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Abstract: In this paper, SEPAM_HRNet, a high-resolution pose-estimation model that incorporates
the squeeze-and-excitation and pixel-attention-mask (SEPAM) module is proposed. Feature pyramid
extraction, channel attention, and pixel-attention masks are integrated into the SEPAM module,
resulting in improved model performance. The construction of the model involves replacing ordinary
convolutions with the plug-and-play SEPAM module, which leads to the creation of the SEPAMneck
module and SEPAMblock module. To evaluate the model’s performance, the YOGA2022 human
yoga poses teaching dataset is presented. This dataset comprises 15,350 images that capture ten
basic yoga pose types—Warrior I Pose, Warrior II Pose, Bridge Pose, Downward Dog Pose, Flat Pose,
Inclined Plank Pose, Seated Pose, Triangle Pose, Phantom Chair Pose, and Goddess Pose—with a
total of five participants. The YOGA2022 dataset serves as a benchmark for evaluating the accuracy of
the human pose-estimation model. The experimental results demonstrated that the SEPAM_HRNet
model achieved improved accuracy in predicting human keypoints on both the common objects in
context (COCO) calibration set and the YOGA2022 calibration set, compared to other state-of-the-art
human pose-estimation models with the same image resolution and environment configuration.
These findings emphasize the superior performance of the SEPAM_HRNet model.

Keywords: human pose estimation; attention mechanism; high-resolution networks; feature pyramids

1. Introduction

Two dimensional (2D) human pose estimation has been a hotspot of research in the
computer vision field because of its characteristics. Its task is to predict and localize the
keypoint parts of a target human body. This is the basis of other action tasks, and 2D
human pose estimation has important research and application values. The evaluation of
human motion action is receiving more and more attention in the computer vision field,
and human pose estimation, as the basis of human action evaluation tasks, has also been
the subject of much research, with achieved results.

Based on the excellent performance and advancement of deep convolutional neural
networks, Toshev et al. [1] (2014) introduced deep neural networks into human pose-
estimation algorithms for the first time. The model considered the localization of keypoints
as a regression problem of human keypoints, extracted image features by convolutional
neural networks, and simultaneously modeled the relationship between keypoints using
convolutional kernels, which improved the performance of predicting human keypoints.

A stacked hourglass network [2] uses a symmetric modular structure from high-
resolution downsampling to low-resolution downsampling, followed by low-resolution
upsampling to recover the high resolution to fuse the features of different scales to capture
multiple spatial relationships. This results in the improvement of the accuracy of the human
body keypoints prediction.

On this basis, a simple baseline method [3] simplifies the tandem structure from
high resolution to low resolution and, then, recovers high resolution, generating high-
resolution feature representations from low-resolution feature representations through

Appl. Sci. 2023, 13, 8912. https://doi.org/10.3390/app13158912 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13158912
https://doi.org/10.3390/app13158912
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app13158912
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13158912?type=check_update&version=1


Appl. Sci. 2023, 13, 8912 2 of 18

three transposed convolutional layers. The HRNet high-resolution network proposed in
2019 [4] can be distinguished from the previous tandem approach (from high resolution to
low resolution, then recovering to high resolution). The HRNet model adopts the parallel
connection of high resolution and low resolution to maintain the high-resolution feature
map throughout the model, which compensates for the lack of spatial resolution loss
generated by upsampling.

However, the human body is a non-rigid structure that produces a wide variety of
postures and is prone to self-obscuration problems that interfere with the accurate localiza-
tion of human keypoints. To improve the accurate localization of occluded keypoints, more
attention needs to be paid to these regions. Fortunately, model performance can be signif-
icantly improved by embedding the attention module into existing CNNs, enabling the
network to pay more attention to these key regions. By learning to redistribute the channel
weights of convolutional features, the attention mechanism improves model performance,
with a slight increase in computational complexity, leading to more accurate prediction of
keypoints in the human body.

Currently, attention mechanisms such as SENet [5], CBAM [6], and GCNet [7] have
achieved sizable performance improvements. Nevertheless, these attention mechanisms
can only capture local information, making it difficult to establish long-term dependen-
cies, and they cannot fully access and utilize the spatial information of feature maps at
different scales or enrich the feature space. To solve this problem, this paper proposes
the squeeze-and-excitation and pixel-attention-mask (SEPAM) module, which utilizes the
feature pyramid structure [8] to extract features at different scales using convolution kernels
of different sizes. The weights are assigned to different channels by the channel attention
(SE) module; then, the pixel positions are assigned by the pixel-attention-mask (PAM)
module. Used in parallel, these two attention modules can effectively extract finer-grained
multi-scale spatial information, while establishing channel dependencies over longer dis-
tances and pinpointing feature information in the spatial direction, thus reducing the loss
associated with keypoint localization. This optimization helps improve the accuracy of the
human pose-estimation model in predicting the keypoints of the human body, especially
the keypoints of the occluded parts.

Based on the human posture estimation model named SEPAM_HRNet, which was
formed based on the application of the SEPAM module to the HRNet network, we created
a human yoga movement posture feature dataset named YOGA2022. This dataset was
constructed with labels for ten common human yoga movement postures. It provides the
location coordinates of, as well as visibility information about, 17 human keypoints that
are consistent with the label form of the COCO dataset. With this new dataset, a deeper
understanding of the postural characteristics of human yoga poses can be gained, and
the accuracy and stability of the SEPAM_HRNet model in human keypoint prediction
can be further validated and optimized. Meanwhile, the establishment of this dataset
provides a valuable resource and foundation for future research, which is expected to
lead be more in-depth and to have applications in the field of human-motion analysis and
posture estimation.

Overall, the contributions of the work in this paper are as follows:

1. Considering the specificity of yoga movement postures that are prone to self-obscuring
phenomenon, this paper creates a new dataset of human yoga movement postures,
with truth labels, called YOGA2022.

2. In order to solve the problem of self-obscuring keypoint prediction, which requires
finer multi-scale spatial information, this paper proposes the SEPAM module and
fuses it into the HRNet model to establish the new SEPAM_HRNet model. The
SEPAM_HRNet model improves prediction accuracy without introducing a large num-
ber of parameters or complexity. Through this innovative fusion, the self-obscuration
problem can be better dealt with.

3. After extensive comparative experiments, the experimental results fully validated the
effectiveness of the lightweight channel spatial pyramid attention (SEPAM) module.
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2. Related Work
2.1. Human Posture-Estimation Model

Before introducing 2D human pose-estimation methods by deep learning, the human
pose problem was mainly solved using methods based on graph structure models [9,10].
However, these methods are greatly affected by factors such as figure occlusion, shooting
angle, and image illumination, with limited representation capability and poor model
prediction accuracy, which is challenging in meeting the needs of practical applications.

With the continuous development of deep-learning network models, the performance
of human posture estimation has been significantly improved. This paper briefly reviews
the deep-learning-based pose estimation methods in recent years. Deep-learning-based
2D human pose =estimation methods can be categorized into top-down and bottom-up
architectures. The top-down architecture first detects a single-person image region using
an excellent human target detector [11,12], then uses a human pose estimator [2–4,13]
to localize the human keypoints in each box. In contrast, the bottom-up human pose-
estimation method [14–17] first detects all the human keypoints in the image, then obtains
the pose of each person by matching. The bottom-up method has faster operation speed
and higher real-time performance thano the top-down method, but it is prone to errors for
the same types of keypoints that are close to each other.

Two-dimensional human pose estimation [2–4,17–20] has dominated the field of hu-
man pose estimation in terms of performance. Several studies [4,18–23] constructed new
pose estimation network architectures to extract better features. The creation of the HR-
Net [4,16] family of models was a notable development in the area of pose recognition.
The HRNet model employed a new convolutional neural network (CNN) architecture
designed to model high-resolution feature responses, demonstrating the use of the 2D
human pose estimation. YOLO-Pose [18] performed keypoint regression and grouping by
utilizing the centroid of the bounding box for yolo target detection as the initial point to
achieve accurate localization of the keypoints. TDMI [22] proposed a mutual information-
based time-difference learning model that utilized the mutual information to direct the
model to learn the features relevant to the task, improving the performance of human
pose estimation via video. PoseIG [23] designed attribute-based metrics to assist in an-
alyzing and diagnosing pose-estimation frameworks. Other studies [24–29] built on the
optimization perspective and tried to reduce the inference latency of pose estimation by
lightweighting the modules or reducing the network branches, but often at the cost of
drastically reducing the accuracy of pose estimation. The optimization perspective also
includes studies that employed knowledge distillation methods [30–32] by constructing
lightweight mini-models and using supervisory information from larger models with better
performance to train the mini-models, with a view to obtaining better performance and
accuracy. For example, OKDHP [30] proposed an online positional distillation method
to extract positional structure knowledge in a single-stage approach. DistilPose [32] pro-
posed a heatmap-regression distillation framework to achieve knowledge transfer between
heatmap-based and regression methods.

In recent research, Transformer has achieved great success in the field of natural language
processing (NLP). In the field of 2D human pose estimation, many studies [19,20,33–36]
have also incorporated Transformer structures. TFPose [33] first introduced Transformer
into a pose estimation framework in the form of regression; PRTR [35] proposed a two-
stage end-to-end regression based on a cascaded Transformer framework that achieved
excellent performance in regression-based approaches; TransPose [20] and TokenPose [19]
introduced Transformer for heat map-based human pose estimation and achieved comparable
performance. However, these Transformer-based pose estimation models did not perform as
well as CNNs in obtaining localized information and had a large computational overhead,
which made them difficult for practical applications. Therefore, in this paper, the focus is on
HRNet, which represents the state-of-the-art performance among CNN networks, as the base
network for the research.
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2.2. Attentional Mechanisms

In the field of image processing, the attention mechanism is widely used to improve
the effectiveness of models. These mechanisms redistribute channel weights in feature
maps obtained from convolutional neural networks to perform functions such as squeeze,
excitation, and attend. Studies have shown that incorporating attention mechanisms can
enhance the performance of lightweight models with only a slight increase in computational
complexity. One popular attention module is the squeeze-and-excitation (SE) attention
module [5]. This module focuses on modeling the relationship between channels through
two main operations: squeeze and excitation. In the squeeze phase, it performs feature
compression in the spatial dimension through a global average pooling operation. Then,
in the excitation phase, it generates weight parameters for each channel to determine its
importance by using a fully connected layer and a nonlinear activation function, which
are weighted by multiplying these weights with the original feature map, thus modeling
the relationship between feature channels and completing the recalibration in the channel
dimension of the original feature map.

SKNet [37] is an improvement over SENet that performs complete convolution op-
erations on input feature maps using two different kernel sizes. The resulting convolved
feature maps are then summed, followed by a global pooling operation. Subsequently, two
fully connected layers are used to downscale and upscale the output, obtaining two atten-
tion coefficient vectors, denoted as “a” and “b”. These vectors are individually weighted
with the two previous feature matrices, and the weighted feature maps are summed.

However, these attention modules do not consider the significance of spatial orien-
tation information. To address this limitation, the convolutional block attention module
(CBAM) [6] was proposed. CBAM takes into account both channel and spatial relations
and generates a separate attention map for spatial attention. By multiplying this atten-
tion map with the input feature maps, the resulting feature maps incorporate attention
weights. CBAM effectively captures spatial direction information in the attention map,
while preserving the understanding of channel relationships. Additionally, the pyramid
attention segmentation module was introduced to extract finer-grained multi-scale spatial
information and to establish longer-range channel dependencies. This allowed for the
learning of richer multi-scale feature representations and adaptive feature recalibration
across multiple dimensions by dynamically adjusting channel-attention weights [38].

3. Structure of the SEPAM_HRNet Model

The SEPAM_HRNet model proposed in this paper inherits the basic four-stage archi-
tecture of the original HRNet [4] network, and the model architecture diagram is shown in
Figure 1.

The SEPAM_HRNet model first passes through two convolutional layers that are
downsampled on the basis of the original image, then passes through the Stage 1 phase,
which consists of four SEPAMneck modules. After that, a staged progressive downsampling
phase is performed, which consists of three stages—Stage 2, Stage 3, and Stage 4—with
each branch of each stage consisting of four SEPAMblock modules. Gradually decreasing
the resolution of the feature maps can reduce the loss of detailed features in the human
posture feature maps caused by the large downsampling operation. The use of parallel
branches with different resolutions and channel numbers in each stage avoids the loss of
spatial information in the feature map during the downsampling process.

The specific processing of the SEPAM_HRNet model is as follows:

1. The input image is first pre-processed by two convolutional layers with a kernel size
of 3 × 3 and a step size of 2 (including BN and RELU operations). The input feature
map’s resolution is then downsampled by a factor of 4 to become 1/4 of the original,
and the number of channels is increased from three channels to 64 channels.

2. The pre-processed feature map is sent into the Stage 1 stage, which is made up of four
SEPAMneck modules, where the shallow features are removed from the feature map,
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while only the feature map’s channel count is altered and the feature layer’s size is
left unchanged.

3. In Stages 2, 3, and 4, downsampling operations are performed progressively. The
feature maps used in each stage have resolutions of 1/4, 1/8, 1/16, and 1/32 of the
original resolution, corresponding to channel numbers C, 2C, 3C, and 4C, respec-
tively. Each branch in each stage consists of four SEPAMblock modules. At the end
of each stage, upsampling/downsampling is used to unify feature maps of differ-
ent resolutions to the same size and perform element-wise addition for multi-scale
feature fusion. Finally, only the output of the first high-resolution branch is sub-
jected to a 1 × 1 convolution to obtain 17 keypoints heatmaps, which completes the
keypoints prediction.
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In this paper, the SEPAM_HRNet model architecture is adopted, with the number
of channels C = 32 (i.e., the number of feature map channels in the branch where the
maximum resolution feature map is 32). As the stage progresses, the resolution and the
number of channels of the feature map is adjusted for each stage. In this paper, referring to
the idea of HRNet [4] literature, for every 2X downsampling branch, the number of feature
map channels in the added branch is doubled, thus compensating for the loss of spatial
localization caused by resolution degradation. The specific implementation methods of the
SEPAMneck module and SEPAMblock module structures are described in the summary
provided in Section 3.2.

3.1. SEPAM Module

Existing attention modules have limitations in capturing global information, establish-
ing long-term information dependencies, and effectively utilizing information at different
scales in feature space. To overcome these limitations, this paper proposes a lightweight
squeeze-and-excitation and pixel-attention-mask (SEPAM) module, which can capture
precise location information and areas of interest in the spatial direction, while obtaining
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feature information between channels. The SEPAM module sequentially implements three
functions of feature extraction at different scales, the channel attention module and the
pixel-attention-mask module. This has important implications for the network’s feature
representation and task-performance improvement. The specific structure of the SEPAM
module is shown in Figure 2.
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The steps for the SEPAM module are as follows.

1. Feature map split. The input feature map X is averaged in the channel dimension to
obtain four parts of the feature map, X1, X2, X3, and X4. Each part of the feature map
Xi maintains the same resolution, and the number of channels becomes one-fourth of
the original number of channels.

2. Multi-scale feature map acquisition. Features of various scales are retrieved for
the feature maps Xi (i = 1, 2, 3, and 4) of the divided four branches using various
convolutional kernel sizes Ki (i = 1, 2, 3, and 4), resulting in four feature maps of
the same size and with the same number of channels, C/4. To deal with the input
tensor at various kernel scales without increasing the computational cost, a group
convolution operation is used for the feature maps of the four divided branches. The
group size is computed as Groupi = 2 exp((Ki − 1)/2)), according to the size of the
convolution kernel Ki for each branch, and these feature maps can be directly spliced
in the convolution kernels of the other branches.

3. Generating attention weights. The feature maps generated from each branch in
Step 2 are passed through the SE channel attention module and the pixel-attention-
mask (PAM) module to obtain the attention weights in the channel and spatial pixel
directions, respectively. According to the idea of CBAM [6], this paper also adopts the
parallel connection of two attention modules.

4. Concatenating attention weights. The channel attention vectors and the pixel-attention-
mask maps obtained in Step 3 are concatenated separately to realize the interaction of
the attention information and the fusion of the cross-dimensional information, and
then a softmax operation is performed to complete the recalibration of the channel-
attention vectors and the pixel-attention-mask maps.

5. Output module results. The four feature maps obtained in Step 2 are spliced in
the channel dimension to form a multi-scale feature map, X’. Then, the corrected
attention vector and pixel-attention-mask map are applied to the feature map X’,
respectively. Next, the two feature maps with attention weights are summed, and the
result obtained is used as the final output of the SEPAM module.
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According to the SE [5], the SE channel attention first performs a global average
pooling operation (AvgPool) on the input feature map (W × H × C) to obtain a 1 × 1 × C
feature vector. Then, it passes through two fully connected layers. The first fully connected
layer reduces the number of neurons to C/r (r is the reduction factor), and the second fully
connected layer increases the dimension to C neurons, then obtains channel weight values
through the sigmoid function and performs element-wise with the original feature map, so
that the neural network can focus on certain feature channels. The SE attention process is
shown in Figure 3.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 19 
 

3. Generating attention weights. The feature maps generated from each branch in Step 
2 are passed through the SE channel attention module and the pixel-attention-mask 
(PAM) module to obtain the attention weights in the channel and spatial pixel direc-
tions, respectively. According to the idea of CBAM [6], this paper also adopts the 
parallel connection of two attention modules. 

4. Concatenating attention weights. The channel attention vectors and the pixel-atten-
tion-mask maps obtained in Step 3 are concatenated separately to realize the interac-
tion of the attention information and the fusion of the cross-dimensional information, 
and then a softmax operation is performed to complete the recalibration of the chan-
nel-attention vectors and the pixel-attention-mask maps. 

5. Output module results. The four feature maps obtained in Step 2 are spliced in the 
channel dimension to form a multi-scale feature map, X′. Then, the corrected atten-
tion vector and pixel-attention-mask map are applied to the feature map X′, respec-
tively. Next, the two feature maps with attention weights are summed, and the result 
obtained is used as the final output of the SEPAM module. 
According to the SE [5], the SE channel attention first performs a global average pool-

ing operation (AvgPool) on the input feature map (W × H × C) to obtain a 1 × 1 × C feature 
vector. Then, it passes through two fully connected layers. The first fully connected layer 
reduces the number of neurons to C/r (r is the reduction factor), and the second fully con-
nected layer increases the dimension to C neurons, then obtains channel weight values 
through the sigmoid function and performs element-wise with the original feature map, 
so that the neural network can focus on certain feature channels. The SE attention process 
is shown in Figure 3. 

 
Figure 3. SE attention. A 1 × 1 × C weight matrix is obtained through a series of operations, where C 
denotes the number of channels; then, the original features are reconstructed (different colors denote 
different values to measure the importance of the channels). 

The SE channel-attention module helps the network to boost proper feature channels 
and suppress less useful ones. However, on a 2D feature map, each pixel contains feature 
information. These items of pixel-level feature information vary in their degree of contri-
bution to the task, and only task-relevant regions need to receive attention. In order to 
fully utilize the useful pixel-level feature information, this paper proposes a pixel-atten-
tion-mask (PAM) module that can generate a corresponding pixel-attention-mask map 
based on the input-feature map.  

First, a W × H × C input-feature map is implemented through a 1 × 1 convolution to 
achieve a dimensionality reduction operation, and a W × H × (C/r) (r is a reduction factor) 
feature map is obtained. This process not only adds more nonlinear processing, but also 
fits complex correlations between channels. Next, a 3 × 3 convolution is used to further 
learn features, and a 1 × 1 convolution used to focus on the features compression obtains 
a W × H × 1 feature map. Then, the sigmoid layer is used to map the compressed one-
dimensional features between (0, 1) and, finally, obtain a W × H × 1 pixel-attention-mask 
map, where the value of each pixel position represents the pixel at that position level of 
attention. Then, the element-wise operation is performed on the input-feature map of W 
× H × C and the pixel-attention-mask map of W × H × 1 to provide the feature map with 
pixel-level attention and to identify the features that need to be paid attention to in the 

Figure 3. SE attention. A 1 × 1 × C weight matrix is obtained through a series of operations, where C
denotes the number of channels; then, the original features are reconstructed (different colors denote
different values to measure the importance of the channels).

The SE channel-attention module helps the network to boost proper feature channels
and suppress less useful ones. However, on a 2D feature map, each pixel contains feature
information. These items of pixel-level feature information vary in their degree of contribu-
tion to the task, and only task-relevant regions need to receive attention. In order to fully
utilize the useful pixel-level feature information, this paper proposes a pixel-attention-mask
(PAM) module that can generate a corresponding pixel-attention-mask map based on the
input-feature map.

First, a W × H × C input-feature map is implemented through a 1 × 1 convolution to
achieve a dimensionality reduction operation, and a W × H × (C/r) (r is a reduction factor)
feature map is obtained. This process not only adds more nonlinear processing, but also
fits complex correlations between channels. Next, a 3 × 3 convolution is used to further
learn features, and a 1 × 1 convolution used to focus on the features compression obtains a
W × H × 1 feature map. Then, the sigmoid layer is used to map the compressed one-
dimensional features between (0, 1) and, finally, obtain a W × H × 1 pixel-attention-mask
map, where the value of each pixel position represents the pixel at that position level of atten-
tion. Then, the element-wise operation is performed on the input-feature map of W × H × C
and the pixel-attention-mask map of
W × H × 1 to provide the feature map with pixel-level attention and to identify the
features that need to be paid attention to in the image data. Useful features are increased
and useless features are weakened to achieve the effect of feature screening and enhance-
ment and to better learn critical features. The PAM attention-masking process is shown
in Figure 4. This module can improve network performance and enable the network to
understand and utilize pixel-level feature information more accurately.

The SEPAM integrates the functions of muti-scale feature extraction, channel attention,
and the pixel-attention mask, so the number of parameters and complexity of operations
are calculated as shown in Equations (1) and (2):

PSEPAM =
4
∑

i=1
[(Ki × Ki × Cin

Group × Cin
4Group × 1

Group ) + (Cin
4 × Cin

4reduction + Cin
4reduction × Cin

4 )+

(1 × 1 × Cin
4 × Cin

4reduction + 3 × 3 × Cin
4reduction × Cin

4reduction + 1 × 1 × Cin
4reduction × 1)]

(1)

GSEPAM =
4
∑

i=1
H × W × [(Ki × Ki × Cin

Group × Cin
4Group × 1

Group ) + (Cin
4 × Cin

4reduction + Cin
4reduction × Cin

4 )+

(1 × 1 × Cin
4 × Cin

4reduction + 3 × 3 × Cin
4reduction × Cin

4reduction + 1 × 1 × Cin
4reduction × 1)]

(2)
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where Ki denotes the convolution kernel size; Cin denotes the input channel of the module;
Group denotes the number of groups of grouping; reduction is the scaling factor; and H
and W represent the height and width of the feature map, respectively. The SEPAM module
can establish longer-distance channel dependencies in the network and provide different
degrees of attention for pixel-level features through the combined application of the feature
pyramid structure, SE channel attention, and the pixel-attention-mask map. It is worth
noting that the HRNet model itself has four branches, and if a four-branch SEPAM structure
is used in each branch of the SEPAMblock module, it will lead to too many branches in the
whole model, which will aggravate the computational complexity of the model. Therefore,
the feature map in SEPAMblock is not divided; instead, a 3 × 3 convolution operation is
applied to the entire feature map.
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Figure 4. Pixel attention mask. A weight matrix of W × H × 1 is obtained through a series of
operations, where W and H denote the width and height of the feature map, respectively; then, the
original features are reconstructed (different colors denote different values to measure the importance
of each pixel).

3.2. SEPAMneck and SEPAMblock Module Structure

The HRNet model mainly consists of a bottleneck module and a Basicblock module.
The SEPAM_HRNnet model proposed in this paper redesigns the modules, based on the
HRNet model. We propose the SEPAMneck module and the SEPAMblock module.

The structure of the SEPAMneck module is shown in Figure 5a. The overall structure
is similar to that of the bottleneck module, which consists of three submodules on the
main branch and a shortcut branch. The head and the tail of the SEPAMneck module are
1 × 1 convolutions, with a SEPAM module in the middle. Compared with the original
bottleneck residual module, the SEPAM module proposed in this paper replaces the 3 × 3
convolution in the middle. The workflow of the SEPAMneck module is as follows: 1 × 1
convolution compresses the depth of the feature map, which is input to the SEPAM module
to perform multi-scale feature extraction; then, 1 × 1 convolution is used to reduce the
channel dimensions. The SEPAMneck module establishes the jump connections between
the high-dimensional features. According to the idea of ResNet, jump connections are not
added when the number of input and output channels are different.

The calculation formula of the parameters and operational complexity of the SEPAM-
neck module is shown in Equations (3) and (4):

PSEPAMneck = 1 × 1 × C × Cin + PSEPAM + 1 × 1 × Cin × Cout (3)

GSEPAMneck = H × W × (1 × 1 × C × Cin + PSEPAM + 1 × 1 × Cin × Cout) (4)

where C denotes the number of channels of the SEPAMneck module input-feature map;
Cin is the number of channels of SEPAM module input; and Cout is the number of channels
of the SEPAMneck odule input-feature map.

The structure of the SEPAMblock module is shown in Figure 5b. Compared to the
original Basicblock module, the SEPAM module replaces the first 3 × 3 convolution to
improve the feature map representation by redistributing the feature-map channels and
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the pixel-position weights, then applies the standard 3 × 3 convolution to further extract
features and preserve the hopping structure.
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Figure 5. SEPAMneck module structure: (a) SEPAMblock module structure; (b) the SEPAMneck
module is used to extract shallow features in the first stage and the SEPAMblock module is used in
all subsequent branching stages.

The calculation formula of the parameters and the operational complexity of the
SEPAMneck module are shown in Equations (5) and (6):

PSEPAMneck = PSEPAM + 3 × 3 × Cin × Cout (5)

GSEPAMneck = H × W × (PSEPAM + 3 × 3 × Cin × Cout) (6)

where Cin is the number of input channels to the SEPAM module and Cout is the number of
channels of the SEPAMblock module input-feature map.

4. Experiments and Analysis of Results
4.1. Experimental Results for the COCO Dataset
4.1.1. Dataset Description

The common objects in context (COCO) data set is mainly used in computer vision
tasks and contains more than 200,000 pictures and 250,000 personal instances. The data
set annotation includes 17 keypoints: 0 for nose, 1 for left eye, 2 for right eye, 3 for left ear,
4 for right ear, 5 for left shoulder, 6 for right shoulder, 7 for left elbow, 8 for the right elbow,
9 for left wrist, 10 for right wrist, 11 for left hip, 12 for right hip, 13 for left knee, 14 for right
knee, 15 for left ankle, 16 for right ankle. In this paper, the experiment trains the model on
the COCO train2017 dataset (a total of 118,287 pictures) and evaluates the model on the
val2017 dataset (a total of 5000 pictures).

4.1.2. Evaluation Metrics

For each human target, the true label of the keypoint is of the form [x1, y1, v1,. . ., xk,
yk, vk], where x and y are the coordinates of the keypoints, and v is the visibility flag. The
validation criteria for the experiments in this section are based on object keypoint similarity
(OKS): AP50 is the accuracy of predicting keypoints when OKS = 0.5; AP75 is the accuracy
of predicting keypoints when OKS = 0.75; the mean average precision (mAP) is AP (M),
the accuracy of predicting keypoints for medium-sized objects; AP (L) is the accuracy
of predicting keypoints for large-sized objects; and AR is the average of all predicted
keypoints between 10 thresholds at OKS = 0.50, 0.55,. . . , 0.90, and 0.95. The average value
of 10 threshold points is determined. The specific implementation is shown in Equation (7).

OKS =
∑i exp (−d2

i /2s2k2
i )δ(vi > 0)

∑i δ(vi > 0)
(7)
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where di denotes the Euclidean distance between the detected keypoint and the true label
corresponding to the keypoint in the dataset; vi is the visibility flag bit of the true label of
the keypoint; vi = 0 means the keypoint is not labeled; vi = 1 means the keypoint is marked
but obscured; vi = 1 means the keypoint is labeled and not obscured; for δ(x), the value is
1 when x is true and false when x is 0; s is the target scale, i.e., the segmented area of the
target; and ki is the correlation constant that controls the decay of each keypoint. For each
keypoint, a keypoint similarity in the range [0, 1] is generated. In the case of OKS = 1, there
is a perfect prediction of the keypoint; in the case of OKS = 0, the predicted value is too far
from the true value.

4.1.3. Experimental Configuration and Training Details

The experimental environment for this section is configured as follows: Ubuntu 18. 04
LST 64-bit system, a GeForce RTX 3090 graphics card, and the PyTorch 1.10.0 deep-learning
framework. The training is performed on the COCO training set by cropping the images
in the COCO training set and scaling them to a fixed 256 × 192. Adam is used as the
optimizer for the network training, and the initial learning rate is 1 × 10−3. The learning
rate decays to 1 × 10−5 at round 210, for a total of 210 training rounds. The minimum batch
size for each GPU is 32. The data are enhanced during training with random image rotation
(between −45◦ and 45◦), random scaling (between 0.65 and 1.35), random horizontal flip,
and half body (with a certain probability of cropping the target and keeping only half of
the keypoints, upper or lower body). The loss function of the model, defined as the mean
square error, is used to compare the predicted heatmap with the ground-truth heatmap.
This loss function calculates the error at each pixel position between the predicted keypoint
heatmap and the ground-truth keypoint heatmap and takes the average of these errors as
the final loss.

4.1.4. Experimental Verification and Analysis

The experimental results of this section on the COCO calibration set are shown in
Table 1. The results show that the SEPAM_HRNet model achieves higher accuracy than
the original HRNet model with the same number of parameters as the HRNet model and
with lower computational complexity. Compared with other recent human pose-estimation
models, such as hourglass [2], CPN [39], CPN + OHKM [39], simple baseline [3], PRTR [35],
and DistilPose-L [32], the SEPAM_HRNet model obtained 9.2, 7.5, 6.7, 5.7, 3.2, and
1.7 percentage points improvement on mAP, respectively. Compared to the HRNet [4]
model, the SEPAM_HRNet model improved by 1.7 percentage points on mAP and 3.1
percentage points on AP50, while the other validation criteria remained comparable to the
HRNet model. The experimental results are shown in Figure 6a.

Table 1. Performance comparison of COCO val2017. Comparison between SEPAM_HRNet and
other methods on the COCO validation set. The notation “-” indicates that no reported results
were available.

Models Backbone Input_Size Params GFLOPS AP AP.5 AP.75 AP(M) AP(L)

Hourglass Hourglass 256 × 192 25.1 M 14.3 G 66.9 - - - -

CPN
ResNet-50

256 × 192 27.0 M 6.2 G 68.6 - - - -
CPN + OHKM 256 × 192 27.0 M 6.2 G 69.4 - - - -
Simple baseline 256 × 192 34 M 8.9 G 70.4 88.6 78.3 67.1 77.2

PRTR
HRNet

256 × 192 57.2 M 10.2 G 72.9 - - - -
PRTR 384 × 288 57.2 M 21.6 G 73.1 89.4 79.8 68.8 80.4

DistilPose-L 256 × 192 21.3 M 10.3 G 74.4 89.9 81.3 71.0 81.8

HRNet

HRNet

256 × 192 28.5 M 7.1 G 74.4 90.5 81.9 70.8 81.0
HRNet 384 × 288 28.5 M 16.0 G 75.8 90.6 82.5 72.0 82.7

SEPAM_HRNet 256 × 192 28.8 M 7.0 G 76.1 93.6 83.7 73.3 80.1
SEPAM_HRNet 384 × 288 28.8 M 15.8 G 77.6 93.6 84.7 74.7 81.8
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Figure 6. Comparison of experimental results for COCO val and YOGA val datasets, both with an
image input size of 256 × 192. (a) Comparison on COCO val; (b) comparison on YOGA val. On both
datasets, the SEPAM_HRNet model shows excellent performance.

In Figure 6a, the vertical axis represents the accuracy rate, the horizontal axis represents
the computation amount, and the circle size corresponds to the model’s parameter amount.
It can be observed that the SEPAM_HRNet model proposed in this paper outperformed the
recent human pose-estimation model, in terms of accuracy.

4.2. Experimental Results of the YOGA2022 Dataset
4.2.1. YOGA2022 Dataset Description

In response to the national call for physical education and sports and the call to enrich
the diversity of physical education and sports for students, yoga has been added to the
curricula of the vast majority of schools. As a healthy method of physical and mental
exercise, yoga is practiced by more and more students. However, during yoga teaching, it
is important to ensure that students correctly master each yoga practice posture to avoid
injuries to body muscles, which are caused by incorrect postures. However, manually
managing and evaluating these postures requires significant human and material resources,
and manual evaluation lacks objectivity, due to subjective factors. Therefore, accurately
predicting the keypoints of the human body can help teaching staff to better assess the
normality of students’ yoga postures. It is particularly noteworthy that the complexity
of yoga poses may lead to the hidden nature of the human body’s keypoints, making the
human pose-estimation model more challenging to predict.

In order to adapt to a universal yoga scenario, this study created an indoor human
yoga pose-characterization dataset, YOGA2022, for modeling experiments. The dataset
contains ten types of yoga poses: Warrior I, Warrior II, Bridge, Downward Dog, Flat,
Inclined Plate, Seated, Triangle, Phantom Chair, and Goddess. Each pose was captured in
an indoor environment, as shown in Figure 7. During data collection, the camera captured
video clips of left and right direction movements and frontal movements performed from
the side or front. The production of this dataset provides an important reference resource
for the teaching of yoga and the development of models for human pose estimation. The
data-acquisition steps were as follows:

1. Yoga movement video capture. We used a professional video camera to film partici-
pants of different heights, recording ten yoga poses as Warrior I Side, Warrior II Side,
Bridge Side, Downward Dog Side, Flat Side, Inclined Plate Side, Seated Positive, Tri-
angle Side, Phantom Chair Side, and Goddess Positive to video files. Each movement
was recorded from either a frontal or lateral angle to capture full movement detail.
Example images of the dataset are shown in Figure 7, and these images will form the
basis for subsequent experiments.

2. Frame extraction. Image frames were extracted from the recorded video to construct
the dataset. In order to maintain data diversity and reduce redundancy, one image
frame was extracted from the video every six frames. Since the frame rate of the
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video was about five frames per second, such an extraction ensured balanced data
and coverage. Each image contained only one participant, representing a separate
image of a yoga pose.

3. Image augmentation. Five ways of expanding the image data were used to increase
the diversity and robustness of the dataset: rotation, flipping, noise, brightening, and
darkening. By rotating the image, different angles of observation were simulated,
thus increasing the diversity of the data. Flipping the image helped the model learn
symmetry and inverse action. Introducing noise made the model more robust to dis-
turbances. Brightening and darkening the image simulated the image under different
lighting conditions, which in turn increased the generalization ability of the data.
With these five data enhancement approaches, the dataset was successfully extended,
and a total of 15,350 images were obtained. Such data enhancement strategies helped
to improve the generalization performance of the model and made it better adapted
to yoga-movement images from different scenes and postures.
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Figure 7. Example diagram of YOGA2022 dataset. The example figure of the dataset was selected
from the yoga poses demonstrated by the four participants.

Through the above steps, an image set containing ten kinds of yoga movement pos-
tures, each with a size of 960 × 544, was successfully captured. In this dataset, each
movement has multiple angles and diversified image data, which provides a rich sample
resource for the study of yoga-movement postures. Such a dataset can provide more
comprehensive information for model training and evaluation, which helps to improve the
performance and generalization ability of the yoga-movement pose-prediction model.

After the data acquisition was completed, the captured image data were processed
using the COCO Annotator annotation tool in order to extract the keypoint features of
the person. The specific steps of data annotation processing were as follows: first, the
human body frame was manually annotated; then, the locations of all keypoints were
annotated, along with setting the visibility of the keypoints. The labeled information
included the relative coordinates and size of the human target frame (x-coordinate, y-
coordinate, frame width, and frame height), as well as the relative coordinates and visibility
of the 17 human keypoints (x, y, and visibility). The dataset will be publicly released at
https://github.com/zhangdandan-git/YOGA_POSE (accessed on 30 July 2023). We hope
this dataset will serve as a valuable resource for other researchers.

4.2.2. Evaluation Criteria and Training Details

The YOGA2022 dataset contains a total of more than 15,000 images, and each image
contains one person instance; the dataset labeling is the same as the COCO dataset labeling,
which also contains 17 keypoints, and the keypoint labeling is the same as that of COCO.
The experiments in this paper trained the model on the YOGA train2022 dataset (total
of 11,788 images) and evaluated the model on the val2022 set (total of 3562 images). The
experiments used the OKS-based evaluation criteria, and the loss function was the same as
that in the COCO experiment. The details of the experiments on the YOGA2022 dataset
were the same as those of the COCO dataset experiments, using the same parameter
configurations and experimental environment.

https://github.com/zhangdandan-git/YOGA_POSE
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4.2.3. Experimental Verification and Analysis

The experimental results on the YOGA2022 calibration set are displayed in Table 2.
The results show that the SEPAM_HRNet model achieved superior results with lower
computational complexity, compared to the recent human pose-estimation models PRTR,
DistilPose-L, HRNet, and simple baseline. On mAP, the SEPAM_HRNet model outper-
formed the HRNet model by 0.2 percentage points, while achieving the best results on the
other validation criteria. It is worth noting that the images in the YOGA dataset contained
only one person instance and were large-sized targets in the images, so there were no predic-
tion results for medium-sized targets in the experimental results for the YOGA2022 dataset.
These experimental results further demonstrated the superiority of the SEPAM_HRNet
model for the task of yoga-movement pose estimation and validated the specificity and
uniqueness of the constructed dataset. A comparison of the experimental results is shown
in Figure 6b.

Table 2. Performance comparison on YOGA2022 val2022. Comparison between SEPAM_HRNet and
other methods on the YOGA2022 validation set.

Models Backbone Input_Size Params GFLOPS AP AP.5 AP.75 AP(M) AP(L)

Simple baseline ResNet-50 256 × 192 34 M 8.9 G 91.3 92.9 91.9 −1.000 91.3

PRTR
HRNet

256 × 192 57.2 M 10.2 G 89.6 92.8 90.7 −1.000 89.6
DistilPose-L 256 × 192 21.3 M 10.3 G 86.3 90.9 88.7 −1.000 86.3

HRNet
HRNet

256 × 192 28.5 M 7.1 G 91.2 93.0 91.0 −1.000 91.2
SEPAM_HRNet 256 × 192 28.8 M 7.0 G 91.4 93.0 92.0 −1.000 91.4

5. Visualization Research and Analysis

In this paper, a visualization study was conducted on the YOGA2022 calibration set
to demonstrate the effectiveness of prediction of occluded human keypoints. Ten images
were randomly selected from the YOGA2022 dataset, each representing a yoga pose. The
visualization results are shown in Figures 8–17, where the dots indicate the locations of
the keypoints of the human body, and the connecting lines indicate the modeling of the
keypoint relationships. These visualization results intuitively demonstrate the performance
of the model in yoga-pose estimation.
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The SEPAM_HRNet model performs more accurately in predicting occluded keypoints.

Figures 8–10 show the frontal images of three yoga postures, Warrior One, Triangle
Pose, and Goddess Pose, which are characterized by the absence of occluded limb keypoints.
The prediction results show that both the SEPAM_HRNet model and the HRNet model can
accurately predict the keypoints of the human body. The SEPAM_HRNet model is more
detailed in predicting keypoints at the shoulders and thighs, while the two models have
comparable performances in predicting the other keypoints.

Figures 11–17 show seven yoga postures that are characterized by the presence of
occluded keypoints. The experimental results show that the SEPAM_HRNet model, after
adopting the SEPAM module to improve the HRNet model, extracted multi-scale feature
spatial information and more detailed feature information through the feature pyramid
structure and further integrated the channel attention (SE) and the pixel attention mask
(PAM). Such an improvement significantly enhances the extraction of the feature-map
channel and the pixel-spatial-orientation information, improving the model’s predictive
performance at more minor scales and with more masks. Figure 11 shows the seated yoga
pose in which the left ankle is occluded. Although both models predicted the left ankle, the
SEPAM_HRNet model was more accurate. For the side yoga poses in Figures 12–17, almost
half of the body’s keypoints were in the occluded state. In these cases, the prediction results
of the HRNet model deviated significantly from the correct human keypoint locations, but
the SEPAM_HRNet model still managed to make correct predictions for these occluded
shoulders, thighs, wrists, and elbows. The deviation of the SEPAM_HRNet model’s pre-
diction of the left elbow keypoint in Figure 13c was due to poor lighting conditions and
shadows that resulted in unclear human features in the image, which affected the model’s
keypoint prediction accuracy. Overall, the SEPAM_HRNet model had better generaliza-
tion ability and anti-interference ability than the HRNet model, as it could still predict
keypoints and correctly model keypoint relationships when most human keypoints were
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occluded. This indicated that the SEPAM_HRNet model has higher prediction accuracy
and robustness when dealing with complex human postures and occluded situations.

6. Conclusions

In this paper, the SEPAMneck module and the SEPAMblock module were constructed
by introducing the SEPAM module to improve the basic modules bottleneck and Basicblock
in the HRNet model, thus proposing the SEPAM_HRNet human posture estimation net-
work. This method effectively utilized the advantage of a feature pyramid to extract
features while reducing the model arithmetic complexity, which ensured feature informa-
tion extraction from the feature map. Meanwhile, the method utilized the channel attention
and pixel-attention-mask map to extract better essential features in the channel dimension,
which further improved the feature representation in the keypoint region and detailed
the pixel location information. The experimental results validated the effectiveness of the
SEPAM_HRNet model proposed in this paper, which outperformed other recent human
pose-estimation models in predicting human keypoints with small scales and occlusions.
In addition, we created the YOGA2022 dataset, which is specifically designed to study
human yoga postures and enhance yoga teaching practices. This research is of great value
to the yoga community and has the potential to benefit other applications that require
accurate estimation of human poses under occlusion. In yoga, the SEPAM_HRNet model
allows for a more accurate and detailed analysis of human yoga postures, which could help
enhance yoga teaching practices by providing better instruction and feedback, improving
practitioner performance, and reducing the risk of injury. The ability to accurately estimate
human postures in the presence of occlusions has broader implications beyond yoga. In
motion analysis, fitness tracking, and rehabilitation, the SEPAM_HRNet model can track
human movement more accurately and reliably, helping coaches, athletes, and healthcare
professionals analyze performance, monitor progress, and design personalized training or
rehabilitation programs. The YOGA2022 dataset, which was explicitly created for studying
human yoga postures, further contributes to this field of research by providing a standard-
ized benchmark for evaluating the accuracy of models for estimating human postures in
yoga, facilitating comparisons between different models and techniques.

Designing lightweight human pose-estimation models that are more applicable to
real-world scenarios, while ensuring the accuracy of human keypoints prediction, is a
future research direction. Lightweight models are more efficient and practical in real-
world applications, so how to strike a balance between prediction accuracy and model
complexity and how to design high-performance, lightweight human pose-estimation
models suitable for real-world scenarios will be the foci of future research. In conclusion,
this study advances the field of human pose estimation and has practical implications
for the yoga community and other fields that rely on accurate and robust human pose
estimation in occluded situations.
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