
Citation: Cariow, A.; Papliński, J.P.;

Makowska, M. VLSI-Friendly

Filtering Algorithms for Deep Neural

Networks. Appl. Sci. 2023, 13, 9004.

https://doi.org/10.3390/

app13159004

Academic Editors: Panagiotis G.

Asteris and Alessandro Lo Schiavo

Received: 5 July 2023

Revised: 31 July 2023

Accepted: 4 August 2023

Published: 6 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

VLSI-Friendly Filtering Algorithms for Deep Neural Networks
Aleksandr Cariow , Janusz P. Papliński * and Marta Makowska

Faculty of Computer Science and Information Technology, West Pomeranian University of Technology in
Szczecin, Żołnierska 49, 71-210 Szczecin, Poland; acariow@wi.zut.edu.pl (A.C.)
* Correspondence: janusz.paplinski@zut.edu.pl

Abstract: The paper introduces a range of efficient algorithmic solutions for implementing the
fundamental filtering operation in convolutional layers of convolutional neural networks on fully
parallel hardware. Specifically, these operations involve computing M inner products between
neighbouring vectors generated by a sliding time window from the input data stream and an M-
tap finite impulse response filter. By leveraging the factorisation of the Hankel matrix, we have
successfully reduced the multiplicative complexity of the matrix-vector product calculation. This
approach has been applied to develop fully parallel and resource-efficient algorithms for M values
of 3, 5, 7, and 9. The fully parallel hardware implementation of our proposed algorithms achieves
approximately a 30% reduction in embedded multipliers compared to the naive calculation methods.

Keywords: filtering algorithms; deep neural networks; very large-scale integration; multiplicative
complexity

1. Introduction

The need for high-speed processing of large amounts of information stimulates the
development and use of highly effective data processing systems. In such systems, the
primary requirement for implementing computing methods is to minimise the time of data
processing, ensuring the ability to fulfil the planned task within the allocated time for this
application. This requirement is especially relevant in the implementation of algorithms
for processing digital information in deep neural networks (DNNs) [1–5]. As is known, in
deep neural networks, the primary and time-consuming operation is digital convolution.
The need to quickly calculate digital convolution arises in both convolutional and capsule
neural networks. Digital convolution calculations can be accelerated by algorithmic and
hardware methods. In general, algorithmic methods primarily focus on minimising the
number of arithmetic operations involved. One widely employed strategy for reducing
the computational complexity of the digital convolution operation is utilising the Fast
Fourier Transform (FFT) algorithm. This approach has found application in some deep
neural networks [6–11]. However, modern convolutional and capsule neural networks use
small filters more often than the traditionally used large filters computed using the FFT
approach. The Winograd’s minimal filtering algorithm [1,12–15], which has recently gained
significant popularity, is widely regarded as well-suited for such scenarios. This approach
exhibits enhanced efficiency, specifically when employing small filters and tile sizes. In
such cases, it performs linear convolution with minimal computational complexity. Indeed,
this method calculates the dot products of adjacent vectors obtained from a sliding time
window in the current data stream. It employs a third-order finite impulse response filter
(FIR) for this purpose.

2. State of the Art

Since we are talking mainly about convolutional and capsular neural networks, it is
clear that linear convolution is the main operation in their implementation. In general,
convolutional layers tend to be the most time-intensive component, often accounting for

Appl. Sci. 2023, 13, 9004. https://doi.org/10.3390/app13159004 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13159004
https://doi.org/10.3390/app13159004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4513-4593
https://orcid.org/0000-0002-6100-3913
https://doi.org/10.3390/app13159004
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13159004?type=check_update&version=2

Appl. Sci. 2023, 13, 9004 2 of 17

over half of the total computation time in a typical implementation [16,17]. The convo-
lution itself is also a time-consuming operation. For this reason, deep neural network
builders are looking for and creating efficient ways to minimise convolution computation
complexity [11].

Another opportunity to speed up calculations in deep neural networks is by utilising
high-performance field-programmable gate arrays (FPGAs) [18–33], graphics processing units
(GPUs) [33–36], and specialised application-specific integrated circuits (ASICs) [33,37–39].

When modern stationary data processing systems possess ample computing power,
the design of mobile on-board systems powered by batteries encounters various conflicting
factors that hinder peak performance. The conventional approach of parallelising computa-
tions to enhance data processing speed increases the data processing unit’s size, weight,
and power consumption. Consequently, there is a necessity for solutions that effectively
leverage computational parallelisation while concurrently optimising hardware costs.

Extensive research is being conducted on algorithms and structures for high-performance
computing devices intended to process digital signals and images with practical applications
in embedded systems. Developing micro-miniature processing units tailored for image
processing and recognition in on-board mobile neural networks, known as Tiny ML or
Edge AI, is of particular interest. These cutting-edge applications are at the forefront of
modern technology.

For these reasons, the Tiny ML Summit has been held since 2019, bringing together
experts from major companies and universities. The primary focus of this conference is to
discuss the potential of transitioning machine learning from high-performance mainframes
to small battery-powered signal microprocessors. The Tiny ML concept is continually
evolving, driven by the development of dedicated chips designed for these applications.
Notably, digital signal processing algorithms are pivotal in the systems under discussion.
Over time, numerous algorithms and processor structures have been developed to address
the challenges posed by these systems. With a focus on flexibility and versatility, the
prevailing approach involves using universal signal microprocessors and FPGAs.

However, the high flexibility of the developed processors contradicts a highly efficient
implementation. For example, a programmable signal processing unit is flexible, scalable
and upgradable but highly inefficient in terms of performance, die area, weight, and
power consumption.

Therefore, developing ASIC-centric solutions is best suited for portable applications as
minimising power consumption, weight, and size of the processing unit in battery-powered
systems has become an essential aspect of on-board processing.

At the algorithmic level, methods for reducing the above parameters usually focus on
minimising the number of arithmetic operations, especially multiplications. In this regard,
developing algorithms for performing the main filtering operations, characterised by minimal
multiplicative complexity, is an urgent task. So, we again emphasise that convolution calculation
is an essential mathematical macro operation in DNNs. And usually (though not always) it is
computed using Winograd’s minimum filtering algorithm [1,12,14,18,20–22,40–42]. However,
since, as already noted [43], this algorithm can only calculate two adjacent dot products, it is not
suitable for all possible situations that can arise in neural networks. For example, Winograd’s
minimum filtering algorithm is redundant for M = 3 and tile size (5 × 5) or for M = 5 and
tile size (9 × 9). Many other examples could be given. In this article, we present algorithmic
solutions for FIR filters with short-length impulse responses, which can be more efficient in
some cases than Winograd’s minimal filtering algorithm.

3. Preliminary Remarks

The primary step in computing a 2D convolution involves taking the dot product
between the vectors created by the sliding time window from the present data stream and
the impulse response of an M-order finite impulse response (FIR) filter.

Appl. Sci. 2023, 13, 9004 3 of 17

The procedure for computing convolution elements can be represented as follows in
the most general case:

yj =
M−1

∑
i=0

xi+jwi (1)

j = 0, 1, . . . , N −M + 1,

where N represents the length of the current data stream, with {xi+j} denoting the ele-
ments of the data stream, and {wi} represents the constant coefficients of the FIR filter’s
impulse response.

In a more detailed form, expression (1) can be represented as follows:

y0 = w0x0 + w1x1 + · · ·+ wM−1xM−1
y1 = w0x1 + w1x2 + · · ·+ wM−1xM

...
yN−M = w0xN−M + w1xN−M+1 + · · ·+ wM−1xN−1

(2)

Figure 1 illustrates the sequence of steps in calculating the moving dot product.

Figure 1. The illustration of the step sequences during calculating the moving dot product.

The equations above comprehensively describe all the mathematical operations re-
quired for the calculations. However, strictly speaking, they do not constitute an algorithm
since they do not reveal the specific sequence of calculations. In some instances, expressing
the sliding dot product operation as a matrix-vector product is more convenient:

YYY(N−M+1)×1 = WWW(N−M+1)×NXXXN×1 (3)

where:
YYY(N−M+1)×1 = [y0, y1, . . . , yN−M]T,

XXXN×1 = [x0, x1, . . . , xN−1]
T,

WWW(N−M+1)×N =


w0 w1 · · · wM−1

w0 w1 · · · wM−1
.

w0 w1 · · · wM−1

.

However, regarding the research task at hand, such a representation is unhelpful as it
does not facilitate identifying opportunities for reducing the computational complexity of
the procedure for determining the sliding inner product when the sequence is comprised
of input signal samples.

Appl. Sci. 2023, 13, 9004 4 of 17

Let us rewrite expressions (2) in the following form:

YYY(N−M+1)×1 = XXX(N−M+1)×MWWWM×1 (4)

where:
WWWM×1 = [w0, w1, . . . , wM−1]

T,

XXX(N−M+1)×M =


x0 x1 · · · xM−1
x1 x2 · · · xM
...

...
. . .

...
xN−M xN−M+1 · · · xN−1

.

This form of writing is much more useful and legible, which will be visible in the next
steps. It turns out that considering the structural properties of the matrix XXX(N−M+1)×M
in the expression (4) allows for a fairly significant reduction in the number of arithmetic
operations. Let us consider this problem in more detail. Let us impose certain conditions
on the sizes of the input sequences. Suppose N = M(K + 1)− 1, where K = 1, 2, 3, . . .
is a positive integer number. It is obvious that if the supposed requirement for N is not
satisfied, sequences {xn}, n = 0, 1, . . . , N − 1 can be padded with zeros without losing
computation precision.

Then the expression (4) takes the following form:

YYYKM×1 = XXXKM×MWWWM×1 (5)

where:
YYYKM×1 = [y0, y1, . . . , yKM−1]

T,

XXXKM×M =
[
XXX(0)

1×M,XXX(1)
1×M, . . . ,XXX(KM−1)

1×M

]T
,

and
XXX(i)

1×M = [xi, xi+1, . . . , xM−1+i], i = 0, 1, . . . , KM− 1.

To see the structure of the matrix XXXKM×M, we present expression (5) in a more
detailed form:


y0
y1
...

yKM−1

 =



x0 x1 · · · xM−1
x1 x2 · · · xM
...

...
. . .

...
xM−1 xM · · · x2M−2

xM xM+1 · · · x2M−1
xM+1 xM+2 · · · x2M

...
...

. . .
...

x2M−1 x2M · · · x3M−2
...

...
...

...
x(K−1)M x(K−1)M+1 · · · xKM−1

x(K−1)M+1 x(K−1)M+2 · · · xKM
...

...
. . .

...
xKM−1 xKM · · · x(K−1)M−2




w0
w1
...

wM−1

 (6)

By examining this description, it becomes evident that the matrix XXXKM×M possesses
a block structure and comprises K submatrices of Hankel type. Thus, the calculation
of the sliding dot product, taking into account the imposed conditions, comes down to
multiplying the sequence of K sub-matrices (i.e. the Hankel matrices) by the vector WWWM×1
and then combining the individual calculation results.

Appl. Sci. 2023, 13, 9004 5 of 17

Hence, we establish the fundamental filtering operation in DNNs as multiplying
the Hankel sub-matrix (formed from the current input data sequence using a sliding
window of size M) by a vector whose elements are the impulse response coefficients of
an M-order FIR filter. There are efficient algorithms for multiplying Hankel matrices by a
vector. However, they are mainly focused on large matrices, the order of which is a power
of two [44,45]. But in most cases of image processing in neural networks, the impulse
responses of FIR filters are short and contain an odd number of coefficients. Under these
conditions, we are dealing with Hankel matrices of small orders. When multiplying small-
size Hankel matrices by small-length vectors, known algorithms are inefficient or even
counterproductive. Therefore, we have developed our own algorithms explicitly focused
on calculating matrix-vector products with Hankel matrices of small orders.

So, we define the basic filtering macrooperation as:

YYYM×1 = XXXMWWWM×1 (7)

where:

XXXM =


x0 x1 · · · xM−1
x1 x2 · · · xM
...

...
. . .

...
xM−1 xM · · · x2M−2

,

YYYM×1 =
[
y(M)

0 , y(M)
1 , . . . , y(M)

M−1

]T
,

WWWM×1 =
[
w(M)

0 , w(M)
1 , . . . , w(M)

M−1

]T
.

(Kindly take note that from this point forward, the superscript M will signify quantities
associated with the basic filtering macrooperation employing an M-order filter).

We emphasise once again that, as a rule, small-order filters are used in deep neural net-
works when the impulse response vectors contain a small number of elements. And almost
always, we are dealing with an odd number of records. Based on the information provided
above, this article aims to create and describe resource-efficient filtering algorithms for FIR
filters with widely used orders: M = 3, 5, 7, and 9.

4. Minimal Filtering Algorithms

Let us show, based on specific examples, how it works.

4.1. Algorithm 1, M = 3

Let XXX5×1 = [x0, x1, x2, x3, x4]
T be a vector that represents the input data set,

WWW3×1 =
[
w(3)

0 , w(3)
1 , w(3)

2

]T
be a vector that contains the coefficients of the impulse re-

sponse of a 3-tap FIR filter, and YYY3×1 =
[
y(3)0 , y(3)1 , y(3)2

]T
be a vector describing the results

of using a 3-tap FIR filter:

YYY3×1 =

 x0 x1 x2
x1 x2 x3
x2 x3 x4


 w(3)

0

w(3)
1

w(3)
2

 (8)

As can be seen, calculating the product (8) requires 9 multiplications and 6 additions.
We can formulate a streamlined algorithm for computing YYY3×1 by utilising the follow-

ing matrix-vector calculation procedure:

YYY3×1 = TTT(3)
3×6DDD(3)

6 TTT(3)
6×5XXX5×1 (9)

Appl. Sci. 2023, 13, 9004 6 of 17

where

TTT(3)
3×6 =

 1 1 1
1 1 1

1 1 1

,

TTT(3)
6×5 =



1 −1 −1
1
−1 1 −1

1
1

−1 −1 1

,

and
DDD(3)

6 = diag
(

s(3)0 , s(3)1 , . . . , s(3)5

)
,

s(3)0 ,= w(3)
0 , s(3)1 ,= w(3)

0 + w(3)
1 , s(3)2 ,= w(3)

1

s(3)3 = w(3)
0 + w(3)

2 , s(3)4 = w(3)
1 + w(3)

2 , s(3)5 = w(3)
2 .

Figure 2 depicts a data flow graph of the proposed algorithm for implementing the
basic filtering operation for a 3-tap FIR filter. In this paper, the data flow diagrams are
arranged from left to right, and straight lines in the figures represent data transfer opera-
tions. The circles in these figures indicate multiplication operations, with the corresponding
numbers written inside the circles. The convergence points of the lines indicate summation,
while dashed lines represent data transfer operations with a simultaneous change of sign.
To maintain clarity, the figures utilise simple lines without arrows. Furthermore, to simplify
the presentation, the superscripts of variables have been omitted in all figures, as the vector
sizes involved in each case can be inferred from the figures themselves.

Figure 2. Data flow graph of the algorithm for implementing the basic filtering operation for the case
M = 3.

4.2. Algorithm 2, M = 5

Let XXX9×1 = [x0, x1, x2, x3, x4, x5, x6, x7, x8]
T be a vector that represents the input data

set, WWW5×1 =
[
w(5)

0 , w(5)
1 , w(5)

2 , w(5)
3 , w(5)

4

]T
be a vector that contains the coefficients of the

impulse response of a 5-tap FIR filter, and YYY5×1 =
[
y(5)0 , y(5)1 , y(5)2 , y(5)3 , y(5)4

]T
be a vector

describing the results of using a 5-tap FIR filter:

YYY5×1 =


x0 x1 x2 x3 x4
x1 x2 x3 x4 x5
x2 x3 x4 x5 x6
x3 x4 x5 x6 x7
x4 x5 x6 x7 x8




w(5)

0

w(5)
1

w(5)
2

w(5)
3

w(5)
4

 (10)

As can be seen, calculating the product (10) requires 25 multiplications and 20 additions.

Appl. Sci. 2023, 13, 9004 7 of 17

We can devise a streamlined algorithm to compute YYY5×1 by employing the following
matrix-vector calculation procedure:

YYY5×1 = TTT(5)
5×14DDD(5)

14 TTT(5)
14×9XXX9×1 (11)

where

TTT(5)
5×14 =


1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

,

TTT(5)
14×9 =



1 −1 −1 1 −1
1 −1

1 −1
1

−1 1 1 −1 −1
1

−1 1
−1 1

−1 1 1 −1 −1
1

1 −1 −1 1 −1
1

1
−1 −1 −1 −1 1



,

and
DDD(5)

14 = diag
(

s(5)0 , s(5)1 , . . . , s(5)13

)
,

s(5)0 = w(5)
0 , s(5)1 = w(5)

0 + w(5)
1 , s(5)2 = w(5)

0 + w(5)
2 , s(5)3 = w(5)

0 + w(5)
1 + w(5)

2 + w(5)
3 ,

s(5)4 = w(5)
1 , s(5)5 = w(5)

0 + w(5)
4 , s(5)6 = w(5)

1 + w(5)
3 , s(5)7 = w(5)

2 + w(5)
3 ,

s(5)8 = w(5)
2 , s(5)9 = w(5)

1 + w(5)
4 , s(5)10 = w(5)

3 , s(5)11 = w(5)
2 + w(5)

4 ,

s(5)12 = w(5)
3 + w(5)

4 , s(5)13 = w(5)
4 .

Figure 3 illustrates a data flow graph of the proposed algorithm for implementing the
basic filtering operation for a 5-tap FIR filter.

Appl. Sci. 2023, 13, 9004 8 of 17

Figure 3. Data flow graph of the algorithm for implementing the basic filtering operation for the case
M = 5.

4.3. Algorithm 3, M = 7

Let XXX13×1 = [x0, x1, . . . , x12]
T be a vector that represents the input data set,

WWW7×1 =
[
w(7)

0 , w(7)
1 , . . . , w(7)

6

]T
be a vector that contains the coefficients of the impulse

response of a 7-tap FIR filter, and YYY7×1 =
[
y(7)0 , y(7)1 , . . . , y(7)6

]T
be a vector describing the

results of using a 7-tap FIR filter:

YYY7×1 =



x0 x1 x2 x3 x4 x5 x6
x1 x2 x3 x4 x5 x6 x7
x2 x3 x4 x5 x6 x7 x8
x3 x4 x5 x6 x7 x8 x9
x4 x5 x6 x7 x8 x9 x10
x5 x6 x7 x8 x9 x10 x11
x6 x7 x8 x9 x10 x11 x12





w(7)
0

w(7)
1

w(7)
2

w(7)
3

w(7)
4

w(7)
5

w(7)
6


(12)

As can be seen, calculating the product (12) requires 49 multiplications and 42 additions.

We can formulate a streamlined algorithm for computing YYY7×1 by utilising the follow-
ing matrix-vector calculation procedure:

YYY7×1 = TTT(7)
7×15TTT(7)

15×25DDD(7)
25 TTT(7)

25×18TTT(7)
18×13XXX13×1 (13)

where

TTT(7)
7×15 =



1 1
1 1 1

1 1 1
1 −1 1

1 −1 1
1 −1 1

1


,

Appl. Sci. 2023, 13, 9004 9 of 17

TTT(7)
9×18 =

 TTT(3)
3×6 0003×6 0003×6

0003×6 TTT(3)
3×6 0003×6

0003×6 0003×6 TTT(3)
3×6

, TTT(7)
9×7 =

[
1 0001×6

0008×1 0008×6

]
,

TTT(7)
6×7 =



1 1 1 1 1 1 1
1

1
1

1
1

, TTT(7)
15×25 =

[
TTT(7)

9×18 TTT(7)
9×7

0006×18 TTT(7)
6×7

]
,

TTT(7)
6×8 =

[
TTT(3)

6×5 0006×3

]
, T̃TT(7)

6×8 =
[

0006×3 TTT(3)
6×5

]
, TTT(7)

12×8 =

[
TTT(7)

6×8

T̃TT(7)
6×8

]
,

TTT(7)
10×5 =



−1

−1
−1

−1

−1


, TTT(7)

10 =
[

00010×4 TTT(7)
10×5 00010×1

]
,

TTT(7)
12×10 =

[
0002×10

TTT(7)
10

]
, TTT(7)

6×10 =
[

TTT(3)
6×5 0006×5

]
, TTT(7)

6×7 =
[

III6 0006×1
]
,

TTT(7)
1×7 =

[
−1 −1 −1 −1 −1 −1 1

]
,

TTT(7)
7 =

[
TTT(7)

6×7

TTT(7)
1×7

]
, TTT(7)

7×10 =
[

0007×3 TTT(7)
7

]
, TTT(7)

13×10 =

[
TTT(7)

6×10

TTT(7)
7×10

]
,

TTT25×18 =

[
TTT(7)

12×8 TTT12×10
00013×8 TTT13×10

]
,

TTT(7)
8×11 =



1 1 −1
1 1

1 1
1 1

1 1
1 1

1 1
1 1


,

TTT(7)
8×13 =

[
TTT(7)

8×11 0008×2

]
, TTT(7)

10×13 =
[

00010×3 III10
]
, TTT18×13 =

[
TTT(7)

8×13

TTT(7)
10×13

]
,

and
DDD(7)

25 = diag
(

s(7)0 , s(7)1 , . . . , s(7)24

)
,

s(7)0 = w(7)
0 , s(7)1 = w(7)

0 + w(7)
1 , s(7)2 = w(7)

1 , s(7)3 = w(7)
0 + w(7)

2 , s(7)4 = w(7)
1 + w(7)

2 ,

Appl. Sci. 2023, 13, 9004 10 of 17

s(7)5 = w(7)
2 , s(7)6 = w(7)

3 , s(7)7 = w(7)
3 + w(7)

4 , s(7)8 = w(7)
4 , s(7)9 = w(7)

3 + w(7)
5 ,

s(7)10 = w(7)
4 + w(7)

5 , s(7)11 = w(7)
5 , s(7)12 = w(7)

3 − w(7)
0 , s(7)13 = w(7)

3 + w(7)
4 − w(7)

0 − w(7)
1 ,

s(7)14 = w(7)
4 − w(7)

1 , s(7)15 = w(7)
3 + w(7)

5 − w(7)
0 − w(7)

2 , s(7)16 = w(7)
4 + w(7)

5 − w(7)
1 − w(7)

2 ,

s(7)17 = w(7)
5 − w(7)

2 , s(7)18 = w(7)
0 + w(7)

6 , s(7)19 = w(7)
1 + w(7)

6 , s(7)20 = w(7)
2 + w(7)

6 ,

s(7)21 = w(7)
3 + w(7)

6 , s(7)22 = w(7)
4 + w(7)

6 , s(7)23 = w(7)
5 + w(7)

6 , s(7)24 = w(7)
6 .

Figure 4 illustrates a data flow graph of the proposed algorithm for implementing the
basic filtering operation for a 7-tap FIR filter.

Figure 4. Data flow graph of the algorithm for implementing the basic filtering operation for the case
M = 7.

Appl. Sci. 2023, 13, 9004 11 of 17

4.4. Algorithm 4, M = 9

Let XXX17×1 = [x0, x1, . . . , x16]
T be a vector that represents the input data set,

WWW9×1 =
[
w(9)

0 , w(9)
1 , . . . , w(9)

8

]T
be a vector that contains the coefficients of the impulse

response of a 9-tap FIR filter, and YYY9×1 =
[
y(9)0 , y(9)1 , . . . , y(9)8

]T
be a vector describing the

results of using a 9-tap FIR filter:

YYY9×1 =



x0 x1 x2 x3 x4 x5 x6 x7 x8
x1 x2 x3 x4 x5 x6 x7 x8 x9
x2 x3 x4 x5 x6 x7 x8 x9 x10
x3 x4 x5 x6 x7 x8 x9 x10 x11
x4 x5 x6 x7 x8 x9 x10 x11 x12
x5 x6 x7 x8 x9 x10 x11 x12 x13
x6 x7 x8 x9 x10 x11 x12 x13 x14
x7 x8 x9 x10 x11 x12 x13 x14 x15
x8 x9 x10 x11 x12 x13 x14 x15 x16





w(9)
0

w(9)
1

w(9)
2

w(9)
3

w(9)
4

w(9)
5

w(9)
6

w(9)
7

w(9)
8


(14)

As can be seen, calculating the product (14) requires 81 multiplications and 72 additions.
We can formulate a streamlined algorithm for computing YYY9×1 by utilising the follow-

ing matrix-vector calculation procedure:

YYY9×1 = TTT(9)
9×18TTT(9)

18×36DDD(9)
36 TTT(9)

36×30TTT(9)
30×17XXX17×1 (15)

where

TTT(9)
9×18 =



1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1


,

T̃TT(9)
9×18 =

 TTT(3)
3×6 0003×6 0003×6

0003×6 TTT(3)
3×6 0003×6

0003×6 0003×6 TTT(3)
3×6

, TTT(9)
18×36 =

[
T̃TT(9)

9×18 0009×18

0009×18 T̃TT(9)
9×18

]
,

TTT(9)
6×10 =

[
TTT(3)

6×5 0006×5

]
, T̃TT(9)

6×10 =
[

0006×5 TTT(3)
6×5

]
, TTT(9)

12×10 =

[
TTT(9)

6×10

T̃TT(9)
6×10

]
,

TTT(9)
36×30 =

 TTT(9)
12×10 00012×10 00012×10

00012×10 TTT(9)
12×10 00012×10

00012×10 00012×10 TTT(9)
12×10

,

TTT(9a)
5×11 =


1 −1 −1

1 −1 −1
1 −1 −1

1 −1 −1
1 −1 −1

,

Appl. Sci. 2023, 13, 9004 12 of 17

TTT(9b)
5×11 =


−1 1 −1
−1 1 −1
−1 1 −1
−1 1 −1
−1 1 −1

,

TTT(9c)
5×11 =


−1 −1 1
−1 −1 1
−1 −1 1
−1 −1 1
−1 −1 1

,

TTT(9a)
5×17 =

[
TTT(9a)

5×11 0005×6

]
, TTT(9b)

5×17 =
[

0005×3 III5 0005×9
]
,

TTT(9c)
5×17 =

[
0005×3 TTT(9b)

5×11 0005×3

]
, TTT(9d)

5×17 =
[

0005×6 III5 0005×6
]
,

TTT(9e)
5×17 =

[
0005×9 III5 0005×3

]
, TTT(9 f)

5×17 =
[

0005×6 TTT(9c)
5×11

]
,

TTT(9)
30×17 =



TTT(9a)
5×17

TTT(9b)
5×17

TTT(9c)
5×17

TTT(9d)
5×17

TTT(9e)
5×17

TTT(9 f)
5×17


,

DDD(9)
36 = diag

(
s(9)0 , s(9)1 , . . . , s(9)35

)
,

s(9)0 = w(9)
0 , s(9)1 = w(9)

0 + w(9)
1 , s(9)2 = w(9)

1 , s(9)3 = w(9)
0 + w(9)

2 , s(9)4 = w(9)
1 + w(9)

2 ,

s(9)5 = w(9)
2 , s(9)6 = w(9)

0 + w(9)
3 , s(9)7 = w(9)

0 + w(9)
1 + w(9)

3 + w(9)
4 , s(9)8 = w(9)

1 + w(9)
4 ,

s(9)9 = w(9)
0 + w(9)

2 + w(9)
3 + w(9)

5 , s(9)10 = w(9)
1 + w(9)

2 + w(9)
4 + w(9)

5 , s(9)11 = w(9)
2 + w(9)

5 ,

s(9)12 = w(9)
3 , s(9)13 = w(9)

3 + w(9)
4 , s(9)14 = w(9)

4 , s(9)15 = w(9)
3 + w(9)

5 , s(9)16 = w(9)
4 + w(9)

5 ,

s(9)17 = w(9)
5 , s(9)18 = w(9)

0 + w(9)
6 , s(9)19 = w(9)

0 + w(9)
1 + w(9)

6 + w(9)
7 , s(9)20 = w(9)

1 + w(9)
7 ,

s(9)21 = w(9)
0 + w(9)

2 + w(9)
6 + w(9)

8 , s(9)22 = w(9)
1 + w(9)

2 + w(9)
7 + w(9)

8 , s(9)23 = w(9)
2 + w(9)

8 ,

s(9)24 = w(9)
3 + w(9)

6 , s(9)25 = w(9)
3 + w(9)

4 + w(9)
6 + w(9)

7 , s(9)26 = w(9)
4 + w(9)

7 ,

s(9)27 = w(9)
3 + w(9)

5 + w(9)
6 + w(9)

8 , s(9)28 = w(9)
4 + w(9)

5 + w(9)
7 + w(9)

8 , s(9)29 = w(9)
5 + w(9)

8 ,

s(9)30 = w(9)
6 , s(9)31 = w(9)

6 + w(9)
7 , s(9)32 = w(9)

7 , s(9)33 = w(9)
6 + w(9)

8 , s(9)34 = w(9)
7 + w(9)

8 ,

s(9)35 = w(9)
8 .

Figure 5 illustrates a data flow graph of the proposed algorithm for implementing the
basic filtering operation for a 9-tap FIR filter.

Appl. Sci. 2023, 13, 9004 13 of 17

Figure 5. Data flow graph of the algorithm for implementing the basic filtering operation for the case
M = 9.

5. Implementation Complexity

Due to the relatively small lengths of the input sequences and the straightforward
nature of the data flow diagrams depicting the computation process, it is easy to assess the
implementation complexity of the proposed solutions. Table 1 estimates the number of
arithmetic blocks required for the fully parallel implementation of the filtering algorithms
designed for short lengths. The values presented in the table can be regarded as an
approximate measure of the implementation cost on an ASIC.

Appl. Sci. 2023, 13, 9004 14 of 17

Table 1. The complexities of implementing of the naive and proposed solutions.

Size M
Numbers of Arithmetic Blocks

Naive Method Proposed Algorithm

Multipliers M-Input
Adders Multipliers 2-Input

Adders
3-Input
Adders

4-Input
Adders

M-Input
Adders

3 9 3 6 - 6 - -
5 25 5 14 4 - - 10
7 49 7 25 7 24 1 1
9 81 9 36 - 60 - -

As we can see, using the proposed algorithmic solutions to construct digital filtering
cores results in fewer multipliers being needed than using naive approaches to their design.
In the context of designing specialised fully parallel VLSI processors, minimising the
number of multipliers is of paramount importance. This approach significantly reduces the
cost of implementing the entire system and mitigates power dissipation. This is due to the
hardware multiplier’s higher level of complexity and larger chip area occupation than the
adder. It has been demonstrated that the hardware cost of a binary adder rises linearly with
the operand size. In contrast, the implementation cost of a hardwired multiplier escalates
quadratically with the operand size [46]. Hence, reducing the number of multipliers, even if
it results in a slight increase in the number of adders, significantly influences the hardware
implementation of digital filtering cores.

The proposed algorithms have been exemplarily implemented in FPGAs on the sim-
plest possible devices of Xilinx’s Spartan 3 series. The criterion for selecting a model from
the Spartan 3 family was to provide a sufficient number of inputs and outputs. The 8-bit
inputs XXX(2M−1)×1, 16-bit outputs YYY9×1, and fixed 8-bit coefficients of the impulse response
of the FIR filter WWWM×1, were assumed. Table 2 shows the number of slices used in the
Spartan 3 FPGA implementation. The number of uses multipliers MULT 18×18 is also
shown in this table, but both algorithms mostly used all hardware-accessible multipliers.
Only for size M = 5 was the number of available multipliers is for the proposed algorithm
greater than required, and only in this case did the algorithm not use all of them. Table 3
shows the number of four input LUTs used in the Spartan 3 FPGA implementation. For
each size M, the proposed algorithms achieved a reduction of the logic blocks used. The
smallest was for the size M = 3, where the reduction was only about 1% for the slices and
2,4% for four inputs LUTs. The biggest was for size M = 5, which achieves nearly a 40%
decrease in logical blocks.

Table 2. The number of the multipliers MULT 18 × 18, and the slices used in the Spartan 3 FPGA
implementations.

MULT 18 × 18 Slices
Size M Devices School Proposed School Proposed Reduction

3 xc3s50-
4pq208 4 4 111 110 0.9%

5 xc3s400-
4fg456 16 14 563 342 39.3%

7 xc3s400-
4fg456 16 16 776 684 11.9%

9 xc3s1000-
4fg676 24 24 1303 1066 18.2%

Appl. Sci. 2023, 13, 9004 15 of 17

Table 3. The number of the 4 input LUTs used in the Spartan 3 FPGA implementations.

4 Input LUTs
Size M Devices School Proposed Reduction

3 xc3s50-4pq208 207 202 2.4%
5 xc3s400-4fg456 1040 636 38.8%
7 xc3s400-4fg456 1441 1284 10.9%
9 xc3s1000-4fg676 2456 1994 18.8%

6. Conclusions

This study explores methods to reduce the multiplicative complexity of conducting
basic filtering operations for M-tap FIR filters with short impulse responses, commonly
used in convolutional neural networks. Additionally, new algorithms for resource-efficient
implementations of these algorithms have been devised for M values of 3, 5, 7, and 9. By
utilising these algorithms, basic filtering operations computational complexity is reduced,
which also lessens the difficulty of their hardware implementation. Reducing the number
of multiplications in the algorithms comes at the expense of some increase in the number
of additions. However, this is not significant due to the much higher implementation
cost of the hardware multiplier relative to the adder. Some limitation of the proposed
algorithms is the increased complexity of data manipulation. For this reason, it seems
particularly advantageous to implement the proposed solutions in ASICs. The distinctive
feature of all the proposed algorithms is their evident parallel and modular structures. The
modularity allows unifying the implementation of the algorithms in FPGAs and makes it
easier to map them into ASIC structures. Consequently, the parallelisation of computing
processes enables accelerated computations during the execution of these algorithms. The
implementation of the proposed algorithms in DNNs will be a target for further research.

Author Contributions: Conceptualization, A.C.; methodology, A.C., J.P.P. and M.M.; formal analysis,
A.C., J.P.P. and M.M.; writing—original draft preparation, A.C.; writing—review and editing, A.C.
and J.P.P.; visualization, A.C., M.M. and J.P.P.; supervision, A.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

VLSI very large-scale integration
DNN deep neural networks
FFT fast Fourier transform
FIR finite impuls responce
FPGA field programmable gate array
GPU graphics processing unit
ASIC application-specific integrated circuit
Tiny ML Tiny machine learning
Edge AI Edge artificial intelligence
MULT Multiplication
LUT look up table

Appl. Sci. 2023, 13, 9004 16 of 17

References
1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM

2017, 60, 84–90. [CrossRef]
2. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
3. Adhikari, S.P.; Kim, H.; Yang, C.; Chua, L.O. Building cellular neural network templates with a hardware friendly learning

algorithm. Neurocomputing 2018, 312, 276–284. [CrossRef]
4. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;

Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021,
8, 1–74.

5. Habib, G.; Qureshi, S. Optimization and acceleration of convolutional neural networks: A survey. J. King Saud-Univ.-Comput. Inf.
Sci. 2022, 34, 4244–4268. [CrossRef]

6. Lin, S.; Liu, N.; Nazemi, M.; Li, H.; Ding, C.; Wang, Y.; Pedram, M. FFT-based deep learning deployment in embedded systems.
In Proceedings of the 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 19–23
March 2018; pp. 1045–1050. [CrossRef]

7. Mathieu, M.; Henaff, M.; LeCun, Y. Fast Training of Convolutional Networks through FFTs. arXiv 2014, arXiv:1312.5851.
8. Abtahi, T.; Kulkarni, A.; Mohsenin, T. Accelerating convolutional neural network with FFT on tiny cores. In Proceedings of the

2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4. [CrossRef]
9. Abtahi, T.; Shea, C.; Kulkarni, A.; Mohsenin, T. Accelerating Convolutional Neural Network with FFT on Embedded Hardware.

IEEE Trans. Very Large Scale Integr. (Vlsi) Syst. 2018, 26, 1737–1749. [CrossRef]
10. Lin, J.; Yao, Y. A Fast Algorithm for Convolutional Neural Networks Using Tile-based Fast Fourier Transforms. Neural Process.

Lett. 2019, 50, 1951–1967. [CrossRef]
11. Wu, Y. Review on FPGA-Based Accelerators in Deep learning. In Proceedings of the 2023 IEEE 6th Information Technology,

Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 23–26 February 2023; Volume 6,
pp. 452–456. [CrossRef]

12. Lavin, A.; Gray, S. Fast Algorithms for Convolutional Neural Networks. In Proceedings of the 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 4013–4021. [CrossRef]

13. Zhao, Y.; Wang, D.; Wang, L. Convolution accelerator designs using fast algorithms. Algorithms 2019, 12, 112. [CrossRef]
14. Yang, D.S.; Xu, C.H.; Ruan, S.J.; Huang, C.M. Unified energy-efficient reconfigurable MAC for dynamic Convolutional Neural

Network based on Winograd algorithm. Microprocess. Microsyst. 2022, 93, 104624. [CrossRef]
15. Dolz, M.F.; Barrachina, S.; Martínez, H.; Castelló, A.; Maciá, A.; Fabregat, G.; Tomás, A.E. Performance–energy trade-offs of deep

learning convolution algorithms on ARM processors. J. Supercomput. 2023, 79, 1–18. [CrossRef]
16. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
17. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 6848–6856.

18. Wang, X.; Wang, C.; Zhou, X. Work-in-Progress: WinoNN: Optimising FPGA-based Neural Network Accelerators using Fast
Winograd Algorithm. In Proceedings of the 2018 International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), Turin, Italy, 30 September–3 October 2018; pp. 1–2. [CrossRef]

19. Farabet, C.; Poulet, C.; Han, J.Y.; LeCun, Y. CNP: An FPGA-based processor for convolutional networks. In Proceedings of the
FPL 2009, IEEE, Prague, Czech Republic, 31 August–2 September 2009; pp. 32–37.

20. Lu, L.; Liang, Y. SpWA: An Efficient Sparse Winograd Convolutional Neural Networks Accelerator on FPGAs. In Proceedings
of the 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 24–28 June 2018; pp. 1–6.
[CrossRef]

21. Yu, J.; Hu, Y.; Ning, X.; Qiu, J.; Guo, K.; Wang, Y.; Yang, H. Instruction driven cross-layer CNN accelerator with winograd
transformation on FPGA. In Proceedings of the 2017 International Conference on Field Programmable Technology (ICFPT),
Melbourne, VI, Australia, 11–13 December 2017; pp. 227–230. [CrossRef]

22. Liang, Y.; Lu, L.; Xiao, Q.; Yan, S. Evaluating Fast Algorithms for Convolutional Neural Networks on FPGAs. IEEE Trans.
-Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 857–870. [CrossRef]

23. Shawahna, A.; Sait, S.M.; El-Maleh, A. FPGA-based Accelerators of Deep Learning Networks for Learning and Classification: A
Review. IEEE Access 2019, 7, 7823–7859.

24. Guo, K.; Zeng, S.; Yu, J.; Wang, Y.; Yang, H. A Survey of FPGA-Based Neural Network Accelerator. arXiv 2018, arXiv:1712.08934.
25. Hoffmann, J.; Navarro, O.; Kästner, F.; Janßen, B.; Hübner, M. A Survey on CNN and RNN Implementations. In Proceedings

of the PESARO 2017: The Seventh International Conference on Performance, Safety and Robustness in Complex Systems and
Applications, Pesaro, Italy, 23–27 April 2017; pp. 33–39.

26. Liu, Z.; Chow, P.; Xu, J.; Jiang, J.; Dou, Y.; Zhou, J. A Uniform Architecture Design for Accelerating 2D and 3D CNNs on FPGAs.
Electronics 2019, 8, 65. [CrossRef]

http://doi.org/10.1145/3065386
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1016/j.neucom.2018.05.113
http://dx.doi.org/10.1016/j.jksuci.2020.10.004
http://dx.doi.org/10.23919/DATE.2018.8342166
http://dx.doi.org/10.1109/ISCAS.2017.8050588
http://dx.doi.org/10.1109/TVLSI.2018.2825145
http://dx.doi.org/10.1007/s11063-019-09981-z
http://dx.doi.org/10.1109/ITNEC56291.2023.10082175
http://dx.doi.org/10.1109/CVPR.2016.435
http://dx.doi.org/10.3390/a12050112
http://dx.doi.org/10.1016/j.micpro.2022.104624
http://dx.doi.org/10.1007/s11227-023-05050-4
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/CODESISSS.2018.8525909
http://dx.doi.org/10.1109/DAC.2018.8465842
http://dx.doi.org/10.1109/FPT.2017.8280147
http://dx.doi.org/10.1109/TCAD.2019.2897701
http://dx.doi.org/10.3390/electronics8010065

Appl. Sci. 2023, 13, 9004 17 of 17

27. Zhao, R.; Song, W.; Zhang, W.; Xing, T.; Lin, J.H.; Srivastava, M.; Gupta, R.; Zhang, Z. Accelerating Binarized Convolutional
Neural Networks with Software-Programmable FPGAs. In Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, Monterey, CA, USA, 22–24 February 2017; pp. 15–24. [CrossRef]

28. Zhang, C.; Li, P.; Sun, G.; Guan, Y.; Xiao, B.; Cong, J. Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural
Networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey,
CA, USA, 22–24 February 2015; pp. 161–170. [CrossRef]

29. Li, Y.; Liu, Z.; Xu, K.; Yu, H.; Ren, F. A GPU-Outperforming FPGA Accelerator Architecture for Binary Convolutional Neural
Networks. arXiv 2017, arXiv:1702.06392.

30. Qiu, J.; Wang, J.; Yao, S.; Guo, K.; Li, B.; Zhou, E.; Yu, J.; Tang, T.; Xu, N.; Song, S.; et al. Going deeper with embedded fpga platform
for convolutional neural network. In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, Monterey, CA, USA, 22–24 February 2016; pp. 26–35.

31. Li, H.; Fan, X.; Jiao, L.; Cao, W.; Zhou, X.; Wang, L. A high performance FPGA-based accelerator for large-scale convolutional
neural networks. In Proceedings of the 2016 26th International Conference on Field Programmable Logic and Applications (FPL),
IEEE, Lausanne, Switzerland, 29 August–2 September 2016; pp. 1–9.

32. Hardieck, M.; Kumm, M.; Möller, K.; Zipf, P. Reconfigurable Convolutional Kernels for Neural Networks on FPGAs. In
Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside, CA, USA, 22–24
February 2019; pp. 43–52. [CrossRef]

33. Ghimire, D.; Kil, D.; Kim, S.H. A survey on efficient convolutional neural networks and hardware acceleration. Electronics 2022,
11, 945. [CrossRef]

34. Strigl, D.; Kofler, K.; Podlipnig, S. Performance and Scalability of GPU-Based Convolutional Neural Networks. In Proceedings of
the 18th Euromicro Conference on Parallel, Distributed and Network-Based Processing, Pisa, Italy, 17–19 February 2010.

35. Li, X.; Zhang, G.; Huang, H.H.; Wang, Z.; Zheng, W. Performance Analysis of GPU-Based Convolutional Neural Networks. In
Proceedings of the 2016 45th International Conference on Parallel Processing (ICPP), Philadelphia, PA, USA, 16–19 August 2016;
pp. 67–76. [CrossRef]

36. Cengil, E.; Cinar, A.; Guler, Z. A GPU-based convolutional neural network approach for image classification. In Proceedings of
the 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 16–17 September 2017;
pp. 1–6. [CrossRef]

37. Chen, Y.H.; Krishna, T.; Emer, J.; Sze, V. 14.5 Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural
networks. In Proceedings of the 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 31
January 2016; pp. 262–263. [CrossRef]

38. Ovtcharov, K.; Ruwase, O.; Kim, J.Y.; Fowers, J.; Strauss, K.; Chung, E.S. Accelerating deep convolutional neural networks using
specialized hardware. Microsoft Res. 2015, 2, 1–14.

39. Tu, F.; Yin, S.; Ouyang, P.; Tang, S.; Liu, L.; Wei, S. Deep convolutional neural network architecture with reconfigurable
computation patterns. IEEE Trans. Very Large Scale Integr. (Vlsi) Syst. 2017, 25, 2220–2233. [CrossRef]

40. Zhao, Y.; Wang, D.; Wang, L.; Liu, P. A Faster Algorithm for Reducing the Computational Complexity of Convolutional Neural
Networks. Algorithms 2018, 11, 159. [CrossRef]

41. Kala, S.; Jose, B.R.; Mathew, J.; Nalesh, S. High-performance CNN accelerator on FPGA using unified winograd-GEMM
architecture. IEEE Trans. Very Large Scale Integr. (Vlsi) Syst. 2019, 27, 2816–2828. [CrossRef]

42. An, Y.; Li, B.; Bu, J.; Gao, Y. Optimizing Winograd convolution on GPUs via multithreaded communication. In Proceedings of the
Second International Conference on Algorithms, Microchips, and Network Applications (AMNA 2023), SPIE, Zhengzhou, China,
13–15 January 2023; Volume 12635, pp. 204–212.

43. Cariow, A.; Cariowa, G. Minimal filtering algorithms for convolutional neural networks. In Reliability Engineering and Computa-
tional Intelligence; Springer: Cham, Switzerland 2021; pp. 73–88.

44. Cariow, A.; Gliszczyński, M. Fast algorithms to compute matrix-vector products for Toeplitz and Hankel matrices. Electr. Rev.
2012, 88, 166–171.

45. Beliakov, G. On fast matrix-vector multiplication with a Hankel matrix in multiprecision arithmetics. arXiv 2014, arXiv:1402.5287.
46. Oudjida, A.K.; Chaillet, N.; Berrandjia, M.L.; Liacha, A. A New High Radix-2r (r ≥ 8) Multibit Recoding Algorithm for Large

Operand Size (N ≥ 32) Multipliers. J. Low Power Electron. 2013, 9, 50–62. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3020078.3021741
http://dx.doi.org/10.1145/2684746.2689060
http://dx.doi.org/10.1145/3289602.3293905
http://dx.doi.org/10.3390/electronics11060945
http://dx.doi.org/10.1109/ICPP.2016.15
http://dx.doi.org/10.1109/IDAP.2017.8090194
http://dx.doi.org/10.1109/ISSCC.2016.7418007
http://dx.doi.org/10.1109/TVLSI.2017.2688340
http://dx.doi.org/10.3390/a11100159
http://dx.doi.org/10.1109/TVLSI.2019.2941250
http://dx.doi.org/10.1166/jolpe.2013.1240

	Introduction
	State of the Art
	Preliminary Remarks
	Minimal Filtering Algorithms
	Algorithm 1, M = 3
	Algorithm 2, M = 5
	Algorithm 3, M = 7
	Algorithm 4, M = 9

	Implementation Complexity
	Conclusions
	References

