, hence,
implementing digital readings using the analog-to-digital conversion (ADC) module of
the microcontroller are preliminary steps in the control algorithm of the grid-tie converter.
Assuming that voltage measurement readings include scaling and DC offset errors, the
three-phase grid voltages measured by the microcontroller can be expressed as follows:

vg»DC = (1= Akj)vgj+ Vis; j € {a,b,c} )

ADC _,ADC

According to (2), Vga s Vgy and 0ADC

gc
grid voltage a, b, and ¢, respectively; Ak,, Aky, and Ak, are the scaling errors for each phase
a, b, and c respectively; Vs, Vis, and V. are the DC offsets in the measurements. Applying
Clarke’s transformation, the stationary af components of the grid voltages (vgs and vgp)
are obtained and contain DC offset and AC ripple at ws and (6n F1)ws (n=1,2,3,...).
The DC component of the grid voltages can be given by:

are the digital readings of the three-phase

1
vp = Vas — 5 (Vi + Vi) 3
V3
UngC = T(Vbs - VCS) 4)

The stationary af components of converter voltages (vc, and v.g) are then given by (5),
where i, and ig are the stationary af components of output currents.

o) = i) x5+
Ocp Ocp ‘g

As the terms vg, and vgg contain DC offset and AC ripple at ws and (61 F 1)ws
(n=1,2,3,...), they subsequently inject undesired DC and AC ripple at the same frequen-

cies into iy and ig. There is a need to present a current controller by which the DC offset
and distortion are rejected.

diy
ddl-;] ®

ar

3. Mathematical Modelling
3.1. Conventional Extended Complex Kalman Filter

Let a noisy distorted signal zj of h negative and positive sinusoids be given by:

Ai+eJ'(wz'TK+¢i+) + A e J(@iTKH) 4 Noise (6)

h
Zj =

i=1

Al and A; are the amplitudes of positive and negative sinusoids, w; is the angular fre-
quency, ¢;" and ¢; are the phase angles of the positive and negative sinusoid, respectively,
and T is the sampling time.

To model the observation signal v, the state space representation is given by:

Xep1 = f(xx) = A xg )
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Yk = Hxp + o 8)

where (9) and (10) are given as follows:

0% 1 0 0 ¥
Y1+ | = |0 v 0 | [X100) )
X2(k+1) 0 0 7' Lo
Y
] = [0 1 1] {xyp) | + [o4] (10)
X2 (k)
where
v = exp(jwsT) (11)
xy(p) = Af /@ TKH9D) (12)
Xa() = Ai*e*]'(wsTK+¢f) (13)

The artificial state 7y expresses the variation in the fundamental frequency. xy) is
the recent state of the positive fundamental component, and x; ;) is the recent state of the
negative fundamental component of the grid voltages.

Applying the following ECKF algorithm [37]:

. . -1
Ky = By H” (Hpk‘k,1 HH 4 R) (14)
Rk = Xpk—1 + Ky (yk - Hﬁk\kfl) (15)
P = (I = Ke H) P4 (16)
Ry = A Ty (17)
Peiajp = FPy F+Q (18)
where
1 0 o0
df (x R N
P= U ey o (19)
et | =472 8, 0 1

F, H are the linearized transition and measurement matrices, and FH, HY are the
Hermitian of these matrices, respectively. Moreover, the observation and process noise
covariance matrices are R and Q; the estimated state is denoted by x; P denotes the state
error covariance matrix, whereas Kalman gain is represented by notation K.

It is worth noting that any decrease in Kalman gain causes the filter to more closely
match model predicted states, whereas the most recent measurements are given more
weight whenever the Kalman gain increases. To obtain the best performance, R and Q are
experimentally tuned.

The estimated state one step in advance £1 can be given based on the recent state £
by (20).

Rpp1 = A X (20)

Moreover, the advance of states by two steps can be given by:

Rppo = A K (21)
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Noting that
1) = Veup = Veutn T 1Vepo (22)
Xo(k) = Veup = Vearry T 101 (23)

3.2. Modified Extended Complex Kalman Filter

A modified extended complex Kalman filter is proposed to achieve DC offset and
noise rejection.

Unlike conventional ECKEFE, where its output states are expected to contain DC compo-
nents, the modified ECKF uses state feedback loops to remove the expected DC offsets.

Define two observation signals as shown in Figure 1. The first observation signal
Y1(k) is the distorted signal z; extracted from it, the fundamental negative signal x;x). The
observation signal v,y is the distorted signal z; extracted from it, the fundamental positive
signal x ).

——— ———— — — — —

Grid Voltages

Vgabc(k)

>

Modified

abc/af3 ECKF

Figure 1. The modified extended complex Kalman filter.

To model the observation signals yy ;) and yy ), the state space representation can be
given by (9), while (10) is replaced by (24).

Y
yl(k}} _ [0 1 0} [x V1(k) o4
=lg o 1| M|+, (24)
Y2(k) Xa(i) 2(k)

On the other hand, Equations (11)—(23) remain the same. In conclusion, the method
suggests that the DC component in the input distorted signal is subtracted before the ECKF
algorithm is applied.

4. Current Control Structure

A block diagram of the FCS-MPC current control structure based on the ECKF es-
timator is presented in Figure 2 to improve the output grid currents of the grid-tie PV
transformerless converter.
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Figure 2. Block diagram of grid-tie PV converter with FCS-MPC current control structure.

Considering the dynamic equation of the grid-tie transformerless voltage source
converter interfaced via an L filter is discussed (R and L are the resistance and inductance
of the filter), it is given in the stationary a3 reference frame by (25). Based on the forward
Euler discretization rule in (26), the discrete predictive current model can be expressed
by (27). In (27), the assumption that the grid voltages at a recent instant are the same as the
last instant is acceptable. The reason is that the periodic time of the grid voltage waveform
is much longer than the sampling time.

diy ,
| _ |Vea|  |Uga| [
L[‘Zf] - [UCﬁ] [UCﬁ] A [f/s] )
L L (26)
S
l:uc(k+1) _ E VC“(") o Vguc(kfl) 4 (1 _ R TS) Z:’X(k) (27)
LB(k+1) L | Vi) — Vepr—1) L LB(k)

To compensate for the control action delay, the current model two steps in advance is

predicted as follows:
) -
B(k+1)

iney2) | _ Ts |V
1B(k+2) L

ca(k+1) — Vgtx(k)
Vepk1) — Vepio)
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As a result, the current references are calculated based on (29)-(32) to suppress active
power 2nd order oscillations depending on the estimated positive and negative fundamen-
tal components [43].

l'-‘r
a(k+2)
» .
le(k+2) _ 1 01 0 lﬂ(k+2) (29)
i 01 0 1|
B(k+2) a(k+2)
(k+2)
where N N
+ Vgag+z> Vebiis2)
a(k+2)
i;(k 1) V;ﬁgﬂ) _ V;ﬁgm [ PV} )
~ = L _ 30
La(k+2) _ Vga(CkH) Vg,sém Q
'p(k+2) _ ‘{Qa(ciwz) B Vg;gchZ)
and,
. + 2 _ 2 + 2 _ 2
C=Vots) ~ Vautr) T Vastra) ~ Veski2) (31)
R 2 _ 2 n 2 _ 2
D= ngx(k—i-Z) + Vgﬂ((k+2) + Vgﬁ(k+2) + Vgﬂ(k+2) (32)

The switching signals corresponding to the optimal voltage vector are obtained such
that the smallest value of the cost function in (33) is achieved:

.7 . 2 7 . 2
G= {la(kJrZ) - la(k+2)] + {l,z(kJrz) ~ 1B(k+2) (33)

5. Simulation Results

The conventional and proposed modified ECKF algorithms are investigated under
biased, unbalanced, and distorted conditions.

A positive fundamental grid reference component (Vg+) with 100 V amplitude is
considered. The voltage unbalance factor (Viir) is given by (34), where V" is the negative
fundamental grid reference component. A value of Vijr is chosen to be 20%. The grid
distortion is considered by adding 5th and 7th harmonics of 12% and 8% of the reference,
respectively.

Ve o o0°
Vur = V7g+ X 00% (34)

White noise is added as presented in Figure 3. The reference abc grid voltages are
transformed using Clarke’s transformation into reference a8 grid components and fed to
the ECKF input in the complex form (z;). Moreover, significant DC offsets (V,s, Vjs, and
Ves) are applied at percentages of 70%, 50%, and 30%, respectively, of the peak value of
the positive fundamental component at instant 0.04 s. The per unit (p.u.) abc grid voltages
and the fundamental positive and negative a components are illustrated in Figure 3 in the
case of conventional and proposed ECKE.

In Figure 4, the output fundamental positive and negative a3 components are trans-
formed into fundamental positive and negative abc components and compared with the
reference positive and negative abc grid voltages for detailed documentation.

Moreover, the grid fundamental frequency under both algorithms is estimated using
(35) and is introduced in Figure 5, where the reference is 50 Hz.

_ 1 [ Tmag(y)
fs = ln<w> (35)
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Figure 3. The abc grid voltages, positive and negative fundamental a8 components in case of
(a) conventional ECKF, and (b) modified ECKEF.

Ref Conventional ECKF Proposed ECKF
40
~ 100 A - A
[ S 20
+ 0 ' 0
) \/ % 20
> 100 > VeV
-40
0 0.020.040.060.08 0.1 0.12 0 0.020.040.060.08 0.1 0.12

S N NNAAANAT £ w A AN AAA

A
0
S \VAIVALVA\VALVALY A e / VY
> -100 V11TV = 40
0 0.020.040.060.08 0.1 0.12 0 0.020.040.060.08 0.1 0.12
Time (s) Time (s)
(a) (b)

Figure 4. The reference and the estimated values of positive and negative components of grid phases
a, b, and c grid voltages in case of (a) conventional ECKF, and (b) modified ECKF.
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Ref Old ECKF Proposed ECKF
70 T T T T T
= 60 4
=._'m
40 .
30 1 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1 0.12

Time (s)

Figure 5. The reference and the estimated grid fundamental frequency in case of conventional and
modified ECKF.

According to the simulation results, both algorithms give correct estimation if the
input signal is free of DC offset. However, the conventional ECKF leads to obvious offsets in
estimated symmetrical components. Moreover, it behaves like oscillations in the estimated
frequency in the case of a biased input signal. Based on the results, the priority of the
proposed modified ECKF in estimating positive and negative fundamental components is
ensured. In conclusion, it is expected that the proposed ECKF will provide harmonic-free
current references, while the reference currents calculated based on the estimated values
introduced by the conventional ECKF may be distorted.

6. Experimental Validation

The experimental setup of the grid-tie PV converter is shown in Figure 6. To investigate
the conventional and the proposed ECKF under unbalanced and distorted conditions, series
resistance is used to increase the phase voltage (vg,) by 14% (unbalance condition), and a
high nonlinear rectifier load is shunted with the phases on the AC grid side to produce
voltage distortion (distorted behavior). The OP4510 real-time simulator with four digital
and analog I/O modules is used with a clock frequency of 2.1 GHz. The IKCM30F60GD
fully isolated voltage source converter module is combined with three LV 25-P voltage
sensors and three LA 25-NP hall effect current sensors to interface with a three-phase
programmable source via an L filter, as shown in Figure 6. A 100 V DC supply is used as
the DC link voltage. Hence, the maximum AC grid voltage in this case will be 28 V rms.
For more details, Table 1 presents the system parameters.

Current
SCNsSors Two Le\'el
i VSC

series
Resistance

High
Nonlinear Load

@
Three Phase
~"AC Supply”

Figure 6. Experimental test setup.
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Table 1. Hardware parameters.

Parameters Symbol Value (Unit)
Grid phase voltage (RMS) v?ub . 28V
Grid fundamental frequency fi 50 Hz
Switching frequency fsw 10 kHz
DC link voltage Vie 100V
Filter Inductance L 6.7 mH
Filter Resistance R 1.6 O)

Considering the measurement errors in Table 2, the grid voltages are biased, as shown
in Figure 7. By applying the empirically determined values of the Kalman covariance matri-
ces given by (36) and (37), the estimated positive fundamental a3 components presented in
Figure 8 behave more accurately using the modified ECKF compared with the conventional
ECKE. On the other hand, the DC offsets and phase shift errors in the estimated negative
a3 components are obvious in the case of conventional ECKEF, as illustrated in Figure 9.
Consequently, a zoomed view is presented in Figure 10 to configure the reference currents
calculated based on the estimated symmetrical components in the case of conventional

ECKEF or modified ECKF.
5¢=17 0 0
Q=| 0 5% 0 (36)
0 0 5e®
R = [100] (37)
50 C T T T |
&
B 0 R T A ' S " AN N . SR A "N A RN SR S A S SR S Y S '
cnuo ol * A by
- )
-50
10.9 10.92 10.94 10.96 10.98 11

Time (s)

Figure 7. Three-phase grid voltages (unbalanced distorted conditions).

--------- Conventional ECKF ------------ Modified ECKF
T T T T =

10.9 10.92 10.94 10.96 10.98 11
Time (s)

Figure 8. The estimated positive fundamental a8 components in case of conventional and
modified ECKF.
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10.9 10.92 10.94 10.96 10.98
Time (s)

Figure 9. The estimated negative fundamental a components in case of conventional and
modified ECKFE.

92}

reference currents (A)
=)

[
)]

10.95 10.955 1096 10.965 10.97 10.975 10.98 10.985 10.99
Time (s)

Figure 10. Zoomed view for the reference currents in case of conventional and modified ECKF.

Table 2. Scaling errors and measurement offsets.

Ak, —0.02 Vs +2.5
Ak, —0.08 Vs -2
Ak, +0.08 Vi -15

To investigate the effectiveness of the modified ECKF over the conventional one, the
frequency responses of the accompanying reference currents are presented in Figure 11.
The main observation is the appearance of a 2nd order harmonic component in the case of
conventional ECKF as a result of the false estimation of positive and negative components.
Therefore, the total harmonic distortion (THD) in the case of modified ECKF is much
smaller than that of the conventional ECKF.
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Figure 11. The frequency response of the reference currents in case of (a) conventional ECKF and
(b) modified ECKF.

The three-phase grid currents are illustrated in Figures 12 and 13 in the case of conven-
tional and modified ECKF, respectively. More smooth output currents are provided in the
case of modified ECKEF, as shown in Figure 13. Moreover, the modified ECKF offers a better
estimation for the grid frequency, as shown in Figure 14. On the other side, the predicted
grid frequency oscillates in the case of conventional ECKF.

5
i \W \ LW i d \ "
~ \ / ! l | } l I\ /
2, /Y . ,
3 ’ o | VL | /Y
i i b
\ ! \ b
{ \
M |
-5
109 1091 1092 1093 1094 1095 1096 10.97 10.98 10.99 11
Time (s)
Figure 12. Three-phase grid currents in case of conventional ECKF. Phase a is in green colour, b is
violet, and c is blue.
5
i ! I
| \ \ i
1 \
i \ 1 \ [ /
~ ‘ \ :
S 0 } y ‘ / f
o 1]
.._._‘% ‘ i . / ‘\
4 i ] { J f \
-5
109 1091 1092 1093 1094 1095 1096 1097 1098 10.99 11
Time (s)

Figure 13. Three-phase grid currents in case of modified ECKF.
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Conventional ECKF Proped ECKF |

70 T
60 | ] ! ] ] .

4_0_ : 1 1 L -

f_(Hz)

%]

30 1 1 1 1
10.9 10.92 10.94 10.96 10.98 11

Time (s)
Figure 14. The estimated grid frequency in case of conventional and modified ECKFE.

7. Discussion

The proposed technique ECKF has been introduced to estimate the sequence compo-
nents of biased, unbalanced, and distorted grid voltages caused by the existence of DC
offsets generated from the measurement and A/D conversion stages.

The simulation results show that the conventional ECKF provides a poor response
compared with the modified ECKF in the case of biased grid voltages. In addition, an
experimental setup is introduced where the FCS model predictive current controller is used
and the reference currents are generated based on the positive and negative fundamental
components estimated by using the conventional and modified ECKF. Experimental results
have been introduced to validate the priority of the proposed ECKF over the conventional
one in the case of unbalanced and distorted conditions. As illustrated in Table 3, the current
THD in the case of modified ECKEF is reduced by 80% compared with the conventional one.

Table 3. THD results.

Conventional ECKF Modified ECKF Reduction Percentage
THD 7.81 THD 1.58 Reduction 80%

In general, the modified ECKF estimator achieves less total harmonic distortion and
corrects current magnitudes and phase angles as compared with the conventional ECKF
filter presented in the literature.

It is worth noting that this proposed ECKF is unable to deal with even harmonics due
to possible nonlinearities and asymmetries, which are postponed for future work. This
point can be useful for current tracking in grid-tie uncontrolled rectifier applications.

8. Conclusions

In this paper, the proposed ECKEF filter has been introduced to estimate the positive
and negative sequence components of biased, unbalanced, and distorted grid conditions of
grid-tie transformerless converters while considering the existence of a DC offset generated
from measurement and an A /D conversion. The proposed ECKF estimator presents better
estimated results compared with the conventional ECKF used in the literature. The current
harmonic distortion is reduced by 80% and, consequentially, yields a better performance in
the overall current control structure.
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