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Abstract: In this study, we evaluate the influence of normalization on the performance of deep
learning networks for tumor segmentation and the prediction of the pathological response of lo-
cally advanced rectal cancer to neoadjuvant chemoradiotherapy. The techniques were applied to a
multicenter and multimodal magnet resonance imaging data set consisting of 201 patients recorded
at six centers. We implemented and investigated six different normalization methods (setting the
mean and standard deviation, histogram matching, percentiles, combining percentiles and histogram
matching, fixed window and an auto-encoder with adversarial loss using the imaging parameters)
and evaluated their impact on four deep learning tasks: tumor segmentation, prediction of treatment
outcome, and prediction of sex and age. The latter two tasks were implemented as a reference test.
We trained a modified U-Net with different normalization methods in multiple configurations: on
all images, images from all centers except one, and images from a single center. Our results show
that normalization only plays a minor role in segmentation, with a difference in Dice of less than 0.02
between the best and worst performing networks. For the prediction of sex and treatment outcomes,
the percentile method combined with histogram matching works best for all scenarios. The biggest
difference in performance, depending on the normalization method, occurs for classification. In
conclusion, normalization is especially important for small data sets or for generalizing to different
data distributions. The deep learning method was superior to the classical methods only in a minority
of cases, probably due to the limited amount of training data.

Keywords: normalization; MRI; medical imaging

1. Introduction

Colorectal cancer is the third most lethal cancer in Europe, with a 5-year survival rate
of 68% in Germany [1]. The recommended treatment for locally advanced rectal cancer is
radiotherapy or chemoradiotherapy followed by total mesorectal excision [2]. Neoadjuvant
therapy can result in pathological complete remission. Accurate prediction of pathological
treatment responses is essential to decide which tumors should be surgically resected and
which patients should qualify for a watch-and-wait strategy.

Appl. Sci. 2023, 13, 8923. https://doi.org/10.3390/app13158923 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13158923
https://doi.org/10.3390/app13158923
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4424-750X
https://orcid.org/0000-0001-8020-0202
https://orcid.org/0000-0001-5150-3781
https://orcid.org/0000-0002-6067-3253
https://orcid.org/0000-0003-3405-1394
https://doi.org/10.3390/app13158923
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13158923?type=check_update&version=1


Appl. Sci. 2023, 13, 8923 2 of 13

For staging, magnetic resonance imaging (MRI) plays a key role [3]; however, T2-
weighted (T2w) morphological imaging has low sensitivity while diffusion-weighted
imaging (DWI) shows controversial results. Therefore, emerging techniques from machine
learning are currently being investigated to overcome these limitations in predicting the
pathologic treatment response. Thus, tumor segmentation and classification approaches
have been studied.

Tumor segmentation in rectal cancer is intrinsically challenging [4], even for state-of-
the-art deep neural networks, due to hard-to-delineate tumors. Similar problems arise for
the prediction of treatment outcomes [5]. One problem is that data sets are relatively small
and often include only one or two centers [6]. To apply such models in a broader clinical
setting, they must show good generalization, which means that the network should be
trained on a set of images from different centers. For this, it is important to implement
a standardized and harmonized protocol. Nevertheless, certain difference arising from,
e.g., vendor-specific differences between scanners and sequence implementations, exist [7].
To mitigate such effects to a certain extent, image normalization methods could be employed
as a preprocessing method prior to training a machine learning algorithm.

There are different normalization methods, which could help reduce such data inhomo-
geneity. Statistical methods [8,9] can also be challenging because the intensity distribution
can vary due to variations in the anatomy of the patient, the chosen field of view, and the
content of the bladder and bowels. In addition to classical approaches, deep learning
methods for normalization have emerged [10,11].

In the literature, there are various methods for domain adaptation [12], which go
beyond simply changing the mean and the scale. A basic technique is histogram match-
ing [13]. Many newer approaches are based on deep learning. Cycle GANs can be used
to translate images from one acquisition protocol and scanner to another [14]. This can
be extended to include more than two sites by using a StarGAN, which uses multiple
encoders and decoders [15]. Other methods, such as ComBat [16,17] try to estimate and
remove batch-dependent effects. ComBat can be applied directly to the images or to the
resulting features.

The problem with most approaches is that they require batches of data with similar
characteristics (domains) to remove batch-dependent effects or to transfer the style of
one batch to the rest. This can be, for example, an individual scanner with a consistent
acquisition protocol. There are some approaches that do not require a domain. ImUnity
uses a reference image to specify the desired contrast [10].

For most MRIs, the acquisition parameters are known and saved in the DICOM
image metadata. To our knowledge, no work has attempted to directly use these known
parameters for training the normalization method.

In this study, we propose a deep learning algorithm that takes advantage of this
information toward homogenization of the image data. Our method is evaluated against
four classical methods from the literature. The techniques were applied to a retrospectively
collected multimodal MRI data set of patients with locally advanced rectal cancer (LARC)
recorded at six different centers. Furthermore, we evaluate the influence of different
normalization technologies on the performance of deep learning networks for tumor
segmentation and prediction of pathological responses.

2. Methods
2.1. Image Data

In this retrospective study, we used image data from 144 patients enrolled in six dif-
ferent centers within the CAO/RAO/AIO-12 study [18]. In addition, we retrospectively
selected 57 patients from our institute as internal data. Our center participated in the study,
so we pooled the study data with the internal data.

According to the study protocol, for each patient, a transverse 2D T2w sequence and
a DWI sequence were acquired before therapy and between neoadjuvant therapy and
operation. Although a study protocol was given, the obtained image data showed varying
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acquisition parameters for the individual sequences. Figure 1 depicts, for example, two of
these parameters for the T2w sequence. Similar differences in the acquisition parameters
were observed for the DWI sequence. Example images can be seen in Figure 2.
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Figure 1. Distribution of acquisition parameters for the T2w axial images: The image acquisition
parameters vary widely. The left column shows the in-plane resolution and the right the echo time.
Each row shows the data from one center. The data from center 3 were split into the data from the
study (3a) and from clinical routine (3b). The in-plane resolution is supposed to be 0.8 mm but varies
between 0.26 mm and 1.64 mm. The echo time is supposed to be 110 ms but varies between 69 ms
and 219 ms.
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Figure 2. Examples of images from the study. Images with the lowest (top row) and highest
mean intensities (bottom row) are shown for each modality. The range of intensity values varies
largely, except for the ADC, which has a physical interpretation. Some of this variation is due to
different acquisition parameters. The T2w image in the top left was acquired with an echo time of
219 ms instead of 110 ms. For the b800 and ADC images, both examples are from the same center,
but different scanners.

2.2. Preprocessing

For preprocessing, we performed bias field correction using the N4 algorithm [19].
Then, we registered the diffusion-weighted images to the T2w image using ANTsPy [20].
For registration, we used the diffusion image with the lowest b-value (mostly b = 50,
but b = 0 for some) and applied the same transformation to the other diffusion images and
the apparent diffusion coefficient (ADC) image. Due to the high noise level in the diffusion-
weighted images, we could not perform an elastic registration, so only a rigid registration
was performed. Then, we normalized the images using the six methods described in
the following.

2.3. Normalization Methods
2.3.1. Classical Methods

The percentile method (Perc) is very simple. We use 5th and 95th as the minimum and
maximum values for the input of the network. We set any values outside this range to the
corresponding minimum or maximum to eliminate outliers.

The second method is histogram matching (HM), originally developed for brain
images [13]. The idea is to extract landmarks from each image and then average them over
all images. As landmarks, we chose the 1st, 10th, 20th, . . . , 90th and 99th percentiles of
the voxel intensities. The average of the landmarks is used to define a standard histogram.
Then, we interpolated the intensities to follow this standard histogram. We used the 1st
percentile as the minimum value for the input of the neural network and the 99th percentile
as the maximum input value.

The original paper suggests using Otsu thresholding to separate the brain from the
background. Instead, we extracted the landmarks from the center volume (measuring
180 × 180 × 100 mm3) because this region does not contain background voxels.

We also tested a combination of the percentile method and histogram matching (Perc-
HM). We first normalized the images using the percentile method and then extracted the
landmarks for histogram matching out of those images.

As the fourth normalization method, we set the mean and standard deviation to a
fixed value (M-std). We set the mean to zero and the standard deviation to one.
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The simplest method uses a fixed window (Win). We set the minimum to zero and
the maximum to 3000 for the T2w and ADC images and 1000 for the b800 DWIs. We chose
these values because nearly all images have a maximum intensity below them.

2.3.2. Deep Learning Method

As the last normalization method, we used an auto-encoder. We added multiple
discriminators that we trained to predict the acquisition parameters of the DICOM headers.

The generator architecture is shown in Figure 3. It has a traditional CNN architecture,
but we pass the edge information of the input image to the fully-upsampled output block
to improve image quality. We apply a Gaussian filter before edge detection to propagate
larger features but not noise.
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Figure 3. The architecture of the auto-encoder. Each yellow box represents a convolutional block
consisting of batch normalization, a convolutional layer and activation. The numbers show the
number of filters and the feature map size. The standard standard path of the features is shown by
the green arrows and the path of the edge information is represented by the purple arrow. On the
contracting path, we use a stride of two to decrease the feature map size. On the expanding path, we
use transposed convolutions to increase the size again. Once we reach the full resolution again, we
concatenate the edge information, and another convolutional block is applied.

Furthermore, we implemented three different discriminators: First, for acquisition
parameters, the output of the discriminators applied to the generated image should match
the value in the acquisition protocol. If no value was provided, we used the median
value of all images. Second, for other variables, such as the scanner model or location, we
attempted to remove the information using the discriminator as an adversarial loss on the
latent features or the generated image. Therefore, the desired result is the same probability
for each class in the classification tasks. Eventually, we added a discriminator that tries
to detect which images are the original input images and which were generated by the
generator. The generator tries to fool this discriminator.

In each training step, we first trained these discriminators. Then, we trained the image
discriminator on the original input and the generator’s output images. The latent space
discriminator was trained on the original images. The generator already needs images in a
certain range as input, so we used one of the classical normalization methods to normalize
the images before training the auto-encoder. We individually trained the auto-encoder for
each set of training images and each modality. For training, we used all the images available
for that modality, not only the segmented images. We used different hyperparameters,
as depicted in Table 1.
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Table 1. Hyperparameters for the different GANs used for normalization. The first is the default
(GAN-Def). For GAN-Seg, we added segmentation as an additional task to preserve the important
details. GAN-Img uses all discriminators on the images and not on the latent space. We trained
GAN-Win and GAN-No-ed on images with window normalization with and without propagated
edge information.

Network Hyperparameters

Segmentation
Loss

Train Only
on Image

Initial
Normalization

Skip Edges

GAN-Def No No Perc Yes
GAN-Seg Yes No Perc Yes
GAN-Img No Yes Perc Yes
GAN-Win No No Win Yes

GAN-No-ed No No Win No

2.4. Experiments

Ground truth tumor segmentations were obtained from a radiologist with five years
of experience manually delineating the tumor on T2-weighted pre-therapy MRIs. For
treatment response, we used the Dworak regression grade [21]. This system rates the tumor
response on a scale of 0 (no regression) to 4 (no remaining tumor cells) and is used on the
resected tumor. Sex and age are given in the patient data.

We trained one network for segmentation and another for classification and regression.
We used a modified 2D U-Net [22] with batch normalization and residual connections
for segmentation. Although published in 2015, U-Nets are still widely used for medical
segmentation tasks [23]. As an architecture for classification and regression, we chose
ResNet50 [24], which we used with random initialized weights. We only changed the last
layer of ResNet to have the desired number of output neurons. We trained all networks
for 100 epochs with 5-fold cross-validation. The three modalities (T2w, ADC and b800)
were combined into a three-channel image, and we extracted 32 random patches per image.
For segmentation, at least 40% of patches have their center inside the tumor volume. We
augmented the patches by rotating them in-plane and uniformly scaling them.

We trained the network in three different configurations:

• All. In this configuration, we trained on all images from all centers and evaluated the
network performance using cross-validation.

• Except-One. In the next experiment, we trained on all centers except one. We evaluated
the performance of the training centers using cross-validation and evaluated the
network of each fold on the remaining center.

• Single-Center. In the last configuration, we trained on one center only. Similarly
to the Except-One experiment, we evaluated the performance on that center using
cross-validation and applied all five networks to the other centers.

We normalized the three modalities (T2w, ADC, b800) individually. The Perc, M-std
and Win methods do not need to be trained, so we only normalized the whole data set
once. For HM, Perc-HM and the deep learning method, we trained the methods for each
experiment on the patients included in the training and validation set.

As evaluation metrics, we used the Dice coefficient [25] of the tumor class for segmen-
tation and the area under the receiver operator characteristic curve (AUC) for the prediction
of sex and Dworak grade. A zero Dice indicates no overlap with the ground truth, and one
indicates a perfect segmentation. For the AUC, a value of 0.5 is equal to pure chance and
one means perfect prediction. In the case of several classes, we calculated the AUC by the
average of the one-versus-others AUCs. We used the root mean square error (RMSE) for
age prediction.

After training the networks, we evaluated them on previously unseen images from
the same center and unseen data from all other centers, using the network from the epoch
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with the best performance in the validation set. We used a Student’s t test to determine the
significance of the mean differences. We consider a p-value of less than 0.05 significant.

3. Results

Figure 4 shows examples of normalized vs. unprocessed slices using different normal-
ization methods. The results obtained from the test data set are summarized in Figure 5.
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Figure 4. Comparison of the different normalization methods applied to one image. The upper row
shows the original image and a histogram of the intensity. The following two rows show an image
and a histogram for six exemplary selected normalization methods. The images are normalized to
the minimum and maximum values of the resulting slice. Using a fixed window (Win) or subtracting
the mean and dividing by the standard deviation (M-STD) only shifts and rescales the values; thus,
the images look the same as the original image. For the fixed window, a maximum value must be
selected that is higher than the intensity of most voxels in most of the images; therefore, many images
only use a small part of the available range. The other methods result in intensities between −1 and 1
(other values can also be selected). They all remove outliers, especially at higher intensities, which
increases the contrast in the visible images. Areas with high intensities are mostly fat, urine and bone
marrow. For methods using histogram matching (HM and Perc-HM), all normalized images will
have the same intensity distribution.
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Figure 5. Performance of the different normalization methods for each task and training scenario
(All, Except-One and Single-Center). For Except-One and Single-Center, only the results for images
not from the training centers are shown.

3.1. All

When looking at all centers, there were no significant differences in segmentation.
The best method is Perc-HM with a Dice of 0.69 ± 0.01. For the Sex and Dworak classifica-
tion, Perc-HM is significantly better than all other methods with an AUC of 0.94 ± 0.02 and
0.67± 0.01. For age prediction, Perc, Win, GAN-Def, GAN-Img, GAN-Win and GAN-No-ed
are the best methods without significant differences, with Perc being the best with an RMSE
of 12.2 ± 0.2.

3.2. Except-One

When leaving out one center, all normalization methods achieve similar Dice scores
between 0.66 and 0.69 on the training centers. For the test center, Perc, Perc-HM, GAN-Def,
GAN-Seg and GAN-Img are the best methods with no significant differences. The best is
Perc with a Dice of 0.58 ± 0.01.

When classifying the Dworak score for patients from the same centers used in training,
there are no significant differences between the normalization methods. The mean AUC
is 0.59. When evaluating the test center, Perc-HM, GAN-Def and GAN-Img are the best
methods. GAN-Def has the highest Dice of 0.581 ± 0.004.
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Sex classification works best if the images are normalized using Perc-HM for data
from the training and test centers. For images from training centers, the AUC is 0.87 ± 0.04,
but only HM, Win, GAN-Win and GAN-No-ed are significantly worse. For test centers,
Perc-HM is significantly the best method, with an AUC of 0.88 ± 0.2.

For age prediction, GAN-No-ed performs best with an RMSE of 12.7 ± 0.2 years for
patients from the same center, but it is not significantly better than GAN-Def, GAN-Img or
M-Std. GAN-Img is the best method for data from the test center with an RMSE of 13.6 ± 1.

3.3. Single Center

When looking at the performance of the segmentation of images from the same
center, Perc-HM achieves the highest mean Dice score of 0.66 ± 0.01. However, it is not
significantly better than all other methods, except for M-Std, Win, GAN-Win and GAN-No-
ed (see Figure 5). For all other centers, Perc and GAN-Seg are the best with a Dice score
of 0.50 ± 0.01 (for both). However, Perc is not significantly better than Perc-HM (Dice of
0.49 ± 0.01) and GAN-Seg is just barely significantly better (with a p-value of 0.0496).

For the Dworak score classification, the best is GAN-Win with an AUC of 0.57 ± 0.01,
but only Perc, M-Std and GAN-No-ed are significantly worse. For patients from the other
centers, GAN-Seg and M-Std are the best, with an AUC of 0.522 ± 0.003 and 0.520 ± 0.003.

For sex classification, there were no significant differences for the training centers.
For the test centers, Perc-HM was the best (AUC of 0.60 ± 0.02), but HM, M-Std, GAN-
Def and GAN-Seg were not significantly worse. However, for age prediction, the best
normalization method is HM with an RMSE of 13.6 years, but it is not significantly better
than GAN-Win and GAN-Seg for training centers. HM and GAN-Seg were the best for test
centers with RMSEs of 15.4 ± 0.08 and 15.3 ± 0.08.

4. Discussion

In this study, we proposed a deep-learning-based approach that incorporates image
sequence parameters for image normalization. Furthermore, we investigated the influence
of the implemented normalization strategies, including deep-learning-based approaches to
rectal cancer segmentation, classification and regression from multimodal MRI acquired in
a multicenter study.

For segmentation, the different normalization methods only lead to minor differences.
For classification and regression, there are larger differences, and the best performing
method is the percentile method combined with histogram matching.

The intensity of the MRI signal depends mainly on the tissue properties of the imaged
voxel. The normalization methods use local information (for CNN-based methods) and/or
global information (for most statistical methods) to standardize the images. This is not
sufficient because the other voxels have different tissue properties. This limits how well
the normalization models are able to correct anomalies. Thus, normalization probably
mostly helps the neural network by adding prior information (for example, the mean
intensity distribution when performing histogram matching), which is why it helps less for
larger data sets.

In addition to different acquisition parameters, there are many other parameters
that can hinder the generalizability of the trained network. There are differences in the
patient population and treatment. For example, the time difference between the end of
neoadjuvant treatment and the operation was (30 ± 6)d for Center 1 and (37 ± 6)d for
Center 2. Differences like this cannot be corrected by normalization.

4.1. Classical Normalization Methods

The best-performing tumor segmentation network (Perc-HM) reaches a Dice of
0.69 ± 0.01 and is in a similar range (0.68–0.74) reported in the literature [4,26]. There
are no significant differences in segmentation performance between normalization meth-
ods when training on all data. For the other scenarios, Perc, Perc-HM and GAN-Seg
performed best.
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The best-performing model for Dworak classification has a lower AUC of 0.67 ± 0.01
compared to [27] with an AUC of 0.82, but our data set is only a quarter of the size and
is more heterogeneous. For the classification of sex and age, we could not find respective
studies to compare. Classifying the sex of the patients results in a high AUC of 0.94 ± 0.02.
Probably, since some sexual organs are visible in the images, this information might be
picked up by the network.

Compared to the segmentation task, there are fewer examples, since the whole volume
is classified, while for segmentation, each voxel is assigned a label and thus contributes
to the overall performance, though certainly the voxels are not independent. This could
explain why we see fewer differences between the normalization methods for segmentation
compared to classification.

The performance decreases for all tasks as the size of the data set decreases, as expected.
This is demonstrated by leaving out one center, and especially when training only on one
center (see Figure 5). Here, the largest differences could be observed between the different
normalization methods. For data from unseen centers, there is a large generalization error.
One of the reasons for this error is that there are greater differences in the data acquisition
parameters between centers than within one, as visible in Figure 1. Some normalization
methods can better reduce these differences than others.

In summary, for tumor segmentation, Dworak and sex classification, Perc-HM is the
best method in the All and Except-One scenarios. In the Single-Center scenario, Perc-HM
also performs well for sex classification, but for segmentation and Dworak classification,
GAN-Seg was significantly better. For age prediction, the results are inconclusive; no
method is superior in all three scenarios.

4.2. Deep Learning Normalization Methods

For segmentation and Dworak classification, GAN-Def outperformed all other DL
methods when training on all centers. The segmentation performance (0.69 ± 0.01) was
comparable to that of classical methods and in the literature [4,26], but the Dworak classifi-
cation (0.64 ± 0.01) is worse than that of classical methods and in the literature [27]. We
observed that the DL methods are superior to the classical ones in only a few cases when
used in the other two scenarios. For example, GAN-Seg, which uses segmentation as an
additional task, was among the best methods for the Single-Center scenario and for seg-
mentation in all scenarios. It achieves an AUC of 0.522± 0.003 for the Dworak classification
in the Single-Center scenario, and scores lower than the respective best classical model and
the literature reference [27]. One of the issues is that the data set used to train the GAN
normalization is only slightly larger than the data set used to train the segmentation and
classification. Thus, the U-Net and ResNet probably learn an encoding similar to that of the
auto-encoder. The advantage of deep-learning-based methods is that they can be trained
on a larger data set without the need for manual annotations.

4.3. Limitations

In this study, only two networks were tested for their performance using different
normalization methods; while U-Net and ResNet are widely used, there are many other
architectures. For segmentation, most follow the encoder–decoder structure and should
behave similarly.

When predicting the Dworak score, there are not sufficient data to achieve a perfor-
mance which would be sufficient to be used for clinical decision making. The best method
achieved an AUC of 0.69± 0.01. This is not sufficient to inform treatment decisions. Even in
studies with a larger training cohort of 592 patients, only an AUC of 0.82 was achieved [27].

One of the issues is that only about 20% of patients achieve a pathological complete
response [2]. In the data set, there were only 37 patients with a pathological complete
response. Therefore, to obtain clinically usable networks, the training data set would
probably have to be larger by orders of magnitude. Collecting that much data faces many
regulatory and technical challenges.
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For segmentation, this is less of a problem because there are a lot more data points.
There are approximately ten million voxels in the tumor class. Although these are not
independent samples, there are still much more data available than for the classification.
The maximum Dice of 0.69 ± 0.01 is in the range of the interobserver Dice of 0.71 ± 0.13
observed in [26] and 0.83± 0.13 in [4]. The performance could probably be further increased
with more parameter tuning.

The difference in available data for the different tasks is probably also the reason why
there are much larger differences in performance using different normalization methods
for classification and regression than for segmentation.

5. Conclusions

The performance of six different normalization methods was evaluated for different
deep learning tasks for LARC patients in a multicenter setting with data from six different
centers. Different scenarios were tested with training on data from all centers, on data
from all centers except one, and from data from a single center. In this way, the influence of
the normalization method on generalizability can be assessed.

Normalization is important if the data are inhomogeneous, especially if the data set
is small and the network is applied to data from a site not included in the training set. It
plays a larger role in classification and regression than in segmentation.

Our results show that percentile normalization followed by histogram matching
performed the best for tumor segmentation and prediction of treatment outcomes in locally
advanced rectal cancer. Setting the mean and standard deviation to a fixed value, which is
often done for images, performed significantly worse than most other methods.

Using deep learning approaches did not lead to any improvements over classical meth-
ods in most cases, and was only slightly better when training on data from a single center.

Normalization improved the generalization of the network for different tasks, but there
are limits to what can be corrected with normalization. It is essential to standardize data
acquisition for routine clinical imaging for the widespread application of deep learning
in clinics. With the current data available, it is not possible to predict clinically relevant
outcomes of neoadjuvant treatment for patients with LARC.
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Abbreviations
The following abbreviations are used in this manuscript:

MRI magnetic resonance imaging
T2w T2-weighted
DWI diffusion weighted imaging
ADC apparent diffusion coefficient
LARC locally advanced rectal cancer
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