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Abstract: This paper introduces a novel speech enhancement approach called dominant columns
group orthogonalization of the sensing matrix (DCGOSM) in compressive sensing (CS). DCGOSM
optimizes the sensing matrix using particle swarm optimization (PSO), ensuring separate basis
vectors for speech and noise signals. By utilizing an orthogonal matching pursuit (OMP) based CS
signal reconstruction with this optimized matrix, noise components are effectively avoided, resulting
in lower noise in the reconstructed signal. The reconstruction process is accelerated by iterating only
through the known speech-contributing columns. DCGOSM is evaluated against various noise types
using speech quality measures such as SNR, SSNR, STOI, and PESQ. Compared to other OMP-based
CS algorithms and deep neural network (DNN)-based speech enhancement techniques, DCGOSM
demonstrates significant improvements, with maximum enhancements of 42.54%, 62.97%, 27.48%,
and 8.72% for SNR, SSNR, PESQ, and STOI, respectively. Additionally, DCGOSM outperforms
DNN-based techniques by 20.32% for PESQ and 8.29% for STOI. Furthermore, it reduces recovery
time by at least 13.2% compared to other OMP-based CS algorithms.

Keywords: compressive sensing (CS); orthogonal matching pursuit (OMP); sensing matrix optimization;
voice activity detection (VAD); speech enhancement; particle swarm optimization (PSO)

1. Introduction

In recent years, the domains of signal processing and information theory have shown
significant interest in compressive sensing (CS) [1,2]. Compressive sensing, alternatively
referred to as compressed sensing or compressive sampling, has emerged as a potent
technique for signal processing, with extensive applications across multiple fields. By
leveraging the innate sparsity or compressibility of signals, compressive sensing enables
the acquisition and reconstruction of signals using considerably fewer measurements than
conventional methods demand. This pioneering concept has transformed data acquisition
and processing across diverse domains, including image and video processing, audio
processing, medical imaging, wireless communication, etc. [3-7].

Conventional approaches often depend on uniformly sampling signals at the Nyquist
rate, which can be computationally burdensome and require significant storage capacity.
In contrast, compressive sensing enables sub-Nyquist sampling, thereby lowering the
demands for data acquisition and storage while preserving the fidelity of the signal.

The CS suggests that, compared to the number of samples required by conventional
Nyquist-based approaches, a signal can be reconstructed with fewer samples (observa-
tions) [8]. However, for CS to work properly, the input signal must be highly compressible,
or more specifically, sparse. A sparse signal has few active (nonzero) components in relation
to its length. The signals can exhibit this property either in their sampling domain or any
other underlying transform domain such as Fourier, wavelet, curvelet, etc. In CS, there are
two major components: encoding (sampling) and decoding (recovery). Let vector x € RN*1
denote N successive samples coming from a transducer. The vector x can be transformed
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into a sparse vector X = tx through a N x N sparse transforming matrix ¢. If X contains k
non-zero elements, it is said to be k sparse. The reconstruction of the original data x from
y € RM*1 measurements, where y = ¢X = ¢yx, requires k << M << N. Generating
a suitable sensing matrix to improve the reconstruction process is one of the most chal-
lenging tasks in CS. The restricted isometry property (RIP) states that the performance of
compressed sensing algorithms improves when the mutual coherence between the sensing
matrix ¢ and the transforming matrix ¢ decreases [9,10].

The rest of the paper is organized as follows: Section 2 briefly reviews the related
work. Section 3 provides a detailed explanation of the proposed technique along with
the theoretical background of the different processes used in this work. In Section 4,
the evaluation results for the proposed technique with detailed analysis are presented.
This section also includes a comparison of various methods. Finally, Section 5 concludes
the paper.

2. Related Work

Finding an optimal CS matrix for compression and reconstruction is one of the most
difficult problems in CS. Randomly constructing CS matrix elements that meet the RIP
requirement does not produce the optimal solution. Because of this, random sensing
matrices have been abandoned in favor of deterministic matrices in a number of research
studies. The Ternary matrix [11], Walsh-Hadamard [12], and low-density parity checks [13]
are examples of deterministic matrices that can be used in computations.

Another challenge is finding suitable algorithms for compressed speech enhancement
and a domain of transformation that is suitable for sparse signals. Many basis functions
are available for speech signals [14,15], like the Fourier Transform, Cosine Transform, and
Wavelet Transforms [16].

There are several different types of sensing matrices; for example, the Gaussian random
matrix, Bernoulli, Fourier, wavelets, etc. [14]. Several optimization techniques, such as I;
minimization [17], orthogonal matching pursuit (OMP) [18], and compressive sampling
matching pursuit (CoSaMP) [19], were also utilized to recover the compressively sampled
speech signals. The study presented by Pilastri et al. [20] analyzed the performance of
several CS reconstruction algorithms applied to image reconstruction and suggested that
the /; minimization-based basis pursuit algorithm outperforms the other OMP methods.

As presented in [21], the basis pursuit algorithm also provides a slight edge over the
CoSaMP for speech enhancement. Several CS-based methods for speech enhancement have
also been proposed in [22-24]. Wu et al. [22,24] employed a random sampling matrix in
their sensing process.

At present, the most accurate approach for determining the quality of speech is to
conduct subjective listening tests. However, subjective evaluations of speech enhancement
algorithms are costly and time-consuming, despite the fact that they are accurate, reliable,
and performed under rigorous conditions [25-28]. Therefore, many efforts have been made
to develop objective measures that are highly correlated with speech quality.

Several attempts have been made over the years to predict subjective speech quality us-
ing objective speech quality metrics [25]. Objective measures based on LPC, such as cepstrum
distance measures (CEP) [29] and frequency-weighted segmental SNR (fwsegSNR) [25],
are among the objective speech quality measures examined in [28], along with others,
such as segmental SNR (segSNR) [30], weighted-slope spectral distance (WSS) [31], and
PESQ [32,33].

The preceding discussion has highlighted that the basic compressive sensing idea has
been modified in different ways to achieve better speech enhancement performance. Many
ideas have been proposed for efficient reconstruction of the compressed signal [34], as
shown in Figure 1. However, this work is primarily concerned with the efficient reconstruc-
tion of compressed signals while achieving better enhancement using greedy algorithms.
Greedy algorithms recover the signal iteratively by choosing a local optimal solution at
each iteration with the intention of eventually discovering the global optimal solution. In
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general, greedy algorithms take the steps depicted in Figure 2. In each repetition, the quan-
tity of the column selected varies slightly. Only one column is selected for each iteration of
the matching pursuit (MP) [35], orthogonal matching pursuit (OMP), and matching pursuit
based on least squares (MPLS) [36] algorithms.

—> Matching Pursuit (MP)

—> Matching Pursuit Least Squares (MPLS)

—> Orthogonal Matching Pursuit (OMP)
—> Subspace Pursuit (SP)
—> Stagewise Orthogonal Matching Pursuit (StOMP)

—> Compressive Sampling Matching Pursuit (CoSaMP)

—> Regularized OMP (ROMP)
—> Generalized Orthogonal Adaptive Matching Pursuit (GOAMP)
—> Gradient Pursuit (GP)

—> Multipath Matching Pursuit (MMP)

—> Generalized Orthogonal Adaptive Matching Pursuit (GOAMP)

—> lterative Hard Thresholding (IHT)

Figure 1. Sparse recovery algorithms.

In contrast, the subspace pursuit (SP) [37], stagewise-OMP (StOMP) [38], compressive
sampling matching pursuit (CoSaMP) [19], regularized-OMP (ROMP) [39], generalized-
OMP (GOMP) [40], generalized orthogonal adaptive matching pursuit (GOAMP) [41],
constrained backtracking matching pursuit (CBMP) [42], generalized backtracking regular-
ized adaptive matching pursuit (GBRAMP) [43], OMP algorithm based on singular value
decomposition [44], enhanced block-based OMP pursuit [45], gradient pursuit (GP) [46],
and multipath matching pursuit (MMP) [47], involve columns with projected values that
exceed the thresholds selected by the algorithm. Other differences between the algorithms
include the way the residual vector ., is calculated and how the non-zero values of x,s
are estimated. For instance, the MPLS and the subspace pursuit (SP) algorithms do not
estimate x,s; until the last step of their respective processes.

As the aforementioned discussion has highlighted, all the existing greedy algorithms
use either single or groups of column selection. For every frame of the signal, iterations are
required to find the dominating columns set (gbft‘;:"i”"”t), as described in Figure 2. This makes
the algorithm complex and time-consuming. To overcome this problem, we proposed an
optimized measurement matrix generation in such a way that all dominating columns
consisting of the original signal components are known in advance. Furthermore, the
optimization minimizes the presence of noise components in these columns to achieve
better signal enhancement.

Based on these investigations, this paper proposes a CS-based speech enhancement
technique called the dominant columns group orthogonalization of the sensing mat-
rix (DCGOSM).
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[ reconstruct g from y using ¢j. ]

Figure 2. Flow chart for greedy algorithms.

3. Theoretical Background
3.1. Preprocessing

In signal processing, preprocessing plays an important role. Once experimental results
are obtained, they are modeled to extract useful information. Generally, the data output is
either too large, too small, or fragmented. As a part of preprocessing, the data are classified
and processed accordingly [48]. In this work, we use the following normalization procedure
to translate the signal into the range of [—1, 1] [49]:

O s S (1)

Si
norm S _ S X
max min
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where Sf,rg, Si orm are the i samples of the original and normalized (scaled) signal, respec-
tively, and Sy;ax and Sy, are the maximum and minimum values achieved by the signal
Sorg, respectively.

3.2. Discrete Cosine Transform (DCT) and Inverse DCT (IDCT)

The DCT transforms a signal into the frequency domain, similar to the discrete Fourier
transform (DFT). However, unlike to the DFT, the DCT relies only on real-valued cosine
functions; therefore, it is simpler to compute [50]. Another property that makes the DCT su-
perior to the DFT is its high spectral compaction. Therefore, a signal’s DCT transformation
includes more energy in fewer coefficients than other transformations, such as the DFT.

For sparse encoding of a signal, where a small number of nonzero samples are required,
this is preferable. Due to the small number of DCT coefficients that hold substantial energy
in a speech signal, all remaining coefficients can be reduced to zero without losing any
significant information [51]. Therefore, the voice signal will be sparsely represented in
this way.

Figure 3 illustrates the process of generating a sparse signal representation using the
discrete cosine transform (DCT). In Figure 3a, a speech signal frame consisting of 32 samples
is depicted. The corresponding DCT transform with 32 coefficients is shown in Figure 3b.
The DCT coefficients are then arranged in descending order and presented in Figure 3c.
Furthermore, Figure 3d shows the plot of energy in the largest K coefficients, where K takes
values of 5, 10, 15, 20, 25, and 30. The plot in Figure 3d demonstrates that the top five DCT
coefficients encompass 75.65% of the total energy of the 32 samples in the speech signal
frame, while the top ten coefficients capture 95.36% of the total energy. These findings
provide empirical evidence that only a small number (five to ten) of coefficients are sufficient
to extract the most pertinent information from the complete frame. Therefore, zeroing the
non-significant coefficients will produce a sparse signal with minimal information loss.
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Figure 3. Illustration of the process of generating a sparse signal representation using the DCT. Where
plot (a) shows the sampled speech signal, plot (b) shows the amplitudes of its DCT coefficients, plot
(c) shows DCT coefficients arranged in descending order, and plot (d) shows the percentage of total
energy contained by the largest K coefficients, where K takes values of 5, 10, 15, 20, 25, and 30.
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There are several different iterations of DCT available, typically referred to as DCT-I
to DCT-1V. They all have very subtle distinctions amongst one another [52]. Among these
four variants, DCT-II is by far the most common and has thus been chosen for this work.
The following equation can be used as a general formula for computing the DCT of a
one-dimensional signal f[n] with N number of samples:

N-1
AlK] %n); f[n]cos[%ﬁ,ﬂ)}, 0<k<N

glk] = 0 )
0, Otherwise
where g[k] denotes the DCT coefficients vector of length N.
The IDCT is calculated as:
%NilA[k]g[k]cos[%}, 0<k<N
fln} = k=0 3)
0, Otherwise
where Alk] is defined as:
L, k=0
AR = V2 4)
1,1<k<N

3.3. Framing and Deframing

In signal processing, framing refers to the process of splitting samples into small
groups (blocks) known as “frames”. Real-time block-based signal processing systems often
use framing because it minimizes the processing and memory requirements by dividing
one large chunk of samples into several small frames [53]. It also helps in extracting features
from non-stationary signals (i.e., speech) by dividing them into small blocks during which
they are assumed to be stationary. Figure 4 demonstrates how the frames are designed
to overlap with one another to prevent data loss between successive frames [54]. In this
figure F,, F,, and F. represent the frames 4, b, and c, respectively, and OL,, and OL;, are
the overlapped frames.

A , .

Amplitude

?

' >

Time
Figure 4. Framing process and frame overlapping, where blue and red dashed lines represent the
starting and ending of the frames, respectively.

To avoid spectral distortions at the frame edges and to achieve seamless continuity
among consecutive frames of speech, the Hamming window (w(n)) is multiplied with each
frame [55]:

2
w(n) = 0.54—0.46 - cos<N””1), 0<n<N ®)



Appl. Sci. 2023,13, 8954

7 of 23

where N denotes the samples in the speech frame. The windowed signal y(n) can be
calculated as:
y(n) =x(n) xw(n), 0<n <N (6)

Windowing acts as a low-pass filter, enhancing the signal at the center and smoothing
it at the edges.

3.4. Voice Activity Detector

Voice activity detection (VAD) is a process that detects the presence of a voice in a
noisy signal. It is an essential component in speech processing applications like voice and
speech detection, speech recognition, speech enhancement, and speaker recognition [56].

In this work, a VAD detector based on the work presented in [56] is utilized. Figure 5
shows an overview of the VAD. According to this model, the four different feature streams
are used as follows:

1. Spectral Shape: The short-term power spectrum envelope of the speech signal.

2. Spectro-temporal modulations: The spectral scales and temporal rates of speech.

3. Voicing: The vibrations of the vocal cords (folds) that appear in speech as fundamental
and harmonic components of the pitch (frequency).

4.  Long-term variability: The variations in speech caused by successive phone generation.

Input Signal
l > Context Expansion

7 ™\
/ Feature Extraction \ Normalization

Spectral Shape +

Stream Combination

Spectro-Temporal *
Modulations ( )

Classification

Long Term Variability

\ J
( B ) 4
Voicing
L ) Speech/Non-Speech
\ / Decision

Figure 5. Overview of preprocessing steps used in VAD [24].

These feature streams are extracted from the input audio stream. These streams are
divided into small frames, then the DCT of each feature stream is taken. The DCT contains
a large number of coefficients. However, the first five DCT components are sufficient to
extract the most relevant context information from those frames [56].

The resulting five-dimensional vectors from each of the four feature streams are
normalized and combined into a single twenty-dimensional frame feature vector.

Finally, these frame feature vectors are used to train a multilayer perceptron (MLP)
classifier to detect the presence of speech. Speech segments are detected by thresholding
the ratio of speech and non-speech outputs of the MLP.

3.5. Particle Swarm Optimization (PSO)

Particle swarm optimization is a meta-heuristic searching algorithm that is used to ob-
tain the optimal solution to numerical problems. PSO was originally proposed by Kennedy



Appl. Sci. 2023,13, 8954

8 of 23

and Elberhartin in 1995, [57] influenced by the social behavior of bird flocking or fish
schooling. Currently, the algorithm has been well-tested on many complex mathematical
problems and found to be efficient and fast. The pseudocode for PSO is presented in
Algorithm 1. PSO initially populates particles (points in the solution space), and these
particles are considered a probable solution to the optimization problem, which is given
by a fitness function. In every iteration, a new position for the particles is calculated using
several parameters such as the velocity vector, global best solution, local best solution, etc.

Figure 6 shows the velocity and position update procedure for i*" particle at time step
t using Equations (7) and (8), respectively. p} ., represents the particle’s information gained
from its past movements. Similarly, g5.s; represents the collective information gained by all
the particles.

Figure 6. Particle velocity update procedure in PSO.

The velocity update of each particle is performed using the following equation:
0i(t+1) = @ 0i(8) + 1+ (Pt = Xi(1) )2+ (Rrest — (1)) )

where ¢, and ¢ are priority factors used to configure the dominance of pi o5t aNd gyt The
new position x;(t + 1) of the i particle is calculated as:

xi(t—l—l) :xi(t)-i-v,-(t—i-l) (8)

In Equation (7), the first term (w - v;(t)) contains the variable w, which represents the
inertia weight. Therefore, the whole term is known as the inertia component, which is
responsible for maintaining the particle moment it initially possessed.

The value of w is usually maintained between 0.8 and 1.2. Setting up a smaller value
for w reduces the algorithm'’s search space and converges quickly to the optima (sometimes
trapping in local optima), while higher values force the algorithm to search over a wider
space (which sometimes skips the global optima).

The second term in Equation (7), ¢ - (p},,; — xi(t)), serves as the particle’s memory
and is known as cognitive component. It forces the process to search in the area where
the best solution can be found based on the particle’s perspective. This coefficient (c1) is
usually set to 2.
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The third term in Equation (7), ¢z - (gpest — i(f)), is known as the social component. It
forces the particle movements towards the area belonging to the best of each particle. This
component is also set to 2.

3.6. Compressive Sensing (CS)

Compressive sensing (CS) is also referred as compressive sampling, sparse recovery,
or compressed sensing. Conventional Shannon theorem-based sampled signal recovery
algorithms have the following basic constraints [58]:

e  The Shannon theorem states that the sampling rate needs to be more than or equal to
twice the signal’s bandwidth [59].

e  Linear algebra stipulates that the length of the observed samples must be equal to or
greater than the length of original signal [38].

Algorithm 1: PSO Algorithm

Initialize:
Set initial positions x;(0)| i € {1,2,3,...,N} and velocities v;(0)| i € {1,2,3...,N} of each of
the N particles randomly within a specified range.
Set intertia weight w.
Set constant ¢; and c;.
Set pé o5+ for each particle as the initial position.
Set gpest as the best position among all particles.
Main:
While termination criterion is not met do:
For each particle do:
Evaluate fitness of particle through objective function presented in eq. (18)
If current position is better than F’Z est’
Update p;,., with current position
If current position is better than gy,
Update gp,s; with current position
For each particle do:
Update particle velocity using;:
vi(t+1) =w-vi(t) + 111 (Prest — Xi(t)) + 272+ (Qrest — Xi(t))
Update positions of particles using:
x,-(t + 1) = x,-(t) + Ul'(f + 1)
End while
Return g, as the best solution found

Compressive sensing aims to overcome these limitations by stating that sparse sig-
nals can be reconstructed from incomplete samples. It enables the reconstruction of a
compressed signal with only a few linear and non-adaptive measurements [1]. Addition-
ally, unlike conventional signal compression methods, which use a sample-then-compress
procedure, the CS achieves compression while sampling. The fundamental equation for
recovering the CS signal is as follows:

Wlmx1 = @l mxn - [Xnsa + [0 asa )

where x, i, and v denote the sparse signal, observation vector, and noise, respectively, while
¢ denotes the sensing (recovery) matrix. To achieve proper compression and recovery
through CS, the following conditions must be satisfied:

1. M < N, to ensure the compression [60,61].

2. xisrequired to be a k-sparse vector that satisfies k << N, where N denotes the length
of x.

3. ¢ required to be a matrix having full rank.
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The reconstruction of x from y using Equation (9) requires the estimation of ¢-inverse:
x ~ ¢ 1y, neglecting the v (10)

Since ¢ is a non-square matrix (M # N), instead of inverse, the pseudo-inverse is used.
Pseudo-inverses are defined for matrices with real or complex entries, and it is unique
for these matrices [62]. The estimation of pseudo-inverse requires the decomposition of
the phi matrix into three matrices using singular value decomposition (SVD) factorization
as follows:

¢ =usvT (11)

where ¢ and U are an orthogonal matrix and S is a diagonal matrix containing singular
values. Therefore, the pseudo-inverse of matrix ¢ through singular values is calculated as:

o = vstuT (12)

where ST is obtained by replacing each non-zero singular value in S with its reciprocal.
Using the above solution, the reconstruction of x can be achieved using following equation:

x= (vs+uT) y (13)

Equation (13) may have an infinite number of solutions, but given the sparsity in x,
the best solution could be obtained through /y norm minimization, as shown below:

min||x||,, subject toy = ¢px (14)

where ||-||, denotes the ]y norm operation. In the case of partial reconstruction, the above
equation can be rewritten as:

min||x|ly, subject to [ly = x|, < 7" (15)

where |-||;, ||-|l, denotes the I1, I norm operations, respectively, and 7/ denotes the
termination residue threshold.

3.7. Orthogonal Matching Pursuit (OMP)

Solving the Equations (14) and (15) using the /[y norm is an NP-hard problem; therefore,
an alternative approach known as the orthogonal matching pursuit (OMP) algorithm [18]
could be used. However, OMP has the following prerequisites:

1.  The signal x needs to be a k-sparse, where k << N.

2. The matrix ¢ is required to fulfill the condition My < (ﬁ) , where M, denotes the

mutual coherence of column vectors of matrix ¢ and is calculated as follows:

My = maXM
i#] (HxiHZfoHZ)

where ¢; and ¢; denote the i'" and j" columns of the ¢ matrix, respectively.

OMP is a greedy method that seeks to discover the solution for elements of x in one-
by-one fashion through an iterative process [40]. The pseudocode for the OMP algorithm is
presented in Algorithm 2.

(16)
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Algorithm 2: OMP Algorithm

Inputs:
Input signal vector x € RN must be k-sparse.
/* sparse representation of speech frame using DCT */

Sensing matrix ¢ € RM*N, where My < <ﬁ)

Termination residue threshold . /* unwanted or noise components */
Maximum number of iterations itetyay.
Initialize:
iter =0 /* iteration counts */
Yy = ¢x /* measurement vector creation */
Yiter =Y /* current residue. */
Citer =@ /*indices of dominant columns.*/
Aiter = D /*contributions of dominant columns.*/
dominant — g /*dominent columns matrix. */
Xest = O1xN /* estimated filtered x. */
Main:
Py = Hg—ju, where ¢; := col;(p) /* columns normalization of sensing matrix */
While ((yiter > 7™) or (iter < iteryay)) do:
Azmp = argmax|’yim ek /* finds the column (c) with highest contribution ()\imp ). */
c

/* verifying that the column indices in not the dominant

If (c ¢ C;sep) then: column list */

Citer = {Citer—1, €} /* adding column indices in the list */
Aiter = {Aimq, /\ﬁ”‘”} /* adding the contribution of the column */
¢$Z:"i”ﬂ"t = {(pft‘;"_iqﬂ"fl norm } /* update dominating column matrix */

Else
tm,
Aitere = Aiter—1,c + Ac p
/* update dominating columns contributions only as column indices already exists */

End If
Ziter = ( dominant ( dominant” _ giomin:mi’)Jr . (P'dominantT) -y
iter iter iter iter
/* finding the projection of the y onto the dominant basis */
Yiter = Y — Ziter /* remaining residue. */
iter = iter +1
End While

For (i = 1;i < card(Cy,); i =i+1) do:
For (j = 1;j < card(Cite,); j =j +1) do:
¢reduced(i, ]) _ ¢$(;:nment(:’ i)T . ¢$_z;nment(:’ ])
/* generating reduced dimension sensing matrix through
dominent columns */
End For
End For
yreduced — (gdominant) T. yT /* generating reduced dimension y */

xfeduced — (gyreduced) . yreduced /* estimation of reduced dimension x from y"educed */

For(i=1,i<=N;i=1i+1)do:
Xest (Cirer(i)) = xteduced () /* filling up the full dimension Xest from x%efuced */
End For
Outputs:
Citer
Aiter .
¢$¢;:mnunt
Xest

3.8. Dominant Columns Group Orthogonalization of Sensing Matrix (DCGOSM)

As described in Algorithm 2, the OMP algorithm collects the coefficients of the sensing
matrix’s dominant columns while excluding the columns containing residue components.
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Considering these characteristics of OMP, the orthogonalization of the dominant
columns group of the sensing matrix for speech and noise signals can be achieved
as follows:

1. Let x; and x, be the sparse representation of speech and noise signals, respectively.

2. If the sensing matrix is denoted by ¢, then the compressed speech and noise signals
can be obtained by ys = ¢x; and v, = ¢px;,, respectively.

3. The OMP algorithm can be used to recover the enhanced speech signal x, from y;.
The OMP finds the dominant columns, their contributions, and the reduced sensing
matrix with only dominant columns (denoted by Cijs.y, Ajter, and (pfltoe’fi”e”t, respectively,
in Algorithm 2) to estimate the enhanced speech signal while leaving the residue noise
component columns intact.

4. If Vs and V,, are the reduced sensing matrix columns’ contributions to the speech
and noise signals obtained through OMP, respectively, then the orthogonalization of
dominant columns group of the sensing matrix can be achieved by optimizing the
columns of the sensing matrix, such that:

Ns N,
fobj = minimize(E Z Vs(:, 1) - V(5 f) > (17)

i=1j=1

where N; and N, are the number of columns in matrix Vs and V;, respectively. The
optimization is performed to minimize the f,;; value to its maximum extent or up to a
certain termination threshold.

3.9. Proposed DCGOSM-Based Speech Enhancement Technique

Figure 7 shows an illustrative block diagram of the proposed approach. Referring to
this diagram, the proposed method can be divided into two parts. The first part is used to
obtain the required sensing matrix, and the second part is used to enhance noisy speech.

3.9.1. Process of Obtaining the Required Sensing Matrix

The process of obtaining the required sensing matrix involves obtaining an optimized
sensing matrix with orthogonalized dominant columns for clean speech and noise signals.
The speech enhancement performed using greedy algorithms assumes that speech signals
exhibit a structured temporal pattern and a relatively narrowband spectral content, whereas
the noise signals lack these properties. Therefore, when reconstruction is performed, the
noise components equally spread over all columns of the sensing matrix, whereas the speech
components become concentrated over a small number of columns (dominant columns,
see Section 3.8). Therefore, when reconstruction is performed through dominant columns,
the amount of the noise significantly reduces in the reconstructed speech. However, such
approaches have following limitations:

A. They assume that the noise components spread equally over all columns or noise
must be white noise. However, for sounds other than white noise, this distribution of
components will not be possible. Therefore, for sounds other than white noise, the
performance of these approaches will naturally decrease.

B. Since the dominant columns are not known initially, they need to be searched every
time from all columns, which increases processing time.

C. The algorithms have no awareness of speech and noise signals, and the selection of
dominant columns is done solely on the basis of contribution. The algorithms always
assume that higher contribution is due to speech components. Therefore, during
higher noise conditions, the algorithms may select columns with dominating noise
components. The condition may worsen in non-white noise cases.



Appl. Sci. 2023,13, 8954

13 of 23

DCT > Sparse Frames

|

: If (VAD == True)
: Clean Speech > Mixer | Pre-Processing [ Framing > VAD

Noisy Speech
Frames

Random Sampling

Noise Frames

Random Sampling |

Yn = $Tn

SNR T
’—> Generate Sensing Matrix (¢)

Calaculate New
Initialize PSO [ Deploy Particles [« Location for
Particles

Estimate :
Dominating Basis | *

Yes Calculate Estimate
Dot Product Dominating Basis
: Process of obtaining Take (¢) for D)
i the required sensing matrix Denoising

Noise Variance

Enhanced i i =
€ Deframing |« IDCT € estimatez [€q OMP [ y=¢z € > Estimation

Speech

Process of speech enhancement using the obtained sensing matrix

Figure 7. Block diagram of the proposed algorithm.

To overcome these limitations, the proposed DCGOSM approach obtains the sensing
matrix based on the type of noise present in the noisy speech. The obtained sensing
matrix guarantees separate dominating columns for clean speech and noise components.
During the generation of the required sensing matrix, the dominant columns for the speech
components are also stored; hence, during the enhancement process, the iterations will be
performed only through these columns. The algorithm identifies speech and non-speech
frames and obtains the dominant columns separately for speech and non-speech frames.
Therefore, the dominant columns selected for the speech components are guaranteed to
contain only speech components. The effect of this can also be seen in the results presented
in Tables 1-3, where the proposed DCGOSM gives better relative improvement at higher
noise conditions (lower SNRs).

Table 1. Performance comparison for white noise using the NOIZEUS dataset sample sp05.wav.

Techniques
CoSaMP StOMP Proposed

SNR (dB) SNR SSNR SNR SSNR SNR SSNR SNR SSNR

(dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)

0 5.74 4.631 3.113 2.814 4417 3.581 6.380 5.874

5 9.124 8.049 7.481 6.328 8.392 7.164 9.627 9.157
10 12.339 11.385 11.542 10.221 11.916 10.773 12.639 12.298
15 14.862 14.101 14.658 13.527 14.696 13.807 14.993 14.745
20 16.266 15.941 16.267 15.765 16.299 15.944 16.390 16.386
SNR (dB) PESQ STOI PESQ STOI PESQ STOI PESQ STOI
0 1.801 0.688 1.759 0.634 1.796 0.608 2.296 0.748

5 2.319 0.764 2.069 0.689 2.173 0.699 2.795 0.731

10 2.570 0.793 2.403 0.734 2.509 0.768 3.092 0.809

15 2.759 0.837 2.611 0.776 2.708 0.817 3.201 0.825

20 2.957 0.877 2.760 0.824 2.874 0.869 3.220 0.862

The bold font indicates the best obtained result for the selected measure in that row.



Appl. Sci. 2023,13, 8954

14 of 23

Table 2. Performance comparison for babble noise using the NOIZEUS dataset sample sp05.wav.

Techniques
OMP CoSaMP StOMP K-SVDCS Proposed

SNR SNR SSNR SNR SSNR SNR SSNR SNR SSNR SNR SSNR

(dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)
0 2.560 2.385 0.758 1.638 1.388 1.853 - 3.80 3.112 3.072
5 6.201 5.835 5.193 4.602 5.681 4.965 - 3.50 6.673 6.592
10 10.119 9.345 9.349 8.471 9.532 8.708 - 3.06 10.176 9.885
15 13.118 12.438 13.119 12.195 13.074 12.168 - 1.60 13.361 13.056
20 15.383 14.873 15.453 14.890 15.156 14.685 - -0.94 15.516 15.325
?(Ij\gi PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI
0 1.780 0.652 1.917 0.683 1.969 0.644 1.96 0.66 2.304 0.615
5 2.216 0.736 2.251 0.726 2.308 0.715 2.28 0.72 2.384 0.689
10 2434 0.811 2.513 0.759 2.513 0.771 2.52 0.79 2.674 0.748
15 2.606 0.827 2.646 0.774 2.709 0.805 2.69 0.81 2.903 0.785
20 2.667 0.859 2.772 0.816 2.853 0.847 2.85 0.83 3.194 0.824

The bold font indicates the best obtained result for the selected measure in that row.
Table 3. Performance comparison for f-16 noise using the NOIZEUS dataset sample sp05.wav.
Techniques
OoMP CoSaMP StOMP Proposed
SNR (dB) SNR SSNR SNR SSNR SNR SSNR SNR SSNR
(dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)

0 3.288 2.490 1.292 1.744 2.056 2.036 4.687 4.058

5 7.220 6.101 5.639 4.656 6.266 5.129 7.926 7.454

10 10.689 9.631 9.844 8.445 10.264 8.901 11.206 10.748

15 13.772 12.803 13.599 12.358 13.517 12.366 14.037 13.602

20 15.686 15.095 15.711 14.933 15.629 14.949 15.821 15.599

SNR (dB) PESQ STOI PESQ STOI PESQ STOI PESQ STOI

0 1.684 0.659 1.887 0.629 1.942 0.591 2.304 0.677

5 2.101 0.751 2.183 0.682 2.268 0.680 2.384 0.685

10 2.509 0.787 2.496 0.745 2.577 0.756 2.674 0.772

15 2.654 0.836 2.632 0.756 2.747 0.808 2.903 0.791

20 2.838 0.862 2.747 0.796 2.878 0.839 3.194 0.808

The bold font indicates the best obtained result for the selected measure in that row.

The process of obtaining the required sensing matrix involves the following steps:

In the first step, the clean speech sample is mixed with the noise using the mixer block,
which adjusts the amplitude of the noise signal according to the given SNR and then
adds it to the clean speech to generate the noisy speech sample.

The noisy speech sample is passed through the preprocessing block, which normal-
izes the signal. Normalization helps to reduce the impact of variations in recording
conditions, microphone characteristics, and speaker differences. By normalizing the
speech signals, the relative differences in amplitude caused by these factors are mini-
mized, making the subsequent processing algorithms more robust and less sensitive to
such variations.

Subsequently, the signal is divided into frames using overlapping Hamming win-
dows. Considering the block-based processing nature of the CS, these windows
are required to divide the speech signal into frames. This process also reduces the
computational complexity of subsequent processing steps, and the analysis can be
performed on smaller segments, reducing the amount of data to be processed and
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improving efficiency. The framing of the signal causes spectral leakage at the edges of
the frame. The overlapping Hamming windows are used to mitigate spectral leakage
by smoothly transitioning between adjacent frames, reducing the abrupt changes at the
frame boundaries.

Signal sparsity is the fundamental condition for CS. Therefore, to make the frame
sparse, each frame is converted into the frequency domain using the discrete cosine
transform (DCT), then the insignificant DCT components within the transformed
frame are set to zero. The term “significance” refers to the components that encompass
the most energy, specifically those exceeding 90%. This objective can be accomplished
by strategically selecting the highest 25% of the coefficients.

The non-transformed speech frames are sent to the VAD black for identification
of the speech and non-speech frames. In addition, the preliminary noise variance
(vy) estimation is performed using the initial frame, which is considered to carry
only noise.

The noisy speech and non-speech frames are then grouped into separate databases for
DB;peecry and DBy, —speech - This helps in obtaining dominant columns separately for
noisy speech and non-speech frames.

To minimize the optimization time, only a small number of frames are chosen from
these databases. The selected noise frames are further used for the noise variance
estimation (vjzml), which is used during the final enhancement process. Estimating
the noise variance from the multiple selected frames reduces the error possibilities,
especially in the cases where the noise is not uniformly distributed throughout the
entire signal duration.

PSO is initialized according to the number of particles and maximum generations.

Each particle p{: (here, the superscript j represents the generation, and the subscript
i represents the particle) is defined as an M x N dimension row vector, where each
element is bounded within the range of [—1, 1].

p{: = [ea, e, ..., egAxN}, where Vi, j : {—1 < e;: < 1} (18)

Each of these particles (p{: ) represents a sensing matrix (4)5 ) when converted into an M
rows and N columns matrix:

i i i
‘61 162 ce ?N
1 1 1
i e e . e
¢ — N'+1 N.+2 . 2xN , (19)
i
e(M—-1)-N+1 €(M-1)-N+2 “°° CEpMxN

where
Vi, j: {—1 <el < 1}

However, before using this matrix as a sensing matrix, it is required to make 471’ a
sample from the uniform spherical ensemble (USE). This is done by dividing each
element of each column of the matrix by the column’s I, norm:

¢ ¢ ey
n 7 . N
1 1 1
EN+1 EN+2 €axN
i r r T r
¢ = 1 2 N, (20)
eM=1)-N+1  EM-1):N+2 €uxN

n r N
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where

|| i i _
i = H [eOXNJrj’ elxN+jf""e(M71)><N+j] H2 =

Using the sensing matrix (cpf USE) formed by it particle p?, the observation vector

yi = ‘Pg,us s for speech, and v/, = gbglus pXxn for noise, frames are generated.

The OMP is applied to y% and y/, independently to reconstruct xs and x;,, respec-
tively. However, our aim is not to find xs; and x;, but to find the dominating basis
vectors (columns) V¢ and V} in 4)&5 g for yi and yi,. The OMP uses v, as the termi-
nation threshold. 4

Our aim is to make (Pg,USE a dominant columns group orthogonal sensing matrix
where the columns used to represent the speech signals and noise signals are different.
Therefore, speech signals can be extracted from the noisy samples using only the
speech dominant columns group.

To match the above-mentioned condition, the (Pz]llS ¢ matrix must satisfy the condition
fovj = 0 (Equation (17)).

However, the condition fy; = 0 is only possible for the ideal cases. Therefore, the
optimization is performed to minimize the f,;; value to its maximum extent or up to a
certain termination threshold (y") (Equation (18)).

fZ] obj is calculated through ¢j; 115 for each particle pf

Once the fl] obj is calculated for each particle in the current generation, based on the
fZJ obj values obtained from all the generations (1 to j), the p; pess (particle’s best),\ and

Qrest (global best) values are estimated.

Based on these estimations, the new positions of particles pgﬂ are calculated as
described in Equations (7) and (8).

PSO repeats the process until the proper #,us ¢ matrix is generated.‘
After completion of this process, we obtain the sensing matrix (4){ usg), final noise

variance (v{iinﬂl), dominating columns for speech signal components (V), and noisy-
speech frames database (D B;peech)-

3.9.2. Process of Speech Enhancement Using the Obtained Sensing Matrix

1.

Speech enhancement is performed only on the noisy speech frames separated by VAD
during the generation of sensing matrix. Additionally, the enhancement is performed

on a frame-by-frame basis using the obtained ([)f/us ¢ matrix, the final noise variance
(v]:ml), and the OMP algorithm. However, because the dominating columns for speech
signal components (V) are already known, the OMP is only iterated through these
columns instead of all the columns of ¢'*""".

The enhanced speech frames are then converted into the time domain by taking
IDCT and finally converted into a single enhanced speech stream through the
de-framing operation.

4. Performance Evaluation and Result Analysis
4.1. Sensing Matrix Optimization

The idea behind the proposed approach is to isolate the components of speech and

noise signals into different columns of a sensing matrix. The degree of isolation is reflected
by the fitness function of the optimization algorithm, where a lower value reflects a higher
level of isolation. To validate this concept, we have shown the column contributions
of the sensing matrix for speech and noise frames before (Figure 8) and after (Figure 9)
optimization. The convergence plot of the optimization process is also shown (Figure 10) to
link the fitness function and the level of isolation.
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Figure 10. Sensing matrix optimization convergence plot showing global best (red) and average

(blue) fitness value for each iteration.

The convergence plot shows that, when the optimization begins, the average and best
fitness values were 0.64 and 0.52, respectively, which resulted in highly overlapping column
contributions, whereas at the end of the optimization, the average and best fitness values
were 0.27 and 0.25, respectively, which resulted in well-separated column contributions.
Figure 9 also shows that after optimization, 95% of the total signal energy was concentrated
in half the number of columns.

4.2. Speech Quality Analysis

The proposed DCGOSM-based speech enhancement technique was compared with
four baseline methods: OMP [18], CoSaMP [19], StOMP [38], and the K-SVD-based CS
technique (K-SVDCS) [63] (note: this technique was only compared for babble noise, as
the paper only provided the results for this noise). Additionally, it was compared with
some other methods based on human perception-related objective functions, such as
DNN-MSE [64], DNN-PMSEQ [65], BLSTM-MSE [64], BLSTM-PMSQE [65], and DNN-
Quality-Net [64].

To evaluate the performance of the proposed algorithm, the NOISEX-92 [66] and
NOIZEUS [67] datasets were used. The clean speech samples were taken from the NOIZEUS
dataset, which contains 30 clean speech files (sp0l.wav to sp30.wav) with a single channel
(mono), 16-bit PCM, sampled at 8 kHz, and encoded in the Windows “wav” format. The
noise samples were taken from the NOISEX-92, which contains white noise, babble, and
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f-16 noise files with a single channel sampled using a 16-bit analog-to-digital converter
(A/D) at a sampling rate of 19.98 kHz. These samples were encoded in the MATLAB “mat”
format. However, for the experimental analysis, we downsampled all signals to 8 kHz.

The clean speech signal was mixed with one of the noise signals at a time to evaluate
the performance of the proposed technique. The amplitude of the noise was modified
before mixing according to the required SNR. The noisy speech was then processed through
the enhancement algorithm to obtain the enhanced speech. This process is depicted in
Figure 11, which shows the time domain plots of the “sp05.wav” clean speech sample, the
“babble” noise, and the noisy speech signal generated by corrupting the clean speech signal
with babble noise, and their respective spectrogram plots (Figure 11b,d,f). The blue bars in
the spectrogram of the enhanced speech (Figure 11f) depict the events where VAD detected
non-speech components. These bars were mostly synchronized with the silence events
in the clean speech (Figure 11a), which demonstrate that the VAD is capable of detecting
non-speech signals even in the presence of noise (Figure 11c).
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Figure 11. Plots for (a) clean speech, (c) noisy speech with 5 dB SNR corrupted by babble noise,
(e) speech samples enhanced by the proposed algorithm with their respective spectrogram plots
in (b,d f).
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Finally, to compare the performance of each algorithm, four objective measures, the
signal-to-noise ratio (SNR), segmental SNR (SSNR), short-time objective intelligibility
(STQI), and perceptual evaluation of speech quality (PESQ), were utilized.

The performance comparison of the proposed technique with different variants of the
OMP algorithm for white, babble, and {-16 noises is presented in Tables 1-3, respectively.
These results demonstrate the superior performance of the proposed technique over com-
petitors for SNR, SSNR, and PESQ, irrespective of the noise type and magnitude. However,
for STOI, the proposed algorithm performed better under low SNR conditions.

A further in-depth analysis of these tables showed that the proposed technique
achieved the highest SNR improvement of 42.54% for f-16 noise, the second-highest im-
provement of 21.56% for babble noise, and the third-highest improvement of 11.03% for
white noise at 0 dB of SNR. The minimum improvement of 0.41% was achieved for babble
noise at 20 dB. Similar behavior was observed for SSNR; however, at 0 dB of SNR, the
higher improvements were 62.97%, 28.80%, and 26.84% for {-16, babble, and white noise,
respectively. White noise achieved the lowest improvement of 2.77% at 20 dB.

In comparison to SNR and SSNR, the proposed algorithm showed different behavior
for PESQ and achieved the three highest improvements for white noise at 0 dB, 5 dB,
and 10 dB SNR, which were 27.48%, 20.53%, and 20.31%, respectively. The fourth-highest
improvement of 18.64% was achieved for £-16 noise, followed by 17.01% for babble noise,
both at 0 dB SNR.

For STOI, the only significant improvement of 8.72% was achieved for white noise at 0
dB SNR, followed by 2.73% for f-16 at 0 dB for SNR.

It is also worth mentioning that for every noise, the proposed algorithm always
achieved the best SNR, SSNR, and PESQ, except for the babble noise at 0 dB SNR, where
the K-SVDCS achieved the best SSNR.

To further validate the performance of the proposed algorithm, a comparison with
non-OMP (non-CS) algorithms for PESQ and STOI measures is presented in Tables 4 and 5,
respectively. These results show that the proposed technique performed better at all
SNRs except 18 dB, where DNN-Quality-Net improved by 3.96%. However, the proposed
algorithm achieved the highest PESQ improvement of 20.32% at —6 dB. For STOI, the
BLSTM (MSE) performed better for 18 dB, 12 dB, and 6 dB, while for 0 dB and —6 dB, the
proposed technique performed better and achieved a maximum improvement of 8.29% at
—6 dB SNR.

Table 4. PESQ comparison for white noise using the NOIZEUS dataset sample sp05.wav.

Techniques
SNR DNN DNN- BLSTM BLSTM DNN- Proposed
(dB) (MSE) [64] PMSQE [65] (MSE) [64] (PMSQE) [65] Quality-Net [64] P
18 2.810 3.082 3.287 2.899 3.377 3.243
12 2.576 2.819 2.908 2.777 3.010 3.024
6 2.275 2.497 2.504 2.578 2.614 2.777
0 1.912 2.111 2.065 2.261 2171 2.337
—6 1.530 1.711 1.569 1.865 1.671 2.244
The bold font indicates the best obtained result for the selected measure in that row.
Table 5. STOI comparison for white noise using the NOIZEUS dataset sample sp05.wav.
Techniques
SNR DNN PMSQE BLSTM (MSE) BLSTM DNN-Quality-Net
(dB) DNN (MSE) [64] [65] [64] (PMSQE) [65] [64] Proposed
18 0.855 0.886 0.972 0.882 0.966 0.842
12 0.831 0.865 0.942 0.867 0.937 0.821
6 0.788 0.822 0.885 0.836 0.882 0.815
0 0.715 0.741 0.796 0.773 0.794 0.807
—6 0.604 0.615 0.663 0.667 0.663 0.718

The bold font indicates the best obtained result for the selected measure in that row.
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4.3. Recovery Time Analysis

A reconstruction time comparison of the proposed algorithm with the different OMP-
based reconstruction algorithms is shown in Table 6. The results show that the proposed
algorithm consistently outperformed the other three algorithms in terms of execution
time across all the configurations. In Configuration (8,32,64), the proposed algorithm
achieved an execution time of 0.3261, which was lower than the execution times of OMP
(0.7956), CoSaMP (0.8071), and StOMP (0.3439). Similarly, in Configuration (16, 64, 128), the
proposed algorithm (0.3527) demonstrated a lower reconstruction time compared to OMP
(0.9434), CoSaMP (0.7652), and StOMP (0.3694). This trend continued in Configurations
(32,128, 256) and (64, 256, 512), where the proposed algorithm consistently exhibited the
lowest reconstruction time among the four algorithms, followed by the StOMP as the
second best, while the OMP took the longest time. In terms of percentage improvements,
the proposed algorithm achieved a maximum reduction of 70% in reconstruction time for
the single column selection algorithm (OMP), while the maximum improvements over
the multiple column selection algorithms were 59% and 13% for CoSaMP and STOMP,
respectively. The results also show that the reconstruction time increased with the sensing
matrix size.

Table 6. Reconstruction time comparison (in seconds).

Techniques
Configuration (k,m,n) OMP CoSaMP StOMP Proposed
(8,32,64) 0.7956 0.8071 0.3439 0.3261 *
(16,64,128) 0.9434 0.7652 0.3694 0.3527
(32,128,256) 1.3928 1.2097 0.4637 0.4165
(64,256,512) 2.8048 2.0487 0.9845 0.8542

The bold font indicates the best obtained result for the selected measure in that row. * k = sparsity, m = rows in
sensing matrix, # = columns in sensing matrix.

5. Conclusions

This paper proposes a compressive sensing-based speech enhancement technique that
uses the dominant columns group orthogonalization of the sensing matrix (DCGOSM). The
proposed method attempts to find the sensing matrix in such a way that each column can
either contain the noise component or the clean speech component, which is obtained by
calculating the dot product of column contributions for the noise and speech samples. The
proposed technique greatly reduces the speech recovery time by iterating only through
the speech-dominating columns of the sensing matrix, as opposed to other OMP-based
techniques, which require iterations through all columns of the sensing matrix. Another
advantage of the proposed technique is that it provides uniform improvement for differ-
ent quality measures, unlike the other sensing matrix optimization techniques that only
improve the measures defined in the objective function. In this work, the PSO is adopted
for the optimization of the sensing matrix. However, in the future, other optimization
algorithms can also be tested. Furthermore, the OMP can be replaced with multiple column
selection approaches such as CoSaMP and STOMP.
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