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Abstract: Deep learning has been widely used in various tasks such as computer vision, natural
language processing, predictive analysis, and recommendation systems in the past decade. However,
practical scenarios often lack labeled data, posing challenges for traditional supervised methods.
Semi-supervised classification methods address this by leveraging both labeled and unlabeled data
to enhance model performance, but they face challenges in effectively utilizing unlabeled data and
distinguishing reliable information from unreliable sources. This paper introduced ReliaMatch, a
semi-supervised classification method that addresses these challenges by using a confidence threshold.
It incorporates a curriculum learning stage, feature filtering, and pseudo-label filtering to improve
classification accuracy and reliability. The feature filtering module eliminates ambiguous semantic
features by comparing labeled and unlabeled data in the feature space. The pseudo-label filtering
module removes unreliable pseudo-labels with low confidence, enhancing algorithm reliability.
ReliaMatch employs a curriculum learning training mode, gradually increasing training dataset
difficulty by combining selected samples and pseudo-labels with labeled data. This supervised
approach enhances classification performance. Experimental results show that ReliaMatch effectively
overcomes challenges associated with the underutilization of unlabeled data and the introduction of
error information, outperforming the pseudo-label strategy in semi-supervised classification.

Keywords: deep learning; semi-supervised learning; pseudo labels; classification; ReliaMatch

1. Introduction

In the past decade, deep learning has dominated the machine learning landscape in
data classification [1–3], predictive analysis [4], recommendation systems [5], anomaly
detection [6,7] and so on. Within deep learning, supervised classification methods have
significantly improved the performance of deep learning in various classification tasks.
However, it is still very difficult to obtain labels provided by professionals in many big
data application scenarios. In contrast, unsupervised classification methods have obvious
advantages in dealing with unlabeled samples. Nevertheless, they greatly sacrificed the
accuracy of the model because they cannot directly evaluate and optimize the performance
of deep learning models by using the label information. Therefore, semi-supervised
learning [8] caught the attention of researchers, and significantly improved the model
performance of unsupervised learning by leveraging datasets with a small amount of label
data. A more practical value lies in semi-supervised learning methods being able to reduce
the cost and time of manually marking data. Recently, many semi-supervised learning
methods based on deep learning have been proposed [9–11], which can achieve quite a
good performance by leveraging the small fraction of labeled samples in the dataset.

However, semi-supervised learning faces two major challenges: (i) how to transfer
information obtained from limited labeled data to unlabeled data, and (ii) how to learn as
accurate information as possible directly from a large amount of unlabeled data. To address
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these issues, semi-supervised learning uses three key loss terms (i.e., entropy minimization,
generalization regularization, and consistency regularization) to better motivate the model
to learn the corresponding downstream tasks. Among them, entropy minimization can
encourage the model to confidently predict the output of unlabeled data, thereby improving
the accuracy and robustness of the model. Generalization regularization constrains the
model’s parameters to avoid overfitting to the training data during the training process,
thereby improving the model’s generalization performance. According to the consistency
assumption, data points that are close to each other often have consistency in the same
label and structure [12]. Therefore, consistency regularization can improve the accuracy
and generalization ability of the model by making the data consistent on the manifold.

In addition, many studies have explored methods for solving the information propa-
gation problem between different data [13], providing ideas for addressing the first major
issue in semi-supervised learning. Among them, pseudo-labeling and consistency regu-
larization methods provide ideas for solving the second major issue in semi-supervised
learning. The pseudo-labeling method [14] uses the predictions of a classification model or
a clustering algorithm as artificial labels to retrain the model. The consistency regularization
method [10,11,15] forces the model to make the same prediction for the same sample under
different transformations, learning from unlabeled data. However, these semi-supervised
learning methods do not consider the possibility of introducing different levels of erroneous
information during the training process, which can lead to low classification accuracy.

In the feature extraction stage, as plotted in Figure 1 (left), the model may have diffi-
culty accurately differentiating between semantic differences at the classification boundary
due to the ambiguity of feature representation boundaries. Without setting anchors for
each class, the model may learn incorrect semantic information. However, by providing
each class with an anchor, confidence thresholds can be set using the similarity between
each sample and the anchor, allowing low-confidence features to be filtered out as shown in
Figure 1 (right). When assigning pseudo-labels to unlabeled data, as plotted in Figure 2, as-
signing labels to samples with low predicted confidence may lead to confirmation bias [16],
where the model overfits to incorrect labels and reduces its performance. Using a fixed
threshold method cannot adapt to the dynamic changes of the dataset. On the contrary,
a global dynamic threshold method dynamically adjusts the threshold based on the confi-
dence distribution of unlabeled samples in the current iteration, thus avoiding this problem.
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Figure 1. Error information in feature space. The (left) figure shows how the semantic inconsistency
between adjacent samples, and the (right) figure illustrates how to use anchors to set confidence
thresholds to filter features.
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Figure 2. Comparison of different strategies for pseudo-label generation. The maximum predicted
probability strategy (from [14]) may cause confusion in the early stages but improves in the later
stages. The fixed threshold strategy (from [17]) may lead to either insufficient or incorrect labeling.
The dynamic threshold strategy, however, can adjust the threshold based on the confidence of
unlabeled samples and achieve higher accuracy in pseudo-labeling.

To address these issues, we proposed ReliaMatch, a semi-supervised classification
method that filters unreliable information based on a confidence threshold. ReliaMatch
adopts a confidence threshold filtering strategy, which matches the similarity of labeled data
and unlabeled data in feature space by setting anchor points, thus filtering out outliers and
demarcation points with ambiguous semantics. Dynamic threshold is used to select reliable
pseudo-labels, so as to eliminate the confirmation deviation of the model to pseudo-labels
and improve classification performance. Additionally, ReliaMatch adopts the training mode
of Curriculum Learning [18], which combines the screened samples and their pseudo-labels
with labeled data, gradually increasing the difficulty of training datasets and participating in
model training in a supervised way, thus further improving the classification performance.
In summary, we make the following three main contributions:

(1) We proposed a semi-supervised classification method (Reliable Match), which ad-
dresses the issue of confirmation bias that arises from unlabeled data having different
semantics and low prediction confidence near the classification boundary.

(2) ReliaMatch employs a confidence threshold filtering strategy that matches the similar-
ity of labeled and unlabeled data in feature space by setting anchor points, which filter
out outliers and demarcation points with ambiguous semantics. To eliminate confirma-
tion deviation of the model to pseudo labels and improve classification performance,
ReliaMatch uses a dynamic threshold to select reliable pseudo-labels.

(3) ReliaMatch employs the Curriculum Learning training mode, which combines the
screened samples and their pseudo-labels with labeled data and gradually increases
the difficulty of the training dataset, thereby participating in model training in a
supervised manner and further improving classification performance.

2. Related Work
2.1. Semi-Supervised Classification

Semi-supervised learning (SSL) has been extensively studied in various fields, in-
cluding image classification [19], object detection [20], and semantic segmentation [21].
SSL methods in image classification aim to reduce reliance on labeled data by leveraging
unlabeled data. In SSL, labeled results are typically obtained through consistent regu-
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larization [17,22,23], pseudo-labeling [14], and entropy minimization [24]. Consistent
regularization ensures that the model produces consistent predictions for different transfor-
mations of the same image. Pseudo-labeling employs model confidence to assign labels and
guide the training process, while entropy minimization encourages the model to produce
highly confident predictions. These labeling strategies have been widely adopted in many
SSL approaches.

2.2. Consistency Regularization

Consistency regularization plays a crucial role in modern semi-supervised learning
(SSL) algorithms. The core idea behind consistency regularization is that the same input
sample should produce consistent outputs under different perturbations. Early works,
such as [10,25,26], proposed this concept, which was further developed in [9,15,17]. The
fundamental form of consistency regularization in SSL is often achieved through a loss
term. The equation below represents this basic form:

||pm(y|A(x); θ)− pm(y|A(x); θ)||22, (1)

where A refers to stochastic functions, resulting in different values for A(x), while pm
represents the model’s output probability. In [26], random data augmentation, dropout,
and random maximum pooling were employed as A to ensure similarity among the predic-
tions of neural networks. On the other hand, Ref. [11] adopts adversarial transformations
for augmentation. Another related approach, presented in [10], extends the perturbations
to different time periods, requiring the current prediction of a sample to be similar to
the prediction set of the same sample in the past. These perturbations mainly arise from
different network states and data augmentations.

In SSL, consistency regularization techniques aim to ensure that the same input sample
produces consistent output predictions under different perturbations. Different approaches
have been proposed to achieve this goal. For example, in [26], random data augmentation,
dropout, and random maximum pooling were used to promote similarity among the pre-
dictions of neural networks. Adversarial transformations were employed for augmentation
in [11]. Additionally, Ref. [10] extends the perturbations to different time periods, enforcing
similarity between current and past predictions for the same sample. In [15], two networks
with the same structure were utilized, and the consistency constraint was enforced by
comparing the predicted distributions using KL divergence or cross-entropy functions.
This approach was further developed in [27], where uncertainty weighting was applied
to unlabeled samples, focusing on samples with lower uncertainty. Virtual adversarial
training, proposed by Miyato et al. [11], introduces adversarial noise as interference into
data samples, followed by unified regularization of the resulting predictions. Another
recent idea by Luo et al. [28] suggests using a comparison loss as the regularization term,
ensuring that predictions from the same (or different) categories are similar (or different).
This extends the scope of consistency regularization to cover consistency between dif-
ferent samples and can be combined with other methods like [15] or [11] for improved
performance. To address model memorization and sensitivity to adversarial data, Mixup,
proposed by Zhang et al. [29], pairs examples and labels by training a convex combina-
tion of neural networks. Verma et al. [30] built on Mixup with interpolation consistency
training, which encourages consistency between unlabeled samples and the interpolation
prediction of a single sample. Moreover, in [17], consistent regularization was achieved
through estimating low-entropy labels, generating data-augmented unlabeled samples,
and utilizing Mixup to combine labeled and unlabeled samples.

2.3. Pseudo-Labeling

Pseudo labels are artificial labels generated by the model itself, which are used to
further train the model. Through the pseudo-labeling method, we can use both labeled
samples and pseudo labeled samples as new training data to update the model, thus greatly
improving the utilization rate of unlabeled samples.
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Lee et al. [14] chose the class with the highest prediction probability of the model as
the pseudo label; however, pseudo labels are only used in the fine-tuning stage, and the
network needs to be pre-trained. Mandal et al. [31] proposed a new deep semi-supervised
framework, which can seamlessly process marked and unlabeled data. The framework
is trained by two parts in turn: firstly, the label prediction component is used to predict
the label of the unlabeled part of the training data, and then the common representation
of two patterns is learned for cross-modal retrieval. Caron et al. [32] proposed a deep
clustering algorithm combining a K-means clustering algorithm and a convolutional neural
network, which used the clustering results of K-meaas with unlabeled data as false labels to
assist CNN in classification. Based on the extreme value theory, Cascante-Bonilla et al. [33]
put forward the Curriculum Labeling (CL), which uses careful curriculum selection as a
pacing standard to strengthen the pseudo labeling. Hu et al. [34] designed a new end-to-
end Iterative Feature Clustering Graph Convolution Network (IFC-GCN) to enhance the
standard GCN through the iterative feature clustering module, and designed an EM-like
framework to improve the network performance by alternately correcting false labels and
the node characteristics.

3. Method

The core idea of ReliaMatch is to match the correlation between labeled and unlabeled
data, by filtering reliable unlabeled data and generating pseudo-labels, which are then used
as new training data in the supervised learning process of the model. The detailed process
of ReliaMatch is shown in Figure 3.

②Predict

Filter 1

Prediction Result

··· ···

③Re-training by supervised learning Supervised Loss

Feature Filter
Selected data with 

high confidence

······

Pseudo Label

Classifier

Classifier

Labeled data flow Next iteration data flow

①Train

Labeled data

Unlabeled data

Labeled data

Feature

Feature

Filter 3Filter 2

True Label

Prediction Result

Unlabeled data flow

Figure 3. Illustration of the ReliaMatch framework. This framework mainly includes two parts:
labeled data and unlabeled data. (1) For labeled samples, ReliaMatch trains them using a feature
extraction model and a classification model. After training, feature extraction and classification
prediction are performed on the labeled samples. (2) For unlabeled samples, there are two main
modules: the feature filtering module and the pseudo-label filtering module, which correspond to
the feature and label noise filtering, respectively. The feature filtering module includes filtering 1,
and the pseudo-label filtering module contain filtering 2 and filtering 3.

This method uses a confidence threshold to filter unreliable information, that is,
feature vectors on the boundary of unlabeled data classification or outlier feature vectors
and artificially marked false labels that may be incorrect. ReliaMatch adopts a self-training
framework, that is, by iteratively learning the information in unlabeled datasets and labeled
datasets, the performance of the deep learning model is improved. In the training process,
ReliaMatch uses the trained model to predict the unlabeled data and adds the reliable
data points in the prediction results and their pseudo-labels to the pseudo-label dataset.
Then, the pseudo-labeled dataset and the labeled dataset are merged to train the next
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round model. This process is repeated until a preset number of iterations or performance
convergence is achieved.

For labeled samples, ReliaMatch trains them using the feature extraction model and
the classification model. After training, feature extraction and classification prediction are
performed on the labeled samples. At the same time, the average feature vector of each
category of the labeled samples is calculated and used as a feature anchor for filtering
reliable features of the unlabeled samples.

For unlabeled samples, there are two main modules: the feature filtering module and
the pseudo-label filtering module, which correspond to the feature and label noise filtering,
respectively. In conjunction with Figure 3, the feature filtering module includes filtering
1, and the pseudo-label filtering module (i.e., filtering of label noise) contain filtering 2
and filtering 3. ReliaMatch first performs data processing by using data augmentation
techniques to expand the unlabeled samples. Next, the enhanced unlabeled samples are
input into the model for feature extraction. Then, the feature filter module calculates
the similarity between the extracted features of the unlabeled samples and the feature
anchor, and sets a feature similarity threshold to filter out the unlabeled samples with low
similarity. This process is called filtering 1. The unlabeled samples selected by filtering 1
are labeled with the class label of the nearest feature anchor, and are used as pseudo-labels
(hard labels). Next, ReliaMatch inputs these feature-filtered samples into classifier for
classification prediction. For each unlabeled sample, it compares whether the class label
of its maximum predicted probability (soft label) is consistent with the class label of the
pseudo-label. If the classes are inconsistent, the unlabeled sample is filtered out. This
process is called filtering 2. Finally, a dynamic threshold is set for the predicted probability
to filter out unlabeled samples with maximum predicted probability below the threshold.
This process is called filtering 3.

After three rounds of filtering, the remaining unlabeled samples are considered to
be high-confidence reliable samples and are combined with their pseudo-labels to form
a pseudo-labeled dataset. These pseudo-labeled samples are merged with labeled sam-
ples to form a new labeled dataset, which is used to train a new model. This process is
iterated continuously to gradually increase the size of the labeled dataset and improve the
performance of semi-supervised learning.

3.1. Problem Description

To describe the design process of the ReliaMatch model more accurately, we assumed
that, in the tth round of iteration, the training dataset Xt

N is used, which contains Nt

samples including image data from different categories XN = {xi}Nt

i=1. The training dataset

is divided into a labeled dataset Xt
L = {xt

i,l}
Nt

L
i=1 and an unlabeled dataset Xt

U = {xt
i,u}

Nt
U

i=1.
Assuming that f t

θ is the convolutional neural network used for feature extraction in the
tth round of iteration. Zt

N = f t
θ(xt

i ) represents the feature vector set obtained from Xt
N

after being processed by the convolutional neural network f t
θ . Zt

N consists of two parts, Zt
L

and Zt
U , where Zt

L = f t
θ(xt

i,l , yt
i,l) = (zt

i,l , yt
i,l)

Nt
L

i=1
is the labeled feature vector set in the tth

round of iteration, and Zt
U = f t

θ(xt
i,u) = {zt

i,u}
Nt

U
i=1 is the unlabeled feature vector set in the

tth round of iteration. Let gt
v be the fully connected neural network (classifier) used by

the model for classification prediction in the tth round of iteration, with its output being
the predicted probability of the sample in each category. Let pt

i,j denote the probability
that the model predicts sample xt

i as category j, and K be the number of categories. Then,
P(xt

i ) = gt
v( f t

θ(xt
i )) = {pt

i,j}K
j=1.

3.2. Feature Anchoring

Our first contribution is feature anchoring, which uses the features of the labeled data
to calculate the average of the features of each category as an anchor. We think that nearby
points are likely to have the same labels, and we also agree that points on the same structure
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(usually called clusters or manifolds) may have the same label. Therefore, our method pays
attention to the representation study of images, and we used the similarity of feature level
to fliter unreliable samples and assigns pseudo labels to each reliable sample. A schematic
of filtering poor features out of samples can be seen in Figure 4.
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Figure 4. Schematic diagram of anchor generation and feature filtering. In the tth iteration, five
labeled samples and five unlabeled samples are selected, which come from three categories, and the
samples with the same color indicate that they belong to the same category.

We first calculated the average feature vectors of each class j in the labeled feature
dataset Zt

L at the tth iteration to generate K feature anchor points At = {at
j}K

j=1. To do this,
we used the following equation:

at
j =

1∣∣∣Zt
j,L

∣∣∣ ∑(
zt

i,l ,y
t
i,l

)
∈Zt

j,L

zt
i,l , (2)

where Zt
j,L represents a subset of feature samples in the feature vector set Zt

L, where the
label yt

i,l = j in the tth round of iteration. |Zt
j,L| denotes the number of samples in the

subset Zt
j,L.

Next, we used cosine similarity to calculate the similarity between the extracted
enhanced unlabeled samples’ features and feature anchor points:

f t
SimFea = s(zt

i,u, at
j) =

zt
i,u · at

j

|zt
i,u| · |at

j |

=
∑D

d=1 zt
i,u,dat

j,d√
∑D

d=1(z
t
i,u,d)

2 ·
√

∑D
d=1(at

j,d)
2

,

(3)

where zt
i,u represents the feature vector of the unlabeled data, at

j represents the anchor point,
· represents the dot product of the vector, | · | represents the norm of the vector, D is the
dimension of the vector. A cosine similarity close to 1 indicates that the two vectors are
very close in space, while a cosine similarity close to −1 indicates that the two vectors are
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almost opposite in space. A cosine similarity close to 0 indicates that there is no obvious
correlation between the two vectors in space.

Next, the minimum similarity between labeled sample features and anchor points is
used as the threshold for feature similarity, and a hyperparameter is used to dynamically
adjust the threshold size of feature similarity:

τt
Fea = αt

Fea min(s(zt
i,l , at

j)) = αt
Fea min(

zt
i,l · a

t
j

|zt
i,l | · |a

t
j |
), (4)

where αt
Fea ∈ [0, 1] is a coefficient used to dynamically adjust the threshold of feature

similarity, zt
i,l represents the feature vector of the labeled sample, at

j represents the feature
anchor point, · denotes the dot product of vectors, and | · | denotes the norm of vectors.
The feature similarity threshold τt

Fea ∈ [−1, 1].
If the similarity f t

SimFea between the feature of an unlabeled sample and the feature
anchor point is greater than the feature similarity threshold τt

Fea, that is, f t
SimFea > τt

Fea,
then the pseudo-label of the current sample xt

i,u is considered to be the label j of the feature
anchor point that is most similar to its feature vector.

In the feature filtering module, the labeled dataset remains unchanged. In the t-
th iteration, pseudo-labels of unlabeled samples can be obtained after feature filtering.
The feature-filtering module dataset consisting of the filtered unlabeled samples and their

pseudo-labels is denoted as Xt
U1 = {(xt

i,u1, yt
i,u1)}

Nt
U1

i=1 , where yt
i,u1 is the pseudo-label of

xt
i,u1, and Nt

U1 is the number of samples in the dataset.

3.3. Dynamic Allocation Pseudo Lables

In the pseudo-labeling strategy, threshold selection is an important issue. Traditional
semi-supervised classification methods usually use a fixed threshold to predict the class
of unlabeled samples and assign pseudo-labels to high-confidence samples above this
threshold for training. However, this method may not adapt well to changes in the data
distribution, and may either filter out useful samples excessively or add unreliable pseudo-
labels, leading to classification errors due to samples of different classification difficulties.

To address these issues, the pseudo-label filtering module in ReliaMatch adopts a
global dynamic threshold to filter reliable samples. Specifically, in each iteration, the module
sets the confidence threshold for predicting probability based on the average confidence of
unlabeled samples for the entire dataset. If the average confidence of unlabeled samples
is high, it indicates that the algorithm has good classification performance for unlabeled
samples, and the threshold can be increased. If the change in labels between two iterations
is significant, it indicates that the algorithm has not yet converged and the threshold should
be appropriately lowered to ensure the accuracy of the model.

For each unlabeled sample xt
i,u1, its predicted probabilities P(xt

i,u1) = {pt
i,u1,j}K

j=1 can

be converted into a hard label by creating a vector of length K, denoted as Oit = {ot
i,j}K

j=1,
as follows:

ot
i,j =

{
1, if j = arg max(pt

i,u1,j)

0, otherwise,
(5)

where ot
i,j indicates the label assigned to sample xt

i,u1 for the jth class. Specifically, the class
with the highest predicted probability is assigned a label of 1 and the others are assigned a
label of 0.

Next, the average confidence score pt
u can be obtained by computing the average of

the maximum predicted probability values for all unlabeled samples, i.e.,

pt
u =

1
|Xt

U1|
∑

xi,u1∈Xt
U1

max(P(xt
i,u1)), (6)
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where XU1 denotes the unlabeled dataset after feature filtering, and P(xt
i,u1) represents the

predicted probabilities of sample xi,u1 in the tthtraining round.
ReliaMatch uses the value of pt

u as the confidence level of unlabeled data to adjust
the credibility threshold of pseudo labels to ensure the quality of pseudo labels. Therefore,
the global dynamic threshold τt

Pre in round t can be represented as:

τt
Pre =


max

(
1

1+e−pt
u

, τ0
Pre

)
, t = 1

max
(

1
1+e−pt

u
,

pt
u ·‖yt

i,u1−yt−1
i,u1‖F

‖pt
u(xt

i,u1)−pt−1
u (xt−1

i,u1)‖F
+ε

) , t > 1, (7)

where τ0
Pre is the initial threshold. ε is a very small constant to avoid division by zero.

||·||F denotes matrix norm, and pt
u represents the average confidence level in round t.∣∣∣∣∣∣yt

i,u1 − yt−1
i,u1

∣∣∣∣∣∣
F

represents the size of the difference between the pseudo labels of the unla-

beled sample i in round t and those in round t− 1.
∣∣∣∣∣∣pt

u(xt
i,u1)− pt−1

u (xt−1
i,u1)

∣∣∣∣∣∣
F

represents

the difference between the confidence level pt
u of the unlabeled sample i in round t and that

in round t− 1.
To select the most reliable pseudo labels, ReliaMatch further filters the unlabeled data

in Xt
U1. The filtering criteria are as follows:

• Only select samples whose maximum predicted probability is greater than the pre-
dicted probability threshold τPre:

max(P(xt
i,u1)) > τPre. (8)

• Only select samples whose predicted category is consistent with the pseudo label in
the pseudo label filtering module:

Ot
i = yt

i,u1. (9)

After screening, only samples that meet the above requirements can be added to the
labeled dataset and used for supervised network training. Therefore, the resulting pseudo-

labeled dataset is denoted as Xt
U2 = (xt

i,u2, yt
i,u2)

Nt
U2

i=1
, where yt

i,u2 represents the pseudo-label
of xt

i,u2, and Nt
U2 represents the number of samples in this dataset. The formula is as follows:

Xt
U2 = {(xi,u2, yi,u2)}

Nt
U2

i=1 |max(P(xt
i,u1)) > τPre ∩Ot

i = yt
i,u1. (10)

3.4. Loss

In ReliaMatch, the unlabeled dataset Xt
U2, after undergoing feature filtering and

pseudo-label filtering, is transferred to the labeled dataset for supervised training, form-
ing a new labeled dataset Xt+1

L and an updated unlabeled dataset Xt+1
U , given by the

following formulas:

Xt+1
L = {xt+1

i,l , yt+1
i,l }

Nt
L+Nt

U2
i=1 := Xt

L + Xt
U2, (11)

Xt+1
U = {xt+1

i,u , yt+1
i,u }

Nt
U−Nt

U2
i=1 := Xt

U − Xt
U2. (12)

Based on this, the model parameters are updated using the supervised loss Lt
s. Specifi-

cally, for a sample xt
i,l in the labeled dataset with its label yt

i,l , we have:

Lt
s = LCE(gt

v( f t
θ(xt

i,l)), yt
i,l), (13)

where xi,l is a sample from the labeled dataset in the tth iteration, and yi,l is the label of this
sample. LCE represents the cross-entropy loss function.
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4. Experiments
4.1. Datasets

CIFAR-10: A dataset containing 60K images, with the shape of 32 × 32, is evenly
distributed in ten categories. There are 50 K images in the training set and 10 K images in
the test set. Our validation set size is 5000 for CIFAR-10 [35].

SVHN: A dataset containing 99,289 images, with the shape of 32 × 32, is evenly
distributed in ten categories. SVHN consists of ten categories. The training contents
contains 73,257 images, and the test set contains 26,032 images. Our validation set size is
5000 for SVHN [36].

CIFAR-100: A dataset containing 60 K images, with the shape of 32 × 32, is evenly
distributed in one hundred categories. There are 50 K images in the training set and 10 K
images in the test set. Our validation set size is 5000 for CIFAR-100 [37].

4.2. Model Details

ReliaMatch uses CNN-13 [38] and WideResNet-28 [39] for classification on CIFAR-10
and SVHN datasets. In order to make fair comparisons with other methods, the same
parameters as in [33] were used in this paper. The network optimization is performed using
stochastic gradient descent and Nesterov momentum algorithm, combined with weight
decay regularization to reduce overfitting. The momentum factor is set to 0.9 and the initial
learning rate is 0.1. To further improve optimization, cosine annealing [40] is employed to
update the model parameters. By default, the initial hyperparameters αt

Fea is set to 1 and
τ0

Pre is set to 0.95.

4.3. Experimental Results and Analysis

In this section, we compared ReliaMatch with other common semi-supervised learning
methods on CIFAR10 and SVHN datasets, including Pseudo-Label [14], LP-MT [13], PL-
CB [16], Curriculum Labeling [33], FlexMatch [41] based on pseudo-labeling, π Model [10],
Temporal Ensembling [10], Mean Teacher [15], VAT [11], Ladder Net [9], ICT [42] based on
consistency regularization, and MixMatch [17] based on strong mixup. We also compared
ReliaMatch with Meta-Semi [43], a meta-learning based SSL algorithm.

Additionally, the reliability of ReliaMatch can be assessed by the Test Error Rate(%)
and the Error Rate corresponding to different numbers of labeled samples: the lower Test
Error Rates on different networks and datasets can prove the effectiveness of ReliaMatch;
reducing the number of labeled samples without a significant increase in Error Rate can
demonstrate the robustness of ReliaMatch.

From the results shown in Tables 1 and 2, it can be seen that, compared to other
semi-supervised learning methods, ReliaMatch considers issues such as feature and label
noise, filters out semantically ambiguous features and unreliable pseudo-labels, and thus
performs better. Specifically, the ReliaMatch method uses the same WideResNet-28 network
as advanced semi-supervised classification methods proposed by previous researchers.
On the CIFAR-10 dataset, this method used 4000 labeled data for testing, and achieved
a test error rate of only 5.86%. In comparison, the test error rate of the Pseudo-Label
method was 17.78%, Curriculum Labeling method was 8.92%, and PL-CB method was
6.28%. In addition, FlexMatch was slightly better than ReliaMatch, which had a test error
rate of only 4.19% on CIFAR-10. On the SVHN dataset, the ReliaMatch method used only
1000 labeled data for testing, achieving a test error rate of 4.04%, significantly better than
the test error rates of Pseudo-Label (7.62%), Curriculum Labeling (5.65%), and FlexMatch
method (6.72%).

In addition, the ReliaMatch method uses the same CNN-13 network as advanced semi-
supervised classification methods proposed by previous researchers. On the CIFAR-10
dataset, using 4000 labeled data for testing, the test error rate of ReliaMatch method was
7.42%, which is lower than the test error rates of Pseudo-Label methods (LP-MT, Curriculum
Labeling) and consistency regularization methods (Ladder Net, Temporal Ensembling).
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Table 1. Comparison of Test Error Rate (%) of WideResNet-28 with Different Semi-supervised Methods.

Method CIFAR-10 (NL = 4000) SVHN (NL = 1000)

PL † 17.78 ± 0.57 7.62 ± 0.29

Curriculum Labeling † 8.92 ± 0.03 5.65 ± 0.11

PL-CB † 6.28 ±0.30 -

π Model † 16.37 ± 0.63 7.19 ± 0.27

Mean Teacher 10.36 ± 0.28 5.65 ± 0.47

VAT † 13.86 ± 0.27 5.63 ± 0.20

VAT+EntMin † 13.13 ± 0.39 5.35 ± 0.19

ICT † 7.66 ± 0.17 3.53 ± 0.07

MixMatch † 6.24 ± 0.06 3.27 ± 0.31

FlexMatch ‡ 4.19 ± 0.01 6.72 ± 0.30

Meta-Semi ? 6.10 ± 0.10 -

ReliaMatch ∗ 5.86 ± 0.12 4.04 ± 0.08
NL represents the number of labeled samples in the training set, † indicates that the result has been reported in

the literature [33], ‡ indicates result has been reported in [44], ? indicates the result has been reported in [45] and ∗
represents the average of 5 runs of the method proposed in this paper.

Table 2. Comparison of Test Error Rate (%) of Different Semi-supervised Methods Using CNN-13.

Method CIFAR-10 (NL = 4000) SVHN (NL = 1000)

LP-MT † 10.16 ± 0.28 -

Curriculum Labeling † 9.81 ± 0.22 4.75 ± 0.28

Ladder Net † 12.16 ± 0.31 -

Temporal Ensembling † 12.16 ± 0.24 4.42 ±0.16

ReliaMatch ∗ 7.42 ±0.05 7.13 ± 0.28
NL represents the number of labeled samples in the training set, † indicates that the result has been reported in
the literature [33], and ∗ represents the average of five runs of the proposed method in this paper.

We also performed an evaluation on the CIFAR-100 [37] dataset. ReliaMatch achieved
38.67% and 37.28% Test Error Rate on CIFAR-100 for WidResNet-28 and CNN-13. It is
worth noting that it was a large difference from the effect on the other two datasets, which
may be due to CIFAR-100 being more complex, with more categories, and the maximum
predictive probability of each category may have been significantly different, making the
global dynamic threshold not adapted.

One common way to evaluate semi-supervised classification algorithms is by varying
the size of the labeled dataset. By reducing the number of available labeled samples, it is
possible to better simulate real-world scenarios. As shown in Figure 5, on the CIFAR-10 and
SVHN datasets, we tested the error rates of the ReliaMatch method using the WideResNet-
28 network under different numbers of labeled samples. We used datasets with 500, 1000,
2000, and 4000 labeled samples, respectively, and only changed the number of labeled
samples during each training while keeping other hyperparameters the same as when
using 4000 labeled samples.

The experimental results show that the classification performance of the ReliaMatch
method does not significantly degrade under different numbers of labeled samples. This
indicates that the ReliaMatch method has good robustness and can provide stable perfor-
mance even with very limited labeled data, which is crucial for practical applications since,
in many cases, only very limited labeled data can be obtained. Therefore, these results
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suggest that the ReliaMatch method is an effective semi-supervised classification algorithm
that can be useful in practical applications.

(a) (b)

Figure 5. Comparison of test error rates of different methods using different amounts of labeled data.
(a) CIFAR-10. (b) SVHN.

In addition, we also investigated the effectiveness of the feature filtering module
and pseudo-label filtering module in the ReliaMatch method. As shown in Table 3, we
separately or collectively removed these two modules and evaluated their impact on the
method performance by applying data augmentation during training. The experiments
were conducted on the CIFAR-10 dataset with 4000 labeled samples, and the WideResNet-28
was used as the backbone network.

Table 3. Exploring the influence of important modules of ReliaMatch on classification results.

Method Test Error Rate (%)

w/o Feature Filtering 6.74

w/o Pseudo-label Filtering 9.12

w/o Feature Filtering and Pseudo-label Filtering 16.9

ReliaMatch (benchmark) 5.86

After analyzing Table 3, we have reached the following conclusions: the pseudo label
filtering module has a significant impact on the performance of the ReliaMatch method,
as the removal of this module leads to an increase in model error rate from 5.86 to 9.12.
This indicates that the pseudo label filtering module can remove low-confidence pseudo
labels, thereby reducing noise and improving model performance. In contrast, the effect of
the feature filtering module is not as significant as that of the pseudo label filtering module,
but it still contributes to improving model performance. Its removal results in a model
error rate increase from 5.86 to 6.74, indicating that the feature filtering module can select
high-quality features and thus improve the model’s performance. Additionally, removing
both feature and pseudo label filtering modules causes a sharp increase in model error rate,
from 5.86 to 16.9. This demonstrates that both feature and pseudo label filtering modules
make important contributions to the performance of the ReliaMatch method, and both
are necessary.

Therefore, both feature and pseudo label filtering modules play important roles in the
ReliaMatch method. The feature filtering module can select high-quality features, while the
pseudo label filtering module can remove low-confidence pseudo labels. Their combined
effect can improve model performance.
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We demonstrated the training process of ReliaMatch using the CNN-13 network on
the CIFAR-10 and SVHN datasets. ReliaMatch adopts a curriculum learning training
approach. The method combines the selected samples and their reliable pseudo-labels with
the labeled data, gradually increasing the difficulty of the training data to participate in
model training in a supervised manner. As shown in Figures 6 and 7, during the training
process, ReliaMatch reinitializes the model training after each label transfer to mitigate the
problem of confirmation bias caused by pseudo-labels.
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Figure 6. Training process of ReliaMatch on CIFAR-10 dataset.
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Figure 7. Training process of ReliaMatch on SVHN dataset.

Discussion. The semi-supervised classification method ReliaMatch solves the prob-
lems of underutilizing relationship between labeled and unlabeled data as well as intro-
ducing unreliable information into the model, and ReliaMatch also achieves desirable
classification results in different networks and dataset application scenarios. Although Re-
liaMatch performs well in image semi-supervised classification issues, there are still some
potential limitations: (1) The algorithm’s performance depends on the confidence threshold.
The confidence threshold needs to be well-designed and controlled in both feature filtering
module and the pseudo-label filtering module to get the best results. (2) Additionally,
ReliaMatch may also be affected by the selection of model’s feature extraction and model
types. Therefore, in future work, it can be considered to adaptively select appropriate
confidence thresholds and hyper-parameters to improve and optimize ReliaMatch, so as
to further enhance the existing methods and provide insights for future semi-supervised
learning tasks.

5. Conclusions

In this paper, we proposed a reliable semi-supervised deep learning classification
algorithm, i.e., ReliaMatch. The algorithm integrates a course label, a feature filter module,
and a pseudo-label filter module, aiming at improving classification accuracy and algorithm
reliability, focusing on key features, making better use of unlabeled data and avoiding
the confirmation deviation of pseudo-labels. The course label improves the classification
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accuracy and the reliability of the algorithm. The feature filtering module eliminates unnec-
essary features, which makes the algorithm pay more attention to key features. The false
label filtering module eliminates the confirmation deviation of false labels and filters out
unreliable features and labels with low confidence, thus making the algorithm more stable
and reliable. The experimental results show that ReliaMatch achieves the most advanced
classification results on multiple datasets under the control of the confidence threshold.
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