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Abstract: It is highly significant from a research standpoint and a valuable practice to identify
diseases, symptoms, drugs, examinations, and other medical entities in medical text data to support
knowledge maps, question and answer systems, and other downstream tasks that can provide the
public with knowledgeable answers. However, when contrasted with other languages like English,
Chinese words lack a distinct dividing line, and medical entities have problems such as long length
and multiple entity types nesting. Therefore, to address these issues, this study suggests a medical
named entity recognition (NER) approach that combines part-of-speech and stroke features. First,
the text is fed into the BERT pre-training model to get the semantic representation of the text, while
the part-of-speech feature vector is obtained using the part-of-speech dictionary, and the stroke
feature of the text is extracted through a convolution neural network (CNN). The word vector is then
joined with the part-of-speech and stroke feature vectors, respectively, and input into the BiLSTM
and CRF layer for training. Additionally, to balance the disparity in data volume across several
types of entities, the class-weighted loss function is included in the loss function. According to
the experimental findings, our model’s F1 score on the CCKS2019 dataset reaches 78.65%, and the
recognition performance exceeds many existing algorithms.

Keywords: entity recognition; BERT; BiLSTM; multiple features; CRF

1. Introduction

With the rise of “Internet + Medical”, major online medical service platforms bring
convenience to people and create a significant volume of text data containing rich medical
knowledge. Most of these text data are in an unstructured form, in which it is difficult
to intuitively reflect information. Processing and mining these textual data can help
professionals quickly and accurately obtain information to assist in diagnostic decision-
making, save time and cost, and better provide treatment for patients.

The aim of named entity recognition (NER) is to find entities in a context that have
specific meanings. NER extracts and classifies the names of people, places, institutions,
biological proteins, drugs, and other entities in unstructured text to serve downstream
tasks including text mining, information extraction, intelligent question answering, ma-
chine translation, and so on [1]. Numerous scholars have studied entity recognition in
a variety of domains, including chemistry [2,3], politics and law [4,5], social media [6,7],
and geography [8], thanks to the ongoing advancement of NER technology. Luo et al. [2]
presented an Att-BiLSTM-CRF model for chemistry NER, which applies attention to the
document to determine the similarity between various words in the document and as-
signing weights. Liu et al. [4] introduced a legal judgment named the entity recognition
approach based on small-scale tag data, which uses bootstrapped mode to learn how to
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label data from small-scale manually labeled data, and then embed words with the Chinese
model pre-trained by BERT. Aguilar et al. [6] introduced a multitasking approach applied to
social media data, which combines named entity segmentation with fine-grained network
element classification main tasks. Within the biomedical field, Zhu et al. [9] suggested
an end-to-end deep learning method called GRAM-CNN, which utilizes local context
embedded by n-gram characters and words via convolutional neural networks without
requiring any specific knowledge or feature engineering. Yoon et al. [10] suggested a model
known as CollaboNet that combines many NER models. The target model can obtain
information from other cooperation models thanks to the connections between models
trained on various datasets, which lowers the number of false positives and incorrectly
categorized entities. Unlike languages such as English, Chinese lacks a distinct demarca-
tion between words, and the grammatical structure of Chinese is complex and diverse.
Chinese medical entities usually contain a large number of professional words and terms,
making it challenging to understand and analyze these complex language structures for
the model. And the technical terms involved in the medical field may have different forms
and variants such as synonyms, abbreviations, spelling mistakes, etc. Additionally, The
length of medical entities, such as “根治性左半肠切除术 (radical left hemicolectomy)”, is
excessively long. And the nested nature of various entity types, for instance, the imaging
examination entity “胃肠道碘水造影 (gastrointestinal tract iodine hydrography)” nested in
the symptom entity “胃肠道 (gastrointestinal tract)”. These problems make it more difficult
for Chinese medical entity recognition.

Based on the aforementioned issues, this research suggests a named entity recognition
model fusing part-of-speech and stroke features for medical texts. Firstly, in order to
discriminate words with distinct meanings in the text, word parts-of-speech and stroke
information are incorporated as multiple characteristics in low-dimensional word vectors
acquired by the BERT pre-training model, improving the border recognition result, in which
stroke features are extracted by Convolution Neural Network (CNN). Following that, word
vectors are spliced with the parts-of-speech and stroke vectors, respectively, to be input
into the bidirectional short-term memory network (BiLSTM) for feature extraction. At last,
the retrieved context characteristics are combined and fed into a conditional random field
(CRF) and predicted label results are generated using constraints discovered from the CRF.
At the same time, the class-weighted loss function, which, along with the CRF loss function,
makes up the model’s overall loss function, is added to balance out the disparity in entity
counts among different categories. The experimental results show that the model, which
outperforms other models currently in use, achieved favorable outcomes on the CCKS2019
dataset.

2. Related Work
2.1. NER Approaches

Dictionary and rule-based, traditional machine learning, and deep learning approaches
are the main NER approaches.

Dictionary and rule-based approaches count on linguists to manually create unique
rule templates or specialized dictionaries depending on the properties of data sets [11–13].
This rule-based approach has various drawbacks, including a high level of human in-
volvement required, challenges in extending it to new entity types or datasets due to the
specificity of rules to a given domain, the absence of comprehensive dictionaries, and
limited portability.

According to the machine learning approach, NER is viewed as a sequential labeling
issue, and the labeling model is learned from a huge corpus by a statistical machine learning
algorithm, to label sentences. Currently, the traditional machine learning approaches used
in NER mainly include CRF [14], Support Vector Machine (SVM) [15], Hidden Markov
Model (HMM) [16,17], Decision trees [18], etc.

Among the deep learning-based methods, an NER technique based on neural net-
works was first described by Collobert et al. [19] and offers an integrated neural network
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design for handling numerous tasks related to NLP. Huang et al. [20] proposed using
the BiLSTM-CRF model for sequence annotation in 2015. BiLSTM can effectively employ
input features for the past and future, while the CRF layer’s transition matrix can learn a
variety of limitations to improve the accuracy of its forecast outcomes. Strubell et al. [21]
suggested a network IDCNN with better prediction ability than CNN in 2017. IDCNN
used expansive convolution to add holes in the convolution kernel, which expanded the
receptive field of the model and ensured accuracy while increasing speed. Google intro-
duced the unsupervised pre-training language model BERT [22] in 2018. BERT adopted the
Decoder structure of Transformer [23] and trained with large-scale unlabeled corpus, which
showed strong semantic information extraction ability. Later, a series of improved models
of BERT appeared, such as RoBERTa [24] and BERT-WWM [25]. Deep learning-based
NER methods have gained popularity in recent times. Wang et al. [26] suggested a multi-
tasking learning structure that uses training data from various sorts of entities in tandem to
improve each type of entity’s performance. Cho et al. [27] created a model according to
the BiLSTM-CRF model, which enhanced CNN and BiLSTM by combining two distinct
character-level representations collected from convolution. Chang et al. [28] put forward
an NER approach based on BERT, which is used for pre-training and simultaneously uses
BiLSTM and IDCNN to extract features.

2.2. NER Approaches Based on Deep Learning

The embedding layer, encoding layer, and decoding layer are the three components
of deep learning-based NER methods. The embedding layer learns the semantic and
grammatical information of the input text and displays them as a vector. The encoding
layer performs feature extraction according to the contextual data incoming from the
embedding layer. The decoding layer predicts the label corresponding to each word in the
text according to the encoding layer’s results.

For the embedding layer, the full input Chinese text must be segmented. Word-based
and character-based segmentation processing techniques are the two main categories. With
the word-based approach, the text is divided into words, and the pertinent information in
the words is used to extract contextual characteristics. However, issues will unavoidably
arise throughout the word segmentation phase, and the mistakes created during this
process will be conveyed step by step in the subsequent recognition process, impacting the
final recognition result. The character-based model uses the character as its input, does
not require splitting words in the text, avoids the error introduced by word separation,
and frequently outperforms the word-based model, though words still have more detailed
boundary and semantic information.

In the encoding layer, CNN, Recurrent Neural Network (RNN), and Transformer
networks are frequently employed. The CNN-based model concentrates on extracting
local features and can be calculated in parallel to shorten training time and save time and
cost. CNN, however, is unable to record distant characteristics and ignores contextual data.
Yao et al. [29] introduced a CNN-based biomedical NER method with a multi-layer structure
that uses neural networks to produce a significant amount of possible feature data embodied
in word vectors. Data from linear sequences are routinely processed using a model based
on RNN. An RNN variation called BiLSTM is capable of using sequential data in both
forward and backward directions to learn the connection between distant dependencies.
The computation of the current element, however, depends on the calculation outcome of
the preceding element owing to the sequential sequence; hence, simultaneous processing is
not possible. Lin et al. [30] introduced a multi-channel neural structure for social media
messaging, which integrated whole-word representations with multi-channel data and
conditional random fields into BiLSTM without the need for any extra hand-made features.
The model based on Transformer can make use of attention mechanisms to better capture
long-distance dependencies and parallel computation; however, it is unable to capture
information such as direction and position. Yu et al. [31] propose a multimodal NER
approach using a Transformer as a foundation, and a multimodal interaction module may
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be used to gain the verbal description of picture perception as well as the visual depiction
of verbal perception.

CRF and Multi-Layer Perceptron (MLP) are commonly used in decoding layers. The
Multi-Layer Perceptron views sequence labeling as a multi-classification issue as the decod-
ing layer, and each word’s prediction simply makes inferences based on context-related
information rather than considering the predicted label outcomes of neighboring words.
As the decoding layer, CRF considers the whole sequence, learns the relationships between
nearby tags during training, and incorporates restrictions into the prediction to provide the
ideal tag sequence.

3. Methods

The model that is given in this paper employs a BERT pre-training model in the
embedding layer, BiLSTM as the encoder and CRF as the decoder. Figure 1 displays the
main layout of the construction. A word vector to represent the content is produced by the
BERT pre-training model in the embedding layer, and this word vector is later combined
with the parts-of-speech feature vector and the stroke feature vector and fed into the
BiLSTM layer, respectively, to produce text features using contextual information. After
restrictions, the combined feature information is entered into the CRF layer to produce the
predictive text labels.
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Figure 1. This is the model structure. The “腹腔 (abdominal cavity)...” is the input Chinese text. And
the “Embedding Layer” shows the process that a single word enters the embedding layer.

3.1. Embedding Layer

The entered content is mapped into a low-dimensional space in units of words in the
embedding layer, and the words are represented by vectors, which can well reflect the
relationship between words. Words with similar contexts usually have similar semantic and
grammatical attributes and in this low-dimensional space, are frequently near to each other.
In this study, a character-based approach is adopted to process the input text. Additionally,
to utilize the word’s semantic data to its fullest extent and distinguish different semantic
elements, and then enhance the recognition effect of the boundary, this work introduces the
part-of-speech and stroke characteristics as multiple features and uses the BERT pre-training
model to produce the word vector.
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Assuming the model receives the following sentence as input: X = (x1, x2, . . . , xn), after
entering the embedding layer, the word vector W = (w1, w2, . . . , wn) is acquired through the
BERT model while the part-of-speech feature vector C = (c1, c2, . . . , cn) is obtained through
the part-of-speech dictionary, and the stroke feature vector B = (b1, b2, . . . , bn) is extracted
using CNN. The word vector was spliced with the part-of-speech feature vector and stroke
feature vector, respectively, to get E1 = [W; C] and E2 = [W; B], and then input E1 and E2
into the BiLSTM layer, respectively.

3.1.1. BERT Model

The multi-layer Transformer framework used by the BERT model is formed by stacking
encoders of multiple transformers. There is a Self-attention mechanism in the encoder,
which will use the token of its context when encoding a token. The three embeddings
that make up the text data input into the BERT pre-training model are token embedding,
segment embedding, and position embedding. Token embedding represents the current
word ID, segment embedding shows the sentence ID in which the word at hand is situated,
and position embedding displays the position ID of the current word. Figure 2 depicts
the BERT model’s general structure. In this experiment, BERT-base, which has 12 stacked
encoder layers, is employed. Each encoder employs 12 heads of attention, and the bottom
encoder’s input is the top encoder’s output. There are 768 hidden nodes in the encoder’s
feedforward network.
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3.1.2. Part-of-Speech Embedding

As a part of the word attribute, adding part-of-speech features in the embedding layer
can more accurately convey the meaning of the word. For example, diseases and drugs are
mostly nouns and symptoms are mostly verbs. The model developed in this study employs
the posseg package in the jieba library to segment the input text into parts of speech. A
total of 23 parts of speech and a unique part-of-speech marker O are used to mark the text,
except for a few parts of speech that are not frequently used. After the part-of-speech of
the text is entered into the embedding layer, the part-of-speech vector of the input text is
acquired by looking up the part-of-speech dictionary. The part-of-speech vector is initially
initialized randomly.
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3.1.3. Stroke Embedding

It is possible to extract stroke features using both BiLSTM and CNN. CNN gathers
information by grabbing specific word strokes, whereas BiLSTM collects information
following the entire word’s stroke. In this study, BiLSTM and CNN were respectively used
for feature extraction of stroke information during the experiment. The results show that
the extraction result of CNN is superior to that of BiLSTM (see the ablation experiment in
Section 4.4 for the results). As a result, CNN is used in the model suggested in this study to
extract the text’s stroke characteristics.

First, we use the pywubi package to get the strokes of the input text and map the
strokes to a low-dimensional vector. The vector matrix is then subjected to the application
of convolution kernels of various sizes to extract relevant information between neighboring
strokes. To capture various characteristics during the convolution process, two kernels of
convolution of differing sizes are utilized in this work. Finally, in order to extract stroke
features, the maximum pooling method is used on all feature mappings, and the resultant
features are connected to form the stroke feature vector of each text. Figure 3 depicts the
structure described above.
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3.2. BiLSTM Layer

Long Short-Term Memory (LSTM), which employs memory units with adaptive gating
mechanisms to handle information selectively, solves the challenge of gradient vanishing
and explosion in RNN structures. Three different gates are present in an LSTM cell structure:
an input gate for selecting data that can be input, a forgetting gate for selecting data that
should be forgotten, and an output gate for selecting data that will be output. The LSTM
hidden state’s precise calculation algorithm at time t is as follows:

It = σ(XtWxi + Ht−1Whi + bi) (1)

Ft = σ
(

XtWx f + Ht−1Wh f + b f

)
(2)

Ot = σ(XtWxo + Ht−1Who + bo) (3)
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C̃t = tanh(XtWxc + Ht−1Whc + bc) (4)

Ct = Ft � Ct−1 + It � C̃t (5)

Ht = Ot � tanh(Ct) (6)

Both the forward and backward LSTM components make up BiLSTM. It obtains
semantic information from both directions through forward and backward input, and can
effectively extract the features of context.

3.3. CRF Layer

There will be some issues if the content output of the BiLSTM layer is classed directly
because the dependency between labels is not considered. The drug entity, for instance,
can only begin with “B-dru” rather than “I-dru” and the disease and diagnosis label “B-dis”
can only be followed by “I-dis” rather than “O” or “I-dru”. The role of conditional random
fields is to provide some restrictions to the final tag prediction to guarantee the output tag’s
validity.

The sequence S = (s1, s2, . . . , sn) is sent as input to the CRF layer, and then CRF
outputs the most probable sequence T = (t1, t1, . . . , tn). The true path’s score and the sum
of all pathways’ scores make up the CRF loss function. The specific formula is shown in
Formula (7), where SRealPath is the real path score, and Si(i ∈ n, n is the overall quantity of
paths) is the path score function.

LossFunction = log(es1 + es2 + · · ·+ esn)− SRealPath (7)

The path score function is divided into two parts: emission score and transfer score.
The output from the previous BiLSTM layer provides the emission score, indicating the
likelihood of the sequence and its corresponding tags. The transfer score is derived from the
transfer matrix in the CRF layer, representing the likelihood of transitioning between labels.
The transition matrix is continuously updated during training, and the optimal sequence
of tags can be determined by learning the relationships between tags and constraints.

4. Analysis and Results from Experiments
4.1. Experimental Dataset

This experiment uses the CCKS2019 dataset, which is the assessment task dataset
made available by the China Conference on Knowledge Graph and Semantic Computing
in 2019. This dataset is the real desensitized electronic medical record data, which was
manually edited by Yiduyun Medicine, and includes six entity types: disease and diagnosis,
laboratory test, image examination, drug, operation, and anatomical site. In this experiment,
the number of sentences in the CCKS2019 dataset is divided into a train set and a dev set
according to the ratio of 7:3. Table 1 displays the statistics of the dataset’s entities.

Table 1. Statistics of the dataset.

Type Train Dev

disease and diagnosis 2924 1288
laboratory test 799 396

image examination 661 308
drug 1250 572

operation 709 320
anatomical site 5804 2622

total 12,147 5506
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4.2. Improvement of Loss Function

Because there are differences in the number of entities in the experimental data, the
imbalance in the number of sample categories may lead to the loss being dominated by
categories with large data during the training process. This can result in the model failing
to effectively train the features of categories with fewer samples. To address this issue, in
addition to the CRF loss function, this study introduces the class-weighted loss function.
Both loss functions are combined to create the total loss function. By assigning various
weights to the sample losses of different categories and adjusting the weights based on the
number of entities in each category, the class-weighted loss function balances the differences
in data volume across multiple categories. The category with the fewest samples is given
the greatest weight, while the category with the largest number of samples is given the
least weight.

4.3. Experimental Setup

In this experiment, the training framework used is Pytorch, and the optimizer used is
Adam, and the main hyperparameter settings in this paper are shown in Table 2.

Table 2. Hyperparameters of the model.

Hyperparameter Value

BiLSTM hidden size 128
Embedding size 768

Learning rate 3 × 10−5

Max sequence length 150
Dropout 0.5

Batch size 16
Epoch 30

4.4. Results

In this experiment, the evaluation criteria are F1 score (F1), precision (P), and recall
(R). On the CCKS2019 dataset, the following models were used to compare:

• IDCNN-CRF, the encoding layer uses the expansion convolution network. Unlike the
traditional convolution network, the expansion convolution expands the receptive
field of the model by adding holes in the convolution kernel and obtains more context
by using fewer convolution layers.

• BiLSTM-CRF, a popular model for handling NER tasks, takes the word vector rep-
resenting the input text from the embedding layer, feeds it into BiLSTM to obtain
characteristics, and then outputs the expected tag results following CRF.

• BERT-CRF, the encoding layer using the BERT model.
• BERT + BC, acquiring word vectors by pre-training the BERT model, followed by

BiLSTM-CRF for the NER task.
• BERT-WWM + BC obtains word vectors by pre-training the BERT-WWM model.

Unlike BERT, in the initial pre-training phase, BERT-WWM modifies the training
sample generation approach and increases the whole word mask.

• RoBERTa-WWM-ext + BC, using the RoBERTa-WWM-ext model in the embedding layer,
RoBERTa has enhanced the training tasks and data generation methods over BERT.

Table 3 displays the outcomes of the experiment.
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Table 3. Experimental result.

Model P/% R/% F1/%

IDCNN-CRF 72.62 73.88 73.24
BiLSTM-CRF 73.43 74.32 73.87

BERT-CRF 73.90 80.43 77.03
BERT + BC 75.58 79.01 77.26

BERT-WWM + BC 76.46 79.89 78.14
RoBERTa-WWM-ext + BC 75.16 79.89 77.45

Our Model 77.49 79.84 78.65

It can be seen from the experimental outcomes that the model suggested in this study
has F1 score, precision, recall that are 78.65%, 77.49%, and 79.84%, respectively, on the
CCKS2019 dataset, among which the F1 score and precision reach the maximum in all
comparison models. The results of the first three experiments reveal that the BERT model
outperforms IDCNN and BiLSTM in terms of recognition effect when CRF is utilized as the
decoder. By first masking part of the sentence’s terms and then letting the model predict the
unmasked words, BERT improved its capacity for semantic processing and did well on the
NER challenge. The recognition effect is improved by adding a BiLSTM layer between BERT
and CRF, as can be seen from a comparison of the third model’s and fourth model’s results.
This is because the forward and backward LSTM layers reinforce the relationship before
and after the text sequence, which enhances the recognition effect. The model described
in this study builds on the BERT pre-training model by adding category weighted loss
function, part-of-speech information, and stroke information. All three assessment indexes
have advanced in comparison to the BERT + BC model, with the F1 score rising by 1.39%.
Although the recall rate of our model is slightly lower than that of the RoBERTa-WWM-ext
+ BC model and the BERT-WWM + BC model, its precision is higher. On the whole, the
F1 score of the comprehensive index is increased by 0.51% and 1.20%, respectively, which
shows that embedding word part-of-speech information and stroke information as multiple
features is helpful for the model to achieve a better recognition effect.

To further support the reliability of each element of the model outlined in this study,
the following comparative tests were conducted: (1) by adding the class-weighted loss
function; (2) by adding part-of-speech features; (3) by adding stroke features extracted
by BiLSTM; (4) by adding stroke features extracted by CNN. In Table 4, the experimental
findings are displayed.

Table 4. The results of the Ablation experiment.

Model P/% R/% F1/%

Baseline 75.58 79.01 77.26
Baseline + Loss 75.95 79.84 77.85

Baseline + Part-of-speech embedding 76.37 79.55 77.93
Baseline + Stroke embedding(BiLSTM) 75.03 79.94 77.41

Baseline + Stroke embedding(CNN) 75.83 79.80 77.76
Baseline + all 77.49 79.84 78.65

When the loss function improves, the F1 score increases by 0.59% in comparison to
the Baseline model. And the F1 score rises by 0.67% when the part-of-speech element
is included. When adding stroke features, BiLSTM and CNN are used to extract stroke
features, the F1 score is enhanced by 0.15% using BiLSTM and by 0.50% using CNN. Each
component of the model described in this research is found to be effective. It can be seen
from the results that CNN is more suitable for stroke feature extraction; thus, CNN is used
in our model to extract stroke features.
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5. Conclusions

In this study, an NER method fusing part-of-speech and stroke features is designed
for medical text. In the embedding layer, the part-of-speech data and stroke data of words
are embedded as multiple features to distinguish words with different semantics, and the
features of stroke information are extracted by CNN using two convolution kernels with
different sizes. After that, the part-of-speech and stroke feature vectors are spliced with the
word vector, respectively, and input into the BiLSTM and CRF layer for training, wherein the
word vectors are obtained by the BERT pre-training model. From the experimental data, it
can be seen that using the BERT pre-training model to obtain word vectors makes the entity
recognition effect better because BERT is a depth model with high semantic information
extraction capabilities that was trained using a vast amount of unlabeled data. Moreover,
using the BiLSTM layer can extract features better than not using it, which makes the results
better. The embedding layer uses BERT pre-training models, the encoder uses BiLSTM,
and the decoder uses CRF, which shows better performance than other combinations. The
part-of-speech and stroke features used in the model suggested in this paper, as part of the
word features, make it simpler to distinguish between words with different semantics while
also making it easier to identify similar words. This makes it possible to more accurately
identify the boundaries of long medical entities and improves the identification effect of
medical entities, providing better services for subsequent tasks such as building medical
knowledge maps. Additionally, the difference in data volume between various categories
of samples is balanced by adding a class-weighted loss function.

Our research is limited in its ability to process long sentences since the BERT processing
sequence is limited to a certain length. Additionally, because our model processes input
text using a character-based approach, text features lack word information. In further
studies, we will strengthen our model, to address these issues and investigate the impact of
additional semantic elements and labeling strategies on boundary word recognition.
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