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Featured Application: When multiple AUVs are combined in formation, they can improve oper-
ational efficiency while maintaining mutual communication. This article focuses on the obsta-
cle avoidance problems en-countered by AUV formations during collaborative search and target
capture, proposes an energy cost optimal formation obstacle avoidance strategy and an improved
SOM path planning algorithm to achieve target capture by occupying adjacent positions of target
in the underwater obstacle environment.

Abstract: When performing cooperative search operations underwater, multi-autonomous under-
water vehicles formations may encounter array-type obstacles such as gullies and bumps. To safely
traverse the obstacle domain, this paper balances convergence time, transformation distance and
sensor network power consumption, and proposes a Formation Comprehensive Cost (FCC) model
to achieve collision avoidance of the formations. The FCC model is used instead of the fitness
function of the genetic algorithm to solve the assignment of capture positions and the improved
neural self-organizing map (INSOM) algorithm is proposed to achieve efficient path-planning during
the capture process. The simulation experiments in 3D space verify that the proposed scheme can
improve the efficiency of robot deployment while ensuring safety.

Keywords: multi-AUV formation;
path planning; target capture

dynamic formation transformation; task assignment;

1. Introduction

As a disruptive technology that changes the way society works and lives in the future,
unmanned system technology has received a lot of attention and rapid development in
academia and industry, among which the application of intelligent decision making robots
in resource exploration, environmental monitoring, biological research, etc., has became a
hotspot for research [1-3]. When operating in unknown waters, the operation efficiency and
detection range of a single autonomous underwater vehicle (AUV) are limited by the size of
the platform, while multiple AUVs operating in formation can not only improve the search
efficiency, but also achieve cooperative positioning with a short communication time delay
to ensure the accuracy of underwater navigation and operational safety, while the robots in
the formation can occupy the coordinates around the target in a many-to-one manner to
complete the capture task. Therefore, it is important to study the mission-planning of AUV
formations in different environments.

In the unknown underwater environment, the AUV formation completes the cap-
ture of underwater targets in two stages: search and capture. Since the terrain obstacles
can affect the safety of the formation, the array-shaped obstacles formed by submarine
gullies and bulges make the AUV formation unable to maintain the original structure;
therefore, whether the robots can complete the formation change independently accord-
ing to the distribution of obstacles during operation has a great impact on the safety of
cooperative operation.
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Formation transformation [4,5] is mainly divided into static and dynamic: static
formation transformation generally refers to fixed-formation transformations when obstacle
distribution is not considered. Desai [6] applied nonlinear control theory and graph theory
methods to study formation control strategies for mobile robots, using double rows or
a columnar parade through obstacle areas, but such schemes cannot adaptively adjust
the formation according to environmental information, have low flexibility and high time
and energy costs, and have large limitations. Yan, Z et al. [7,8] virtually tracked linear
formations using an improved artificial potential field method, but the linear structure has
a high repetition rate in its detection range and low efficiency in cooperative detection.
Ding, G et al. [9,10] proposed a controller based on a neural network model, which can
better maintain the formation of AUVs, but did not discuss the case of traversing large
obstacle domains. The dynamic formation transformation can select the optimal formation
autonomously based on the environmental information. Jiang R X et al. [11] proposed an
optimal efficiency model for evaluating multi-robot formation transformation for obstacle
domains, choosing formation convergence time and path length as evaluation criteria,
respectively, but the two models are difficult to balance in practical applications [12].

After searching for a target, whether the robots in the formation can quickly complete
the assignment of capture positions and dynamically path-plan has a great impact on
the efficiency of the capture operation. Cai, W [13] resolved the Multiple Traveling Sales
Person (MTSP) problem using a genetic algorithm (GA), but Euclidean distance was the
only cost function. Ma, X [14] and Zhu, D [15] both proposed a self-organizing neural-
network-based task assignment method, but did not consider the robot’s own load energy
consumption. The path-planning algorithms such as A* [16-18], neural network [19-21], ant
colony [22-24] and reinforcement learning [25-28], etc., are more mature. Ma, X et al. [29,30]
proposed a bionic neural wave network (BNWN) algorithm to complete the path-planning
in a multi-AUVs collaborative target capture process; however, the computational effort
is large and the real-time performance is difficult to guarantee. Hadi, B [31] proposed a
path-planning and formation control strategy for the two key problems of AUV collision
avoidance and obstacle avoidance but lacked experimental proof of simulation in 3D space.

This paper addresses the process of cooperative search and target capture in unknown
waters by the formation of multiple AUVSs, with the following main contributions:

e  For the formation avoidance problem in the process of searching for targets in un-
known waters, a Formation Comprehensive Cost (FCC) model that balances the
convergence time, transformation distance and load energy consumption is proposed
to realize the collision avoidance of array-shaped obstacles.

e  The FCC model is introduced to the genetic algorithm to solve the assignment problem
of capture position.

e Animproved neural self-organizing map (INSOM) algorithm is proposed to realize
path-planning during the capture process, and the feasibility of the proposed scheme
in different types of obstacle environments is verified by simulation experiments.

The rest of the paper is organized as follows: Section 2 describes the general flow of
the proposed formation capture scheme. Section 3 establishes the simulation environment
model, describes the position change of each robot during the formation transformation
using the formation parameter information matrix, and proposes an FCC model that
balances the convergence time, transformation distance and load energy consumption
to realize the formation change during the search process. Section 4 introduces the FCC
model to GA to complete the allocation of capture positions within the formation and
combines this with the INSOM algorithm to realize the rapid deployment of robots in
collaborative capture. Section 5 shows and explains the simulation experimental results.
Section 6 summarizes the proposed target capture scheme.

2. Target Capture Scheme for AUV Formation

When operating in waters where the target location is unknown, AUVs can sense the
surrounding environment through various sensors that are carried by themselves (such
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as multibeam forward-looking sonar and underwater camera), and use multi-source data
fusion and target identification technology to obtain information regarding the obstacles
and targets in the environment, providing data support for collision avoidance and target
capture in AUV formation.

The process of AUV formation when capturing targets in an unknown environment
is shown in Figure 1, and the whole operation process is divided into two major parts,
cooperative search and target capture, based on whether the robot formation finds the
target. After the initialization of the formation, the robots keep the preset structure to detect
the operating water in the forbidden search mode; if an obstacle is detected, they will judge
whether they need to change the formation, and, if so, they will cross the obstacle domain
with the optimal formation after the change, and then revert to the original formation to
continue the search. When the formation senses the location of the target, the system enters
the capture phase. After the task assignment, the system informs the corresponding robot
of the capture location, and then combines with the path-planning algorithm to complete
the containment of the target. Since the formation change strategy, task assignment and
path-planning method directly affect the efficiency and safety of the operation, they are the
focus of this paper.

Formation Search Target Capture
/ AUV formation \ / N
initialization
Target [ Task assignment ]

| TabuSearch | w

Dynamic formation
change for obstacle [ Path Planning ]

\ avoidance / A\ 4

Figure 1. Overall block diagram of AUV formation capture in unknown environment.

3. Formation Cooperative Search and Transformation Strategy
3.1. Formation and Environment Initialization

The commonly used robot formation is shown in Figure 2a—e, and in order to achieve
a cooperative exploration at different depths and reduce unnecessary energy consumption
when moving in AUV formation [32,33], this paper chose a formation structure based on
the geese type to complete the formation initialization (as shown in Figure 2f), in which
the bottom robot extends the exploration range in two directions at 90°, and the interval
between neighboring robots is the distance threshold Dg, which is used to ensure the
communication quality. The system randomly selects a robot as the initial virtual leader
during the collaborative search process, and when any robot in the formation detects an
obstacle, it switches to the new virtual leader to guide the other robots in their travels,
resulting in a high formation flexibility and fault tolerance.

{1 % ﬁ i ..... 1 :(’;’
e T U TS N R
A . % y 4 11 /g/

(a) Linear  (b) Wedge (c) Column (d) Triangle (¢) Double row (f) Goose
Figure 2. Schematic diagram of different formations.

When the formation encounters a complex obstacle environment in the form of subma-
rine gullies and bulges due to crustal movements, robots must be able to change formation
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to traverse the obstacle domain, guarantee the communication quality between AUVs and
take advantage of cooperative operations. To facilitate an explanation of the proposed
scheme, an underwater virtual environment containing a large array of obstacles is created
in this paper (Figure 3). The yellow cube represents the target, the cubes distributed around
it represent the small obstacles, the four dark columns represent the large obstacle areas,
and the six cyan nodes represent the formation of six AUVs.

Obstacle domain

4\ Dynamic target
W /
L= O =]

Obstacle

300 300

Multi AUV system
200

100
y 0 0 X

Figure 3. Underwater virtual environment.

3.2. Formation Control Scheme

When large obstacles are encountered during the search process, multiple AUVs
traverse the obstacle domain in formation transformation, which can take advantage of
cooperative search and ensure the communication quality between robots. The formation
recovery can be completed in the shortest time after traversing the obstacles. To facilitate
the analysis of a formation traversal mode in array-type obstacle domains, a formation
control model is provided in this section to describe the position change of each robot
during the formation transformation using the formation parameter information matrix

as follows: BTi (t) + i fi + fe
‘ _J BTie—y(t) +pix fi+ fe
BT(t+ta) = 0 gy Y1)+« o4 7 v
i=12---,N

where t is the start time of the transformation, ¢, is the total time needed to complete
the transformation, BT (t) represents the coordinates of the virtual leader before the
transformation, BTj; (¢ + t,;;) represents the coordinates of the robots in the formation after
the transformation, y; and f; are the deformation control rate and the team control function
of the i-th robot, respectively, and f is the virtual structure point motion control function
set in Section 3.1.

The N AUVs in the formation are denoted as Ry, R,... Ry, and the state of the i-th
robot R; is represented as S;. If R; is set as the leader, then S; = 1; otherwise, S; = 0. To
represent the state and formation of each robot, Equations (2) and (3) define the parameter
information matrix of the leader and non-leader AUVs, respectively.

R;
F = S; )
BTy;(t)
R;
FE=1 S 3)

Wi * fi
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If Ry is set as the virtual leader, the parameter information matrix F for the whole
formation can be expressed as:

Ry Ry R; Ry
F:[Pl,Fz...Fi...,FN]: Sq S S; SN (4)
BTi(t) pax fax)  pixfi(x) pnxfn(x)
Meanwhile, the robots inside the formation need to satisfy the collision avoidance

constraint, i.e., the distance between any two robots is greater than or equal to the safety
distance Lg:

IR~ Rj| = \/(xi = %2+ (i — y)* + (2 — 2 = Ls 5)

In this paper, the geese formation is set as the basic search formation, and the trans-
formed formations can evolve from the basic formation. For the convenience of explanation,
several formation transformation schemes when the geese formation encounters a large
obstacle domain are projected onto the XOY plane to obtain Figure 4. If an array-type
obstacle domain is detected during the formation cooperative search, the feasible spacing

D, of the obstacle domain is compared with the maximum spacing D; (Dr = ZﬁD5> of

the robots in the formation to determine whether the current formation can traverse the
obstacle domain. If it cannot, then whether Figure 4b,c obtained by modifying y is feasible
is determined, and if it is still not possible to traverse the obstacle domain, Figure 4d,
obtained by changing f as the traversal formation, is chosen. Most of the existing formation
transformation strategies address the special state where the leader is on the central axis of
the obstacle domain, so the analysis of the energy consumption during transformation is
incomplete, and the transformation scheme shown in this paper complements the situation
where the leader is on both sides of the central axis (Figure 4b), which is more adaptable.

(@) (b) (©) (d)

Figure 4. Formation change scheme when crossing array-type obstacles. (a) Formation I (b) Formation
II (c) Formation III (d) Formation I'V.

The AUV formation achieves an adaptive search through the forbidden search mecha-
nism and the adjustment of sensor detection distance, and performs formation transfor-
mation under the constraint of Equation (1) to adapt to the change in environment and
operational requirements. When any single robot in the formation detects an obstacle, this
robot is set as the leader and the rest of the robots switch to the follower state. The system
switches from the formation cooperative search state to the distributed tracking state when
the target is detected, and the cooperative capture of the target is realized through the
path-planning algorithm.

The advantage of this formation control method is that each AUV can be considered
a virtual pilot, and the other AUVs choose their own movement according to the virtual
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pilot. By replacing the virtual leader when the leader breaks down, the whole formation
can continue to operate without going into a paralyzed state. When a robot fails, the robot
can still navigate according to the path that was planned at the previous moment, and other
robots can reach the designated target position according to the original plan, with a strong
fault tolerance.

3.3. Formation Comprehensive Cost (FCC) Model

Various evaluation models have been proposed by researchers to address the energy
consumption problem in dynamic formation transformation. The optimal formation con-
vergence time (FCT) efficiency model [11] aims to find the robot that consumes the most
time ¢; in the formation transformation and minimizes its moving distance, and the shortest
convergence time model that is obtained is:

T = minmax{ty, t, t3...t,} (6)

The objective of the optimal formation energy consumption (FEC) efficiency model [11]
is to calculate and minimize the sum of all robots moving in the formation transformation,
and the resulting minimum energy consumption model is (with s; representing the sum of
paths for each AUV in the k-th permutation):

D = mil’l{Sl,Sz,Sg...Sk} (7)

Most of the existing formation transformation schemes are based on the above two models;
however, the minimum time and the minimum energy consumption obtain different optimal
results in some environments, and the power consumption of the sensors inside the platform
during the operation (e.g., forward-looking sonar sensing the surrounding environment) is
ignored. Therefore, this paper further considers the power consumption brought by hardware
systems such as sensor networks inside the robot, combines the energy consumption caused
by motion transformation with the inherent hardware energy consumption of the transfor-
mation process, and proposes a formation comprehensive cost (FCC) model that integrates
the convergence time, transformation distance and load energy consumption, as shown in
Equation (8):

. k= 3 di’jdl"j—i_l Dmax
minE = min Av; +
izzl (( ]; l Ug Ug

Po) (8)

The first half of Equation (8) represents the energy consumption caused by the dis-
tance the AUV moves when changing formation, and the second half represents the energy
consumption of the system load, which is determined by the formation convergence time.
A represents the water resistance coefficient, which is related to the AUV shape and under-
water environment, v; represents the propulsion speed of the AUV propeller, v, represents
the motion speed of the AUV relative to the geodesic coordinate system, py represents the
inherent power consumption of the AUV, which is determined by the consumption of the
internal components of the robot, k; represents the number of path points passed by the
i-th AUV, and d; is the position of each path point during the transformation. Dy« denotes
the maximum distance the robot moves during the formation change and is given by
Equation (9):

k-1

Dmax = max{ Z
j=1

kp—1

L

=1

ki—1

ey

j=1

kn—1

¥

j=1

e
dn,jdn,jJrl

dy,jd1,j+1 dy s j11 dijdij1 boO)

By bringing Equation (1) into Equation (8), the integrated energy consumption en-
vironment adaptation function for dynamic formation transformation can be obtained
as follows:
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LA BT, 1)—BTy;_.(#)(1
mlnigl (( E )LU 3 H li— x(H‘ )vg li x(t)( )H) 4 Dvmn 0)
. .o BTy, (++1)(2)—BT);_
minE = mlnigl (( tzl /\ 3 || ! y )(Ug I y || ) Dzr]r;ax po) (10)
n tt—l
: 3BTy, (t4+1)(3) =BTy, (t) (3)]| Dimax
mlnig ((t§1 Avi Ug ) T _LPO)

For energy consumption analysis of the formation transformation, this paper uses the
position of each robot in the formation within the grid network as the basis for solving the
position of the robot at the minimum fitness value (the formation transformation with the
lowest integrated cost) using the FCC model.

3.4. Formation Cooperative Search Process

The flow of the AUV formation in the collaborative search process is shown in Figure 5:
if any robot in the formation detects a target, then the search process ends and enters the
subsequent capture process; otherwise, the formation senses the environment in the form
of a forbidden search. If the formation detects an array-type obstacle field during the
cooperative search, it compares the feasible spacing of the obstacle field with the maximum
spacing of the robots in the formation to determine whether the current formation can pass
the obstacle field. If the AUV formation must change its formation to pass the obstacle field,
the system selects the optimal formation through the environmental adaptation function
in the FCC model, controls the AUV formation to reach the position corresponding to the
optimal formation, and keeps the original heading to cross the obstacle field; otherwise,
the AUV formation does not need to change its formation, and crosses the obstacle field in
a straight line to save energy. When the robot at the end of the formation is far from the
obstacle domain, the formation changes back to the base formation of geese and continues
to perform search operations until the target is detected.

Does the AUV
formation sense
the target?

End the
search process

Does the AUV
formation sense
he obstacle area2

Has the leader
crossed the
obstacle area?
Have all
AUVs crossed
the obstacle
area?

Obtain the optimal
formation by the
proposed environmental
fitness function

Keep the

formation shape
unchanged Complete the

transformation of
formation

Restore the wild
goose formation

Figure 5. Flow chart of dynamic formation transformation.
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4. Target Cooperative Capture
4.1. GA-Based Tusk Assignment

In a 3D underwater space, a formation is judged to have successfully captured a target
when the robots in the formation occupy each of the six neighborhood positions around
the target. Therefore, task assignment is required to determine the capture position of each
robot after the formation enters the capture phase, and the assignment result affects the
deployment speed and capture efficiency of the robots.

The traditional exhaustive enumeration method is widely used in task assignment.
Although the exhaustive enumeration strategy can obtain the optimal solution, it contains
randomness and uncertainty, and the complexity of the algorithm increases as the number
of targets to be assigned increases (there are N! kinds of assignment schemes for N targets).
If there are too many targets to be assigned, the strategy may not converge to obtain the
optimal solution in finite time. In addition, when the target moves, the capture points
around it are changing, and the task points assigned to each robot are also dynamically
changing. If the grid density is large, the exhaustive method will seriously affect the
real-time performance of the algorithm, while the small grid density cannot guarantee that
the optimal assignment scheme will be obtained.

The genetic algorithm is based on pattern theorem and Markov chain model, so its
search possesses a better directionality, fast computation, and smaller probability of falling
into local optimum; however, the problem of under- or over-assignment may occur. In
addition, individuals with higher fitness in the genetic process have a higher probability of
being inherited by the next generation, but the fitness function based on Euclidean distance
cannot achieve dual evolution in time and space.

The optimization goal of task assignment is the lowest total energy consumption
required as the robot occupies the corresponding position. In this paper, we propose a GA-
based task assignment method (Figure 6), where the formation obtains different position
assignments that are actually equivalent to the robot team transformation again, so this
paper introduces the FCC model to the GA process to replace the original fitness function
and make the natural selection in the evolutionary process more realistic. This is integrated
with the reassignment strategy to solve the possible over- and under-assignment problems.

Unassigned tasks

and agents Calculate the number of tasks
assigned to each robot: Pi

Generate initial
population

Calculate the fitness function Assigning tasks by

the environmental
Has the fitness function of

unallocat
number of ed robots the FCEC model

iterations been
reached?

Assign and Record assigned tasks and
record the task return unprocessed tasks

Selection

Figure 6. Flow chart of the improved genetic assignment algorithm.
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The fitness function chosen by the genetic algorithm to solve the minimization
problem is:

fit(x) = *i w;x; (11)
i=1

A new objective function is constructed by bringing Equation (8) into the objective

function of the genetic algorithm:
n

f(x) = min) _ w;x; (12)
i=1
where
—
ki—1 ‘ dijd;ji1 D
xi= () Av? )+ —=po (13)
=1 Ug Us

Experimental verification: the number of individuals was set to 6, the maximum
genetic generation was set to 100, the generation gap was set to 0.9, and the chromosome
length was set to 6. After several iterations, the target assignment results of the six robots
are shown in Table 1.

Table 1. Assignment results of different methods.

Capture PositionMethod

Method 1 2 3 4 5 6
GA 1 1 2 2 4 6

Exhaustive method 1 3 2 5 4 6

Proposed 1 3 2 5 4 6

As can be seen from Table 1, the initial genetic algorithm suffers from over- and under-
assignment problems, while the improved GA method proposed in this paper achieves
uniqueness in target assignment, which is consistent with the results obtained by the
exhaustive method. In addition, the target assignment scheme based on the GA reflects
the faster convergence speed, as shown in Figure 7. The greater the number of robots in
the formation and the assignment target, the greater the computational advantage of the
proposed scheme and the better its applicability to the assignment problem of different
formations.

-55 . . . . . . . v .

} I s Solution change
60 F i i Change in population mean | |

-65 +:

-70

75

Fitness value

-80

-85

-90 ~

95 " " " " " " . " .
0 10 20 30 40 50 60 70 80 9 100

Generation

Figure 7. Iteration results of the improved genetic assignment algorithm.
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4.2. Improved Neural Self-Organizing Map (INSOM) Algorithm

SOM is an unsupervised clustering algorithm that uses the target as the input layer
of the neural network and the current position of the robot as the output layer (Figure 8),
and determines the winner of the next iteration position by competing for distance at-
tributes [10], while the weight update rules for the winning neuron and its neighbors as
they move towards the input neuron (the target) are defined as:

. _ | T D i1 < Dyin
Rjlk+1) = { Ri(K) + &+ f(dn, G) - (Ty — Rj(K)), others 14)
where R; = (wjx, Wiy, wjz) denotes the position of the j-th AUV, T; = (x,y,z;) denotes the
position of the i-th target, & (0 < a < 1) is the learning rate, D,,;, denotes the minimum
decision distance to reach the target, and the neighborhood function f determines the
degree of attraction of the winner to the neighborhood neurons, given by Equation (15):

f(drmG) = {

_d%1 / G2 (t)
e , Ay <A (15)
0, dm > A
dy, denotes the Euclidean distance of the m-th neuron from the winning neuron, A is the
neighborhood radius, and G(t) = (1 — B)'Gy is a Gaussian function determined by the
decay factor .

J
xl(t—l—l) :g<2w1]*x](t)+ll> (16)
j=1

e li=il?, ’i —j‘S r
w,-]- =

0, li—j|>r
0, x<0 (17)
gx) =4q Bx, x€[0,1]
1, x>1
09000900
009009 O®
R; Output
. . . . . layer
7
PRPAP Input layer

Tl T2 !

Figure 8. The network structures of SOM.

The traditional SOM algorithm does not have the obstacle avoidance ability and the
robot suffers from speed jumps, which may exceed the actual motion capability of the
platform. Zhu Dagi et al. [20] used the GBNN model (Equations (16) and (17)) to construct
an active network of neurons to solve the robot’s obstacle avoidance and speed problems;
however, the computational speed in the process of iteratively spreading the target activity
layer by layer to the global activity is greatly influenced by the scale and number of grids,
and the finer the grids and the larger the operational scale the slower the computational
speed, making it difficult to rapidly deploy the task. In addition, the robot’s manipulation
constraints are not considered when traveling to the next iteration point, and there may be
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cases where the steering exceeds 90° (e.g., in Figure 9, if the robot drives from the green
node to the red node, the next iteration point should not return to the plane where the
green node is located).

Figure 9. Twenty-six neighborhood points of AUV.

To solve the above problems, this paper proposes an improved neural self-organizing

map (INSOM) algorithm, which takes the target as the global origin of activity and the
obstacle as the local origin. The activity value of neurons decreases layer by layer, with
the origin point as the center, and the robot only needs to calculate and compare the
activity value magnitude of neighboring neurons to update the path points to achieve
path-planning. The algorithm flow is as follows:

1.

Denote Py, € U(P;, r) as the neighboring node (r < ﬂ) of the current node P (x¢, yt, z¢),

- = — —
and cos{ A, B ) denotes the angle between the vector A and B. Then, the neighboring

nodes should satisfy the steering constraint:

— s —— s
cos<Pt_1Pt, PPy, > < 5 (18)

A simplified activity value calculation method (Equation (19)) is proposed, where the
activity value of a node does not depend on the activity of neighboring nodes, thus
reducing the waste of resources caused by the cumulative calculation in Equation (16).

Xim(i) = Et = - Dr—i + §(Dgp—i) - Eop (19)

where Xy, (i) denotes the activity of the i-th neighbor node of the current node, E;
and E, are the activities of the target and obstacle nodes, respectively, the target point
gravitational factor v satisfies 0 < v < 1, Dr_; denotes the distance from the i-th
neighbor node to the target point, and g(D,;_;) is the obstacle influence activation
function given by Equation (20):

2
g(Dobfi) - { IB/DOhii, Dop—i = Rop

0, others (20)

where § is the obstacle local repulsion factor, D,,_; denotes the distance from the i-th
neighborhood node to the obstacle, and R, is the influence range of the obstacle.
The next virtual iteration point Q;1 of the robot can be calculated by Equation (21):

o —_— T
Qi1 = argmax{Xpm,,Ptm e U(P, 1) ﬁcos<Pt_1Pt, P; Py, > < 2} (21)
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4. Inconclusion, the next path point P, of AUV can be calculated by Equation (22):

DT—Pt S Dmin

T
P, — 4 22
t+l { Pr+a-f-(Qi1—Pt),Dr—p, > Dy @2)

where #(0 <& < 1) is the learning efficiency, and in this paper, the robot corresponds
to the capture position of each target, so the neighborhood function f = 1 can further
reduce the computation time.

In the improved algorithm proposed in this paper, the robot does not need to traverse
the entire grid network, but only needs to compare the activity values of neighboring nodes
to complete the iteration of path points, and the node activity values do not need to be
cumulatively calculated in Equation (16), so the computational speed of the algorithm
is improved. Equation (18) makes the steering of path points more consistent with the
platform manipulation constraints. In addition, Equations (19) and (20) ensure the safety of
obstacle avoidance in the robot.

In summary, when each robot in the formation determines the capture position through
the task assignment in the previous section, the improved algorithm proposed in this paper
can realize the rapid deployment of robots in the process of cooperative target capture.

5. Simulation Analysis
5.1. Environment Initialization

In order to further verify the effectiveness of the proposed formation transformation
strategy and path-planning algorithm, and to demonstrate the integration effect of the
cooperative search and target capture process, a 3D underwater environment containing
an array-type obstacle domain was established with the help of the MatlabR2022a platform
in this paper (Figure 3), a simulation analysis of the formation composed of six robots
was carried out, and the simulation experiments were completed with several groups of
different parameters. Table 2 shows the initial position of the set AUV formation and the
obstacle distribution.

Table 2. Simulation experiment environment setup.

Robot Number Coordinates of the Robots Coordinates of the Target Coordinates of the Obstacles
1 (60, 150, 150) (250, 150, 150) (100, 0, 0~300)
2 (35, 125, 150) - (100, 120, 0~300)
3 (35,175, 150) - (100, 300, 0~300)
4 (10, 100, 150) - -
5 (10, 200, 150) - -
6 (60, 150, 100) - -

By calculating the power of each component of the AUV platform, the ratio of AUV
motion power consumption to its own component power consumption is empirically set to
16:9 (adaptive adjustment according to different loads on different platforms). The settings
of some parameters in the FCC model are shown in Table 3, and their magnitudes can be
changed according to the different environments and normalized in this paper without
setting specific units.

Table 3. Parameter setting.

Parameter Ey E, Vg Po Dg
Value —20 20 4 70.3 90

5.2. Effect of Robot Performance on Formation Transformation

From Equation (8), the navigation state of the robot itself was shown to have a great
influence on the choice of the formation transformation scheme, so this section discusses
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the influence of different state parameters on the transformation scheme. The performance
of the robot is affected by its internal space limitation (limited battery compartment and
drive unit, etc.) and water resistance, and the navigation speed was set to within 10 m/s in
this paper. Because of the random nature of the taboo search, the data obtained from each
trial were not identical, and Table 4 shows several representative sets of results (values are
normalized).

Table 4. Influence of robot navigation state on transformation scheme.

Transformation Convergence Total Path Length of the Comg rehensive
%8 0 Scheme Time Transformation nergy.
Consumption
05 703 571 92.1954 138.4584 3.8923 x 10*
1 70.3 571 46.0977 138.4584 1.9582 x 10*
2 70.3 571 23.0489 138.4584 1.0276 x 10*
4 70.3 571 11.5244 138.4584 0.7076 x 10*
5 70.3 1371 9.4868 132.4342 0.7312 x 10*
10 703 1371 4.7434 132.4342 1.5244 x 10*
4 20.3 1371 11.8585 132.4342 3.5420 x 10*
4 30.3 1371 11.8585 132.4342 42535 x 10
4 40.3 1371 11.8585 132.4342 4.9650 x 10*
4 50.3 571 11.5244 138.4584 5.6727 x 10*
4 60.3 571 11.5244 138.4584 6.3641 x 10*

As can be seen from Table 4, the FCC model proposed in this paper can autonomously
select dynamic formation transformation schemes according to the different robot navi-
gation parameters (vg and py), and each scheme corresponds to a unique y and f, thus
constraining the formation. In addition, the FCC model also leaves an interface for envi-
ronmental factors such as ocean currents, which can simulate the formation change under
ocean current disturbance.

5.3. Operational Results of Robot Formations

For a clearer representation of the search, formation transformation and hunting pro-
cesses, this section provides a detailed description of the transformation process by taking
any of the robot navigation states in Table 4 as an example. When vy= 5 and py = 70.3,
the transformed energy consumption of different formations is shown in Figure 10. From
the results in Table 4, the FCEC model is selected as the 1371st formation transformation
scheme, and this scheme is the one with a less integrated energy consumption under the
premise of smoothly passing the obstacle domain that corresponds to Figure 10.

The whole operational effect of the multi-AUV formation in the current motion state is
shown in Figure 11, and the projection to the XOY coordinate plane is shown in Figure 12.
As can be seen from the figure, the proposed scheme in this paper enables the formation of
multiple AUVs to accomplish the tasks of area search and target capture in an unknown
underwater 3D environment. During the cooperative search process, the formation can
lead to an independent obstacle-avoidance strategy according to the detected array-shaped
obstacles, determine the optimal traversal solution and complete the formation transforma-
tion through the FCC model, and return to the basic wild goose formation after traversing
the obstacle domain to continue the search operation. After detecting the target, the task is
assigned to the robots in the formation using the improved GA. After each robot determines
its own target capture position, it completes the path-planning using the proposed INSOM
algorithm and finally successfully achieves the cooperative target hunting.
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Figure 10. Comparison of energy consumption of different formation transformation schemes. Six
different colored * represent six robots with different numbers within the formation.
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Figure 11. 3D panoramic view of cooperative search, formation transformation and hunting opera-
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Figure 12. 2D projection view for search, formation transformation and hunting operations.

Figures 13 and 14 show the formation transformation process for the 3D and 2D
(projected to the XOY coordinate plane) cases, respectively. From the beginning to the end
of the dynamic formation transformation, the coordinate changes of each robot are shown
in Table 5.
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Figure 13. 3D view of dynamic formation transformation.
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Figure 14. 2D view of dynamic formation transformation.

Table 5. Coordinate change of the robots during the transformation.

Robot
Number

State 1 0 0 0 0 0
Coordinate  (70,160,140)  (45,135,140)  (45,185,140)  (20,110,140)  (20,210,140) (70, 160, 90)
(75,160,140)  (45,135,140) (50,185, 140)  (25,110,140)  (25,210,140) (75, 160, 90)
(80,160,140)  (50,135,140)  (55,185,140)  (25,115,140)  (30,210,140) (80, 160, 90)
(85,160,140) (50, 140,140)  (55,185,140)  (25,120,140)  (30,210,140) (85, 160, 90)

1 2 3 4 5 6

(90,160, 140) (50, 145,140)  (55,185,140)  (25,125,140)  (30,210,140) (90, 160, 90)
(95,160,140)  (50,150,140)  (55,185,140)  (25,130,140)  (30,210,140) (95, 160, 90)
(95,160,140)  (55,150,140)  (55,185,140)  (25,135,140)  (30,210,140) (95, 160, 90)
(95,160, 140) (55, 155,140)  (55,185,140)  (25,140,140)  (30,210,140) (95, 160, 90)
(95,160,140) (55, 155,140)  (55,185,140)  (30,140,140)  (30,210,140) (95, 160, 90)
(95,160, 140) (55, 155,140)  (55,185,140)  (30,145,140)  (30,210,140) (95, 160, 90)

(95, 160, 140) (55, 155, 140) (55, 185, 140) (30, 150, 140) (30, 210, 140) (95, 160, 90)
(95, 160, 140) (55, 155, 140) (55, 185, 140) (30, 155, 140) (30, 210, 140) (95, 160, 90)

5.4. Comparison with Other Formation Transformation Solutions

To further verify the effectiveness of the proposed scheme, this section simulates and
compares the transformation scheme based on the FCC model with the formation trans-
formation scheme given in References [6,11], and the initial environment and parameter
settings of the experiments are the same as those in Section 5.1.

Taking the navigation state of the robot as vy = 4 and pg = 70.3 as an example, if a
fixed column formation is used to cross the obstacle domain [6], the simulation results of
the whole operation process are shown in Figures 15 and 16, which show the results of
the formation transformation process that is projected to the XOY plane. If the method
in the literature [11] is adopted, and the optimal FCT or optimal FEC model is used as
the judgment criterion to select the transformation scheme passing through the obstacle
domain, the whole operation process and its projection to the XOY plane are shown in
Figures 17 and 18. As can be seen from Figures 15-18 the transformation schemes based
on the three models in References [6,11] are all capable of avoiding small obstacles and
traversing large obstacle domains; however, the energy consumption of the formation
transformation schemes is different.
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Figure 18. The formation transformation scheme selected by the FEC model.

To obtain more obvious comparison results, the simulation results of four schemes
with different navigation parameters are given in Table 6 by taking the energy consumption,
convergence time and the total length of the paths in the formation transformation process
as the judgment criteria.
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Table 6. Comparison of different formation transformation schemes.

Combine with

Selection Transformation Energy Convergence  Total Length of
State o . . Target
Criteria Scheme Consumption Time Paths
Capture?
— FCC model 571 0.7076 x 10* 11.5244 138.4584 Yes
g — .
Fixed column - 1.1334 x 10* 16.2500 280.1635 No
formation [6]
— 703 FCT model [11] 551 0.7274 x 10* 11.5244 150.8191 No
Po ' FEC model [11] 1371 0.7121 x 10* 11.8585 132.4342 No
S FCC model 1371 0.7312 x 10* 9.4868 132.4342 Yes
g .
Fixed column - 0.9963 x 104 12.9732 280.1635 No
formation [6]
— 703 FCT model [11] 551 0.7659 x 10* 9.2195 150.8191 No
po ' FEC model [11] 1371 0.7312 x 10* 9.4868 132.4342 No

According to the comparison results in Table 6, it can be seen that passing through
the obstacle area in a fixed formation is the most unreasonable option; in addition to the
maximum transformation path length of the robot, the formation transformation requires
more time and energy than other schemes, while the transformation schemes based on
the FCT and FEC models can be changed according to the environmental constraints, but
will not change with the parameters of the navigation state of the AUV. Therefore, they
have certain limitations. For the judgment criteria in Table 6, the FCC model proposed in
this paper can obtain the optimal formation transformation scheme, which illustrates the
effectiveness and compatibility of the proposed scheme, and can provide different robot
navigation states according to the different formation and obstacle domains. The model
can also be combined with assignment and planning in the target capture process, and has
a higher overall performance in underwater operations.

6. Conclusions

This paper addresses the process of cooperative search and target capture by multi-
AUV formations in unknown waters. The formation traversal mode in the array-type
obstacle domain is analyzed, and the position changes of each robot during the formation
transformation are effectively described using the formation parameter information matrix.
For the optimal transformation problem of the formation, an FCC model that balances
the convergence time, transformation distance and load energy consumption is proposed
to realize the formation avoidance of array-shaped obstacles in the cooperative search
phase. The FCC model is introduced to the genetic algorithm to solve the capture position
assignment problem. The INSOM algorithm is proposed to realize the path-planning in the
capture process, and the feasibility of the proposed scheme in different types of obstacle
environments is verified by simulation experiments. In summary, the proposed scheme can
provide different robot navigation states according to the different formation and obstacle
domains, and can also be combined with the assignment and planning in the target capture
process to improve the efficiency of robot deployment while ensuring safety.

The formation transformation scheme proposed in this article takes natural terrain
such as submarine gullies and protrusions as application scenarios, and lacks research on
depth-direction transformation. Therefore, the proposed scheme has strict usage conditions
for caves, pipelines, and more complex array obstacles that are made manually, and further
research is needed to improve the applicability of the method.
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