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Abstract: Federal learning and privacy protection are inseparable. The participants in federated
learning need to be the targets of privacy protection. On the other hand, federated learning can
also be used as a tool for privacy attacks. Group signature is regarded as an effective tool for
preserving user privacy. Additionally, message recovery is a useful cryptographic primitive that
ensures message recovery during the verification phase. In federated learning, message recovery
can reduce the transmission of parameters and help protect parameter privacy. In this paper, we
propose a lattice-based group signature with message recovery (GS-MR). We then prove that the
GS-MR scheme has full anonymity and traceability under the random oracle model, and we reduce
anonymity and traceability to the hardness assumptions of ring learning with errors (RLWE) and ring
short integer solution (RSIS), respectively. Furthermore, we conduct some experiments to evaluate
the sizes of key and signature, and make a performance comparison between three lattice-based
group signature schemes and the GS-MR scheme. The results show that the message–signature size
of GS-MR is reduced by an average of 39.17% for less than 2000 members.

Keywords: group signature; federal learning; lattice; message recovery; privacy-preserving

1. Introduction

Federated learning is a decentralized machine learning paradigm that enables collabo-
rative model training without the need for centralized data aggregation. Multiple parties,
such as devices or organizations, participate by computing model updates or gradients
locally and exchanging them with a central server [1]. Due to its characteristics, federated
learning has gained increasing attention, particularly in the fields of healthcare, finance,
and the Internet of Things (IoT) [2–4]. However, in federated learning, the importance of
protecting the privacy of participants cannot be overlooked [2]. Therefore, protecting sensi-
tive information becomes a challenging task in the ever-evolving landscape of federated
learning. Based on this premise, group signatures have emerged as an effective tool for
protecting user privacy due to their anonymity and traceability properties.

Group signature, as a special type of digital signature [5], is a research hotspot in public
key cryptography. In the group signature scheme, each member of the group is issued with
a signing key, allowing them to generate signatures anonymously by using the signing
key (anonymity); if there is an abuse of signature power by malicious group members,
the group signature scheme has an entity called the group manager, which can break
anonymity by deriving specific signatories from the signature. Due to the characteristics of
group signature, it can be applied in federated learning to achieve anonymity preservation
and parameter integrity, as well as to prevent dishonest participants from transmitting
malicious data, etc.

However, in conventional group signatures, to ensure message integrity, signers must
send the message along with the signature to the verifier. This poses a significant problem:
during the process of verifying the correctness of the signature, the verifier needs to receive
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all the parameters of the message–signature pairs, with the message often taking up a
significant portion. To address the above problem, Nyberg et al. [6] introduced the concept
of message recovery: It enables the sender to avoid sending the signed message and to
send only the signature, and it can recover the message while confirming the validity of the
signature. This obviously decreases the quantity of information that needs to be transferred,
which saves transmission bandwidth. Moreover, it is more convenient for both the sender
and the receiver. The implementation of message recovery is considered as an encoding
method [7,8], as it involves adding additional information to the signature to achieve
message recoverability. Since then, Islam et al. [9] have proposed a signature scheme
for message recovery with specified verifiers based on elliptic curves and bilinear pairs,
and the scheme was proven to be secure under the stochastic prediction model. In 2020,
Kazmirchuk et al. [10] proposed a provably secure elliptic curve-based digital signature
authentication scheme with message recovery. Their scheme uses a hash token function
instead of a hash function, allowing for reversed signature and verification procedures and
message recovery from the signature r-component. In 2013, Tian et al. [11] first introduced
the concept of message recovery to lattice-based cryptography. In 2023, Wu et al. [12]
proposed an identity-based proxy signature scheme on the lattice, and it also worked
with message recovery. The difference between traditional digital signatures and message
recovery signatures is shown in Figure 1.
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Nevertheless, to the best of our knowledge, the group signature schemes currently
proposed do not possess the functionality of message recovery. This will directly result in
group members having to send additional messages to the verifier. Therefore, constructing
a group signature scheme with message recovery (GS-MR) will reduce the amount of data
received by the verifier and provide greater transparency and application scalability to
group privacy scenarios. Furthermore, in domains such as federated learning, the GS-MR
scheme has significant advantages over traditional group signature schemes. For example,
in federated learning, participants train the model locally and send the model parameter
updates to a central server, which aggregates these parameter updates and distributes the
aggregated model parameters to the participants. The GS-MR scheme can be used to verify
the integrity of the model parameters transmitted by the central server and to recover
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the original model update information. This ensures that the model parameters are not
tampered with during the transmission process and provides verifiability of the results to
the participants. In addition, in certain scenarios, such as model analysis or debugging of
model updates, federated learning may require the recovery of the original participant data
without centralizing the raw data on the central server. The GS-MR scheme can facilitate
the recovery of participants’ original data from the group signatures, eliminating the need
for centralized data collection. This helps protect the privacy of subscriber data and reduces
the need for data transmission.

With the continuous breakthroughs in the field of quantum computing, group signa-
ture schemes based on traditional number theory constructions are becoming insecure. In
1996, Ajtai [13] introduced the lattice as a cryptographic system with a special algebraic
structure. In the post-quantum era, lattice-based cryptography has become a hot research
topic in cryptography because of its high asymptotic efficiency, parallelizability, and sim-
plicity of operation. In addition, probabilistic polynomial-time efficient methods for solving
difficult problems on lattice do not yet exist under quantum computers [14]. Thanks to
the multiple advantages of lattices, Gordon et al. [15] pioneered the construction of the
first lattice-based group signature scheme. Gordon’s scheme has high theoretical value,
but its signature length is too long to be of practical consequence. Ling et al. [16] proposed
the first lattice-based constant-size group signature scheme at PKC 2018. They used the
“restricted guessing” technique of Ducas and Micciancio’s signature scheme [17] and solved
the problem of linear growth of the signature size, but the parameters of their scheme
were set too large and there were soundness errors in NIZK proof in their scheme. In the
subsequent research on lattice-based group signature constructions, numerous improved
schemes have been proposed [18–23]. Furthermore, many lattice-based group signature
schemes have been proven to be secure in the standard model, such as [24]. However, to
the best of our knowledge, a lattice-based GS-MR scheme has not been proposed thus far.
Therefore, we aim to construct a lattice-based GS-MR scheme to provide potential security
assurance for federated learning scenarios in the quantum era.

Our Contribution

We constructed the first lattice-based GS-MR scheme from lattice assumption. In the
GS-MR scheme, the message will be recovered in full while the signature is verified as
being correct. Therefore, in the rest of this paper, we will use the verification parameter to
represent the total size of the message–signature required for the verification phase. The
specific contributions are as follows:

(1) We construct a GS-MR based on the Abe-Okamoto signature scheme [25] (ASS) com-
bined with the sign-hybrid-encrypt framework. In the key generation phase, we
combine a ring version of Boyen’s signature scheme (BSS) with an algorithm for
generating ring trapdoors to distribute private signing keys to the group members. In
the signature generation phase, the member’s identity ID is first encrypted into cipher
text using a double encryption algorithm with CCA-security [26] (LPR encryption
scheme) to ensure the anonymity and traceability of the group member’s identity;
The encrypted result is then used as part of the input to the LSS combined with the
ASS to generate the final signature.

(2) We prove that the GS-MR scheme satisfies correctness (with message recoverability),
full anonymity, and traceability under the random oracle model (ROM). In addition,
the anonymity of GS-MR relies on ring learning with errors assumption (RLWE), and
the traceability of GS-MR relies on the short integer solution assumption (RSIS).

(3) We have experimentally performed some simple evaluations of the proposed GS-MR
scheme, which include a comparison of the key and verification parameters, respectively.
Then, we compare three existing lattice-based group signature schemes [19,24,27] with
the proposed GS-MR scheme and perform an exhaustive verification parameter size
analysis. According to the results of the analysis, the proposed GS-MR scheme reduces
the verification parameter size by an average of 39.17%.
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The structure of this paper is as follows. In Section 2, we introduce the symbols,
lattice, the RSIS and RLWE problems, and some algorithms. In Section 3, we introduce
the definition and security model of the GS-MR scheme. Then, we introduce the proposed
scheme in Section 4. The security analysis is shown in Section 5. Section 6 presents the
efficiency analysis. The last section is a summary of the paper.

2. Preliminaries
2.1. Symbol Definition

The symbols that appear in this paper are described in Glossary.

2.2. Definition of the Lattice

Let A = {a1, a2, ..., am|ai ∈ Rn} be a set of linearly independent column vectors; and
the lattice composed of this set of vectors is defined as follows:

Λ(A) = L(a1, a2, ..., am) = {Ax|x ∈ Zm}, (1)

and A is called the base of lattice Λ(A). Most cryptosystems are constructed using an
integer lattice, i.e., ai ∈ Zn. If n = m, then Λ(A) is said to be a full-rank lattice.

Definition 1. Given matrix A ∈ Zn×m
q and u ∈ Zn

q , define the following two q−module lattices:

Λ⊥q (A) = {x ∈ Zm : Ax = 0modq}, (2)

Λu
q (A) = {x ∈ Zm|Ax = umodq}. (3)

2.3. Ring Variants of the Lattice and the Relevant Difficult Problems

Although lattice-based cryptographic constructions are resistant to quantum attacks,
they have not been developed commercially until now because of their low computational
efficiency. Due to the use of the expansion of a two-dimensional matrix as an operation, the
complexity of the lattice operation is always O(nm log q) ≈ O(n2). To address this issue,
we employed the lattice of ideals, a special algebraic system known as an ideal lattice, and
applied SIS and LWE to polynomial ring settings.

Definition 2. RSISn,m,q,β problem. Given a = (a1, ..., a2) ∈ R1×m
q , the RSISn,m,q,β is de-

fined as follows: find x = (x1, ..., xm) ∈ Rm
q satisfying ax = 0modq and ||x||∞ ≤ β. For

m > log q/ log(2β), γ = 16βmn log2 n, and q ≥ γ
√

n/4 log n, the RSISn,m,q,β problem is as
difficult as the Ideal − SVPγ problem [28].

Definition 3. RLWEn,m,q,χ problem. Define a vector s ∈ Rq and a distribution χ on R. Given
e← χ and a randomly chosen A ∈ Rq to obtain (A, As + e), the RLWEn,m,q,χ is defined as
finding an s ∈ Rq from (A, As + e).(A, As + e) and (A, y) are indistinguishable, where A ∈ Rq,
and y← Rq . The RLWEn,m,q,χ problem is at least as difficult as the Ideal − SVPγ problem [26].

2.4. Boyen’s Signature Algorithm and Its Ring Variants

The BSS [29] is a hybrid algorithm on the lattice. The parameters of BSS are as
follows: given security parameter λ and message length `, let q = ploy(n), m ≥ 2n log q,
σ = Ω(

√
`n log q) and β = σω(

√
log m). The BSS key generation algorithm is as follows:

(a) The algorithm TrapGen(n, m, q) [30] produces an A and a trapdoor base TA of Λ⊥(A),
where A is statistically close to uniform over Zn×m

q and TA ∈ Zm×m is a short basis for
Λ⊥(A) = {x ∈ Zm : A · x = 0modq}.

(b) Randomly chooses matrices A0, A1 . . . . A` ∈ Zn×m
q and vector u ∈ Zn

q .
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(c) Output the public key PK = (A, A0, A1 . . . . A`, u) and the signing key sk = TA.

The BSS signature algorithm is as follows: Upon the input of a fixed-length mes-
sage d = (d1, . . . . d`) ∈ {0, 1}`, the signature algorithm first computes A(d) = [A|A0 +

∑`
i=1 diAi] ∈ Zn×2m

q ; then, it runs the lattice base delegation algorithm ExtBasis(A(d), TA) [31]
to generate a short base T(d) of Λ⊥(A(d)), and finally runs the preimage sample algo-
rithm Sample(T(d), A(d), u, σ) [30] to obtain a signature z ∈ Z2m, satisfying ||z||∞ ≤ β and
A(d)z = umodq.

By applying BSS to the polynomial ring setting [32] and setting the parameter m to
m = Ω(log q), the signature size can be reduced from `O(n2) to `O(n). The signing public
key in the ring variant of BSS is PK = (a, a0, . . . . a`, u) ∈ (Rm

q )
`+2 ×Rq and the signing

key is sk = Ta ∈ Znm×nm. The security of the ring variant of BSS is based on the difficulty
of RSISn,m,q,β , which can be reduced to the hardness assumptions of SVP

`·
∼
O(n2)

.

2.5. Gaussian Distribution and Rejection Sampling

Definition 4. Given any σ > 0 and vector c ∈ Rm, the Gaussian distribution centered on c is
defined as follows: Dm

σ,c = exp(−π||x− c||2/σ2)/ ∑
x∈Z

ρm
σ,c(x). Gaussian distributions on Rm are

abbreviated as Dm
σ when c = 0. In the GS-MR scheme, x← Dm

σ is defined overRq, which means
that every coefficient of x obey distribution Dm

σ .

Lemma 1. [33]. Given any σ and a positive integer m, the following equations are satisfied:

(1) Pr[x← Dm
σ : ||x|| > 2σ

√
m] < 2−m/4 .

(2) Pr[x← D1
σ : ||x|| > σk] < 2−k2/2

Lemma 2. [34]. Rejection sampling algorithm. Let V = {v ∈ Zm : ||v|| < t}, σ = ω(t
√

log m),
and h : V → R and there exists a universal upper bound M ∈ R. Then, the statistical distance
between the output distributions of the following two algorithms is less than 2−ω(log m)/M.

2.6. Key Generation-Related Algorithms

Lemma 3. [16]. Trapdoor generation algorithm TrapGenRq(n, m, q). On input parameters n, m
and a prime q, the algorithm outputs a polynomial vector a ∈ R1×m

q , and a set of parametrically
smaller bases Ta ∈ Znm×nm on the lattice Λ⊥q (Rot(a)), where Rot(a) and Zn×nm are statistically
close in distribution and satisfy ||Ta|| ≤ O

(√
n log q

)
.

Lemma 4. [35]. Lattice base delegation algorithm BasisDel(A, R, TA, σ). On input A ∈ Zn×m,

a base TA of Λ⊥(A), an invertible matrix R ∈ Zm×m, and a standard deviation σ ≥ ||
~
TA|| ·

(σR
√

m · ω(log3/2 m)), where σR =
√

n log qω(
√

log m), the algorithm outputs a base TB of

Λ⊥(B), where B = AR−1, and ||
~
TB|| < σ/ω(

√
log m).

Lemma 5. [16]. Preimage sample algorithm SamplePreRq(a, Ta, u, σ). On input a ∈ R1×m
q

and a base Ta of Λ⊥(Rot(a)), a Gaussian parameter σ, and any polynomial vector u ∈ R, there
exists a algorithm SamplePreRq(a, Ta, u, σ), which outputs a polynomial vector e ∈ Rm satisfying
ae = umodq.
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3. Definition of GS-MR Scheme and Security Model
3.1. Definition

A GS-MR scheme contains four probabilistic polynomial time (PPT) algorithms:

(1) KeyGen(1λ, 1N) : this takes the security parameter λ and maximum group members
N as the inputs, and outputs the group public key gpk, group member’s signing key
gsk, and group manager’s tracking key gtk.

(2) Sign(gpk, M, gskπ , {IDi}N
i=1) : this takes the group public key gpk, a message M, the

signing key gskπ , and a group member’s identity set {IDi}N
i=1 as the inputs, and

outputs a signature SIG of M under gskπ .
(3) Veri f y(gpk, SIG, {IDi}N

i=1) : this takes the public key gpk, a signature SIG, and a group
member’s identity set {IDi}N

i=1 as the inputs, and outputs “Valid” and complete message
M if the signature SIG is a valid signature on the message M, or “Invalid” otherwise.

(4) Open(gpk, SIG, gtk) : this takes the group public key gpk, a signature SIG, and the
tracking key gtk as the inputs, outputs the member identity IDπ of the signer if the
signature SIG is “Valid”, checked using Veri f y, or ⊥ otherwise.

3.2. Security Model

In the GS-MR scheme, three properties are required: correctness, anonymity, and
traceability. Correctness includes validation correctness, open correctness, and message
recoverability, where validation correctness means that the group signature output by the
signature algorithm can be successfully verified, recoverability means that the complete
signed message can be recovered when the group signature is successfully verified, and
open correctness denotes the ability to acquire the right signer’s identity from a valid
signature. We will describe the strong anonymity of the GS-MR scheme through the CCA
(Chosen Ciphertext Attack) security model, as detailed in Definition 5. We will describe
the traceability of the GS-MR scheme using Definition 6. To describe the security model
of GS-MR, the present paper leverages the security definitions for group signatures of
varying strengths provided by Bellare et al. [36]. Through a corresponding game between a
challenger S and an adversaryA, the anonymity and traceability guaranteed by the GS-MR
scheme will be depicted.

We summarize three distinct query types that an adversary A can ask in the cor-
responding games, as well as the possible responses that the challenger S can give to
those queries.

(a) Corrupt query: Amakes a corrupt query on a member’s index i ∈ [N] and S returns
a corresponding signing key gski.

(b) Signing query: Amakes a signing query on an index i and a message M, and S runs
the algorithm Sign(gpk, M, gski)→ SIG, and returns the signature SIG to A.

(c) Opening query: A makes an opening query on a signature SIG, and S calls the
algorithm Open(gpk, SIG, gtk) to output a member identity IDi, and returns the
member’s identity IDi to A; otherwise, it returns to ⊥.

Definition 5. (Full Anonymity) The property of anonymity in the GS-MR scheme implies that
signatures produced by any two distinct signers are computationally indistinguishable. The GS-MR
scheme meets full anonymity if for any PPT adversary A, A’s advantage in GAME I in Figure 2
can be negligible.
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Definition 6. (Traceability) The property of traceability in the GS-MR scheme implies that the
advantage of generating a non-openable signature or blaming for other members is negligible. The
GS-MR scheme meets traceability if for any PPT adversary A, A’s advantage in GAME II in
Figure 2 can be negligible.

4. Scheme Construction

In the proposed GS-MR scheme, each group member has a fixed length of identity infor-
mation ID = (d1, d2, ..., dl) ∈ {0, 1}l . The parameters of GS-MR are as follows: Let λ be the
security parameter, and N be the maximum group members. Specifically, let Gaussian pa-
rameters σ1 = poly(n) and σ2 = nmω(log2 m) log q and modulus q ≥ βω(n log n) be prime,
where β = ploy(n) and m > log q/ log(2σ1

√
2n). The noise boundary of RLWEn,m,q,χ is set

to an integer b and satisfies b =
∼
O(n5/4) and q/b = `

∼
O(n). Choose four hash functions:

H1 : Zn
q → {0, 1}l1+l2 , H2 : {0, 1}∗ →

{
v ∈ {−1, 0, 1}m, ||v|| ≤ t

}
, F1 : {0, 1}l2 → {0, 1}l1

and F2 : {0, 1}l1 → {0, 1}l2 to be modeled as random oracles.
The GS-MR scheme we proposed is as follows:
KeyGen(1λ, 1N) : given λ and N, the group manager performs Algorithm 1.

Algorithm 1: KeyGen(1n, 1N)

1: (a,Ta)← TrapGenRq (n, m, q)
2: Randomly choose a0, a1 . . . . al ← Rm×m

q
3: for all 1 ≤ i ≤ N do

4: Di = a · (∑l
j=1 djaj)

−1

5: TDi ← BasisDel(Rot(a), ∑l
j=1 Rot(aj)dj, Ta, σ2)

6: ei ← SamplePreRq (Di, TDi , u, σ2) , such that Diei = umodq
7: gski = ei
8: end for
9: Randomly choose u← R , f ← Rq , s← χ , e← χ

10: Calculate g = ( f ⊗ s + e)modq
11: Output : gpk = [a, a0, a1...al , u, f , g], gtk = s, gsk = {ei}N

i=1

Sign(gpk, M, gskπ , {IDi}N
i=1) : given gpk, message M ∈ {0, 1}l2 , signing key gski = ei

and a group member’s identity set {IDi}N
i=1, the signer runs Algorithm 2.
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Algorithm 2: Sign(gpk, M, gskπ , {IDi}N
i=1)

1: for all 1 ≤ i ≤ N do
2: yi ← Dm

σ1

3: Calculate Di = a · (∑l
j=1 djaj)

−1

4: end for
5: Calculate α = H(∑N

j=1 Djyj)

6: Calculate M′ = F1(M)||(F2(F1(M))⊕M)
7: Calculate r = M′ ⊕ α

8: Expend IDπ to
−

IDπ = (0n−l ||ID) ∈ {0, 1}n

9: ID′π = τ−1(
−

IDπ) ∈ R
10: Randomly choose w← χ, e1, e2 ← χ

11: Calculate (c1 = f ⊗ w + e1, c2 = g⊗ w + e2 + [q/2]ID′i) ∈ R
2
q

12: v = H2(r, c1, c2)
13: for all 1 ≤ i ≤ N do
14: if i 6= π, then zi = yi
15: else calculate zi = eiv + yi, and outputs (zi, r) with probability
min(1, Dm

σ1
(zi)/MDm

eiv,σ1
(zi)).

16: end for
17: Π = {zi}N

i=1
18: Output: SIG = (Π, (c1, c2), r)

Veri f y(gpk, SIG, {IDi}N
i=1) : given gpk, signature SIG and identity set {IDi}N

i=1, the
verifier performs Algorithm 3.

Algorithm 3: Veri f y(gpk, SIG, {IDi}N
i=1)

1: Parse Π = (z1, z2, . . . ., zN)
2: for all 1 ≤ i ≤ N do

3: Calculate Di = a · (∑l
j=1 djaj)

−1

4: end for
5: Calculate α = H1(∑N

i=1 Dizi − uH2(r, c1, c2))
6: Set M′ = α⊕ r
7: Set M = |M′|l2 ⊕ F2(|M′|l1)
8: if F1(M) = |M′|l1 and ||z|| ≤ 2σ

√
m then

9: return “Valid”
10: else
11: return “Invalid”
12: end if

Open(gpk, SIG, gtk) : given gpk, signature SIG, and tracking key gtk, the group man-
ager performs Algorithm 4.

Algorithm 4: Open(gpk, SIG, gtk)

1: ID∗ = (d∗i ) = c2 − c1s where i = 1, . . . ., n
2: for all i such that 1 ≤ i ≤ n do
3: if d∗i ≈ bq/2c then
4: d′i = 1
5: else
6: d′i = 0
7: end for
8: ID′ = (d′1, d′2, . . . ., d′n)

9:
−

IDπ = τ(ID′) = (d0, d1, . . . ., dn−1)
T ∈ Zn

q

10: if
−

IDπ satisfy format (0n−l ||ID) then
11: return ID
12: else
13: return⊥
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5. Security Analysis

We prove that the proposed GS-MR scheme satisfies correctness (validation correctness,
message recoverability, and open correctness), full anonymity, and traceability.

Theorem 1 (correctness). The GS-MR scheme is correct.

Proof of Theorem 1.

(1) Verification correctness and message recoverability.

Given a legal and valid signature, the following equation holds:

∑N
i=1 Dizi − uH2(r, c1, c2) = ∑

i∈[N]\{π}
Diyi + Dπzπ − uH2(r, c1, c2),

= ∑
i∈[N]\{π}

Diyi + Dπ(eπv + yπ)− uH2(r, c1, c2),

=
N
∑

i=1
Diyi + uv− uH2(r, c1, c2),

= ∑N
i=1 Diyi.

(4)

Then, we have

M′ = H1(∑N
i=1 Diyi)⊕ r = H1(∑N

i=1 Dizi − uH2(r, c1, c2))⊕ r, (5)

and since
M′ = F1(M)||(F2(F1(M))⊕M), (6)

we can recover the message

M = [M′]l2 ⊕ F2([M′]
l1) (7)

From it, and the message M must satisfy F1(M) = [M′]l1 . On the other hand, when i 6= π
and zi = yi, where yi ← Dm

σ1
, according to Lemma 1, ||zi|| ∈ [N]/{π} satisfies ||zi|| ≤ 2σ

√
m

with overwhelming probability; when i = π, we have zi = eiv + yi, and where yi ← Dm
σ1

,
according to Lemma 2, zi is statistically indistinguishable from Gaussian distribution Dm

σ1
.

Therefore, for all zi, ||zi|| ≤ 2σ
√

m is established with overwhelming probability.

(2) Opening correctness

The correctness of opening depends on the accuracy of the underlying LPR encryp-
tion, and the parameter settings described in Section 4. of this paper meet the correctness
requirements of the encryption scheme, assuming that SIG = (Π, (c1, c2), r) is a signa-
ture generated by an honest member i through the algorithm Sign(gpk, M, gski, {IDi}N

i=1).
Regarding the validity of the open algorithm, we show that

c2 − c1s = g⊗ w + e2 + bq/2cID′i − ( f ⊗ w + e1)⊗ s
= ( f ⊗ s + e)⊗ w + e2 + bq/2cID′i − ( f ⊗ w + e1)⊗ s
= ew + e2 − e1s + bq/2cID′i ,

(8)

where ||w||∞, ||e1||∞, ||e2||∞ ≤ b. Note that b =
∼
O(n5/4) and q/b = `

∼
O(n), it can therefore

be concluded that ||ew + e2 − e1s||∞ ≤ 2n·b2 + b =
∼
O(n3.5)� [q/10]. Next, we determine

the value of the ID based on the value of each component of c2 − c1. The algorithm
Open(gpk, SIG, gtk) then recovereds the ID with a probability of 1. �

Theorem 2 (full anonymity). The GS-MR scheme meets full anonymity under ROM if the
RLWEn,m,q,χ problem is hard.
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Proof of Theorem 2. Let A be any PPT adversary in Definition 1; the following proves that
the GS-MR scheme satisfies the anonymity requirement by showing that the four games
G0, G′0, G1, G′1 are indistinguishable.

G0 :G0 is denoted as the experiment with b = 0 in GAME I. First, the system is set
up, and the challenger S calls the algorithm KeyGen(1n, 1N) to generate gpk, gtk, and
gsk = {ei}N

i=1. Then, S sends gpk and gsk = {ei}N
i=1 to A. A is permitted to make the

following adaptive queries:

(a) Signing query: Amakes a signing query on an index i and a message M, and then S
returns the signature SIG = (Π, (c1, c2), r) to A.

(b) Opening query: A makes an opening query on a signature SIG, S calls the algorithm
Open(gpk, SIG, gtk) to output a member identity IDi, and returns the member’s
identity IDi to A; otherwise, it returns to ⊥.

A selects two indexes i0, i1 ∈ [N] with i0 6= i1 and a message M, and sends them to S .
Then, S calls the signature algorithm Sign(PK, M, gski0 , {IDi}N

i=1) and sends the signature
SIG = (Π, (c1, c2), r) to A.

G′0 :G′0 was modified from G0 When calling the algorithm Sign(gpk, M, gski0 , {IDi}N
i=1)

to generate a signature, calculate zi0 = ei0v + yi0 and zi1 = ei1v + yi1 in addition to the
remaining steps in the signature generation process (calculate the values of j /∈ {i0, i1} and
zj according to the scheme described above).

G1 :G1 is identical to G0 with the exception that S chooses b = 1 rather than b = 0.
G′1 :G′1 is identical to G′0. �

Lemma 6. G0 and G′0 are computationally indistinguishable.

Proof of Lemma 6. In the G0 and G′0 games, the difference in signatures lies in the calcu-
lation of zi1 . According to Lemma 2, the value zi1 produced via rejection sampling in G′0
is statistically equivalent to the value produced by the Gaussian distribution Dm

σ1
(statis-

tical distance less than 2−ω(log m)/M). In G0, the value of zi1 is taken from the Gaussian
distribution Dm

σ1
and so the games G0 and G′0 are computationally indistinguishable. �

Lemma 7. G1 and G′1 are computationally indistinguishable.

Proof of Lemma 7. The indistinguishability of computation between G1 and G′1 (where b = 1
in the context of the GAME I model) is proved in the same way as described above. �

Lemma 8. If the RLWEn,m,q,β problem is hard, G′0 and G′1 are computationally indistinguishable.

Proof of Lemma 8. Games G′1 and G′0 are similar, except for the computation of the part
containing member information c2 in the signature (which includes the identity of the member
i1). Therefore, it is only necessary to prove that the signature SIG′ = (Π′, (c

′
1, c′2), r′) generated

in G′0 and the signature SIG∗ = (Π∗, (c∗1 , c∗2), r∗) in G′1 are indistinguishable in computation.
The c′2 and c∗2 can be seen as the LPR encryption of different member identities

(i0 and i1) according to the LPR encryption scheme [26], which is indistinguishable (sat-
isfies IND-CCA security) under the RLWEn,m,q,β assumption. Therefore, for an adver-
sary A, c′2 and c∗2 are indistinguishable in computation. Combined with the above proof,
SIG′ = (Π′, (c′1, c′2), r′) and SIG∗ = (Π∗, (c∗1 , c∗2), r∗) are statistically indistinguishable.
Therefore, G′0 and G′1 are indistinguishable in computation. �

In conclusion, G0, G′0, G1, G′1 are statistically indistinguishable. Therefore, for any
adversary A, when facing GAME I defined at the beginning of this paper, the advantage
of winning the game is Adv = |Pr[b′ = b] − 1/2| + negl(n), indicating that A has no
advantage in winning the anonymity game. It can be inferred that the GS-MR scheme
satisfies the anonymity requirement.



Appl. Sci. 2023, 13, 9007 11 of 17

Theorem 3 (full traceability). The GS-MR scheme meets full traceability under ROM if the
RSISn,m,q,β problem is hard.

Proof of Theorem 3. When proving the traceability of the GS-MR scheme, there are two
key components: (1) The algorithm Sign generates legal signatures that can be traced back
to the identities of their signers. (2) No adversary can forge a legal and untraceable group
signature. First, as shown in Theorem 1, the GS-MR scheme is proven to correctly open
any valid signature and query the identity details of the signer. Therefore, the following
proof focuses on the second point, namely, that it is impossible for any PPT adversary to
successfully construct a legally and untraceable signature. �

Let A be any PPT algorithm defined in Definition 6 that can forge a signature with a
non-negligible advantage after numerous inquiries. Then, a challenger S can be built to
solve the RSISn,m,q,β problem with a non-negligible advantage.

Let the challenger S maintain three lists l1, l2, C, Γ, and initialize them as empty. Then,
S honestly runs the algorithm KeyGen(1λ, 1N) of the scheme, with input security parameter
λ and maximum member group {IDi}N

i=1, randomly selects j ∈ {1, 2, . . . ., N}, generates
gpk, gsk j, gtk, and then sends gpk and gtk to A. In response to A’s inquiry, S replied as
follows (A had conducted relevant H1 queries and H2 queries prior to performing signing
and corrupt queries):

(a) H1 query. A selects N polynomial vectors yj ← Dm
σ1

to S . S first checks list L1. If A
has previously submitted the same query, S directly returns the same query result.
Otherwise, S selects a random vector α ∈ {−1, 0, 1}l1+l2 and returns it to A. For this
query, S records ({yi}

N
i=1, α) in the list L1.

(b) H2 query. A selects a message M, and c1, c2, and submits them to S . S first checks
list L2. If A has previously submitted the same query, S directly returns the same
query result. Otherwise, S selects a random vector v ∈ {−1, 0, 1}m and returns it to
A. For this query, S records (M, v, c1, c2) in the list L2.

(c) Corrupt query. A inputs k ∈ [N], if k = j, S terminates the game; if k 6= j, S sends the
signing key gskk to A. For this query, S records (k, ek) in the list C.

(d) Signing query. A inputs k ∈ [N] and message M, if k = j, S will modify zi in the
algorithm Sign to zi = yi, and return the signature SIG to A; if k 6= j, S honestly
runs the algorithm Sign and returns the signature SIG to A. For this query, S records
(k, M) in the list Γ.

After a series of queries, A outputs a forged group signature SIG∗ = (Π∗, (c∗1 , c∗2), r∗).
If the signature SIG∗ satisfies Definition 6, it implies that A wins GAME II. We analyzed
the following two aspects:

(1) Assuming that SIG∗ is a valid signature and satisfies Open(gpk, SIG∗, gtk) = j. Since
the signature is valid, it follows that v∗ = H2(∑N

i=1 Dizi − uv∗, c1, c2); Furthermore,
since the signature SIG forged by A can satisfy the verification correctness, we have
v∗ = H2(∑N

i=1 Dizi, c∗1 , c∗2). As the collision probability of the hash-oracle is negligible,
we can see that c1 = c∗1 and c2 = c∗2 , and therefore we can conclude that

∑N
i=1 Di(zi − z∗i ) = 0modq, (9)

since ∑N
i=1 ||zi − z∗i || ≤ b, it follows that ∑N

i=1 (zi − z∗i ) is a solution to the RSISn,m,q,β
problem.

(2) Assuming Open(gpk, SIG∗, gtk) = ⊥, the forged signature SIG∗ = (Π∗, (c∗1 , c∗2), r∗)
produced by the adversary A satisfies the following condition

ID∗k /∈ {IDi}N
i=1 i.e., Dk = a · (∑l

i=1 di(k)ai)
−1
6= a · (∑l

i=1 d∗i(k)ai)
−1

= D∗k . (10)
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Since the above condition can be verified by the algorithm Veri f y(gpk, SIG, {IDi}N
i=1),

we have
∑N

i=1 Diz∗i − uv∗ = ∑N
i=1 Diy∗i i.e. D∗k z∗k − uv∗ = D∗k y∗k . (11)

Let
D∗k zk − uv∗ = D∗k (ekv∗ + y∗k )− uv∗ = D∗k y∗k . (12)

From Equations (11) and (12), we can obtain

D∗k ((e
∗
i − ei)v∗) = 0modq. (13)

Since ||(e∗i − ei)v∗||∞ ≤ 4σ1t
√

m, (e∗i − ei)v∗ is a solution to the RSISn,m,q,β problem.
Based on the proof of the two above cases, if the adversary A wins GAME II, then the

challenger S will obtain a solution to the RSISn,m,q,β problem. However, the RSISn,m,q,β
problem is to solvedifficult under the parameters provided in this paper, and so A can-
not satisfy the two conditions mentioned above. Therefore, the GS-MR scheme has
full traceability.

6. Implementation and Efficiency Analysis

As proof of concept, in order to understand the practicality of group signatures with
recoverable messages, we simply performed some implementations of the GS-MR scheme.
We have shown implementations of the GS-MR, which were experimented with using an
AMD Ryzen 5 5600G @ 3.90GHz CPU with 16GB of RAM. The programs were compiled
using SageMath and Python 3.8. A selection of some program parameters were first shown.
Then, based on these parameters, some corresponding outputs in the GS-MR scheme were
experimentally derived. In Table 1, we summarize the theoretical estimates of the key size
and signature size of GS-MR, where “n · S denotes n elements in a set S”.

Table 1. Theoretical estimation of key size and message–signature size.

Form Size

Public Key (a, a0, ..., al , u, f , g) (nm + lnm2 + 3n) log2 q
Signing Key ei nm · Dσ3

Tracking Key gtk = s n log2 q
Message–Signature (Π, (c1, c2), r) + M Nm · Dσ1 + 2n log2 q + l2

We followed the parameter settings of Luo et al. [37] and also considered the security
of the parameter settings in this paper.

• To keep (a,Ta)← TrapGenRq(n, m, q) working safely, set q ≥ 2, m ≥ 1, and
m ≥log q/ log(2σ1

√
2n).

• For the Gaussian parameter in BasisDel(A, R, TA, σ), we chose σR =
√

n log qω

(
√

log m), and according to Pino [38], let σ2 ≥ ||
~
TA|| · (σR

√
m ·ω(log3/2 m)).

• For Gaussian parameters in rejection sampling, we chose
σ1 = ω(t

√
log m) ≈ 12 · t ·

√
nm.

• For the choice of M in rejection sampling, according to Definition 4, if σ = 12||c||, then
the probability of e1+1/288/M ≥ Dm

σ (x)/M ·Dm
c,σ(x) and e1+1/288/M ≥ 3/M is greater

than 1− 2−100. Then, we can fix M = 3.

Specifically, we will use the following specific parameters for our experiments:
pp1 : q = 224, n = 512, m = 3, t = 14, m = 1536, M = 3, σ1 ≈ 6641.8455,

σ2 = 1165.2235.
pp2 : q = 227, n = 512, m = 4, t = 14, m = 2048, M = 3, σ1 ≈ 7602.8121,

σ2 = 1504.2467.
pp3 : q = 229, n = 1024, m = 3, t = 14, m = 3072, M = 3, σ1 ≈ 9311.5051,

σ2 = 1822.4527.
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In Table 2, we summarize the real output key values of the GS-MR scheme
(i.e., public key, signing key, and tracking key) for three specific parameters compared to
their theoretical estimates. For a more intuitive display, we plotted Figure 3 to visualize the
variations in key sizes under different parameter settings. Based on Table 2 and Figure 3a,
it can be observed that the storage cost of our GS-MR scheme mainly lies in the group
public key. In Figure 3b, it can be seen that the signing key and tracking key of the GS-MR
scheme are only the size of single-digit KB under the three sets of parameters. Although
the signed message is not to be used as an input parameter in the verification phase, we
also performed a comparative experiment with the signature and message–signature pairs.
Subsequently, we conducted 10 experiments for each of the specific group orders 128, 256,
512, and 1024 to compare the signature size and the total length of message-signature under
different scenarios (for Section 4, we fixed the value of l2 = 219). Based on the experimental
results, we evaluated the average signature size, as shown in Table 3 and Figure 4, which
indicates that the signature size of GS-MR increases linearly with the number of group
members. With a fixed message, the proportion of the message size decreases as the group
size increases. However, we believe that our GS-MR scheme is still feasible. Particularly
in small group environments with a low channel bandwidth and poor communication
quality, the proposed GS-MR scheme can ensure a smaller total parameter transmission
and alleviate concerns regarding the impact of channel noise on message transmission.

Table 2. Public key, signing key and tracking key sizes (in KB).

Parameters PP1 PP2 PP3

Public key (Theo.) 171 335 414
Public key (Exp.) 196 367 443

Signing key (Theo.) 3.00 4.00 6.00
Signing key (Exp.) 3.13 4.17 6.29

Tracking key (Theo.) 1.50 1.70 1.80
Tracking key (Exp.) 1.55 1.75 1.87
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To further demonstrate the advantages of the GS-MR scheme, we performed a progres-
sive efficiency analysis and verification parameter size comparison between three lattice-
based group signature schemes and the GS-MR scheme. They were, respectively, the group
signature scheme with indexed attribute-based signature (ABS) proposed by Katsumata
et al. [24], the group signature scheme with forward security and constant size proposed
by Canard et al. [27], and the lattice-based dynamic group signature scheme proposed by
Huang et al. [19]. In Table 4, we compare these three group signature schemes [19,24,27]
with the GS-MR scheme, where λ is the security parameter and N = 2l = poly(n) is
the number of group members. From Table 4, it can be seen that the group public keys
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in [19,24,27] are all related to the maximum number of group members N, whereas the
public and private keys in our scheme and [19] are fixed values. However, in this paper,
we needed to use the lattice-based delegation algorithm to generate member signing keys,
causing the signature length to be linearly related to N. However, none of the above
compared schemes have message recovery in the verification phase.

Table 3. Signature and message–signature pairs size (in KB).

Parameters N = 128 N = 256 N = 512 N = 1024

Signature 155 309 617 1233
Message-
Signature 219 373 681 1296

Signature 229 457 913 1825
Message-
Signature 293 521 977 1889

Signature 365 729 1457 2913
Message-
Signature 429 794 1521 2977
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Table 4. Comparison of the progressive efficiency of group signatures.

Scheme Public Key Size Private Key Size Signature Size Message Recovery

Katsumata [24] O(λ·N) O(λ) O(λ·N) No
Canard [27] O(λ· log N) O(λ) O(λ) No
Huang [19] O

(
λ2) O(λ) O(λ· log N) No

Ours O(λ) O(λ) O(λ·N) Yes

For a more intuitive comparison, we chose fixed values for these schemes to compare
the size of the verification parameter for different schemes under the same number of group
members. We selected some fixed parameters while ensuring the security of the above
comparison schemes. Let n = 29, m = 4, q = 227, σ1 ≈ 7602.8121, and σ2 = 1504.2467.
Finally, all schemes select a fixed message M = {0, 1}l2 in the signature generation stage,
where l2 = 219. The comparison of the size of the verification parameters is shown in
Table 5 and Figure 5.
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Table 5. Comparison of the size of verification parameter.

Scheme
Size of Verification Parameter (KB)

N = 128 N = 256 N = 512 N = 1024 N = 2048

Katsumata [24] 741.80 1477.75 2949.75 5893.75 11781.70
Canard [27] 3033.75 3033.75 3033.75 3033.75 3033.75
Huang [19] 693.10 1033.10 1513.70 2673.70 3373.70

Ours 293.75 521.75 977.75 1889.75 3649.75
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From Figure 5, it can be seen that compared to the other three schemes, the size of the
verification parameters in the GS-MR scheme is the shortest when the number of group
members N ≤ 1024 is considered, with an average reduction of 53.02%. However, the
signature size of GS-MR increases linearly with N, and at N ≥ 2048, the verification param-
eter size is no longer advantageous compared to the Canard scheme [27] and the Huang
scheme [27]. Overall, the proposed GS-MR scheme reduces the verification parameter size
by an average of 39.17% compared to the schemes of [19,24,27].

7. Conclusions

In this paper, we proposed a lattice-based group signature with message recovery. The
scheme achieves message recoverability in the validation phase, thus eliminating the need
for group members to send additional messages as validation. And the GS-MR scheme
ensures privacy and integrity in collaborative settings, benefiting applications where data
security is crucial. It has potential applications in secure data sharing, blockchain systems,
and federal learning. Then, we prove that the GS-MR scheme achieves full anonymity
and traceability properties based on the difficulty of RSIS and RLWE problems. We also
performed some experiments to evaluate the sizes of key and signature. Finally, we
compare the GS-MR scheme with three group signature schemes and the result shows that
the verification parameter of the GS-MR scheme was reduced by an average of 39.17% for
less than 2000 members. Constructing a group signature scheme with controlled linkability
under the quantum oracle model will be an attractive research topic for the future.
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Glossary: Symbol Definitions

Notations Explanation
Rq Polynomial ringRq = Zq[x]/(xn + 1)
∼
A Gram-Schmidt orthogonalization of matrix A
|x| Bit length when identifying x with binary
|x|n Takes n bits from the high binary bit x to the low bit
|x|n Takes n bits from the low binary bit x to the high bit
a⊗ b The convolutional computing of two polynomials: (a · b)/ < xn + 1 >

rot(a) Circular matrix of a ∈ Rq
τ(a) Vector of coefficients of the polynomial a ∈ Rq
τ−1(a) Transformation of the vector a ∈ Zn into the corresponding polynomial
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