
Citation: Qian, C.; Zhang, M.; Nie, Y.;

Lu, S.; Cao, H. A Survey on Bug

Deduplication and Triage Methods

from Multiple Points of View. Appl.

Sci. 2023, 13, 8788. https://doi.org/

10.3390/app13158788

Academic Editor: Adamu

I. Abubakar

Received: 6 June 2023

Revised: 23 July 2023

Accepted: 28 July 2023

Published: 29 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Review

A Survey on Bug Deduplication and Triage Methods from
Multiple Points of View
Cheng Qian *, Ming Zhang, Yuanping Nie, Shuaibing Lu and Huayang Cao *

National Key Laboratory of Science and Technology on Information System Security, Beijing 100085, China;
zm13@alumni.sjtu.edu.cn (M.Z.); yuanpingnie@nudt.edu.cn (Y.N.); lushuaibing@alumni.sjtu.edu.cn (S.L.)
* Correspondence: qiancheng@nudt.edu.cn (C.Q.); hycao@nudt.edu.cn (H.C.)

Abstract: To address the issue of insufficient testing caused by the continuous reduction of software
development cycles, many organizations maintain bug repositories and bug tracking systems to
ensure real-time updates of bugs. However, each day, a large number of bugs is discovered and sent to
the repository, which imposes a heavy workload on bug fixers. Therefore, effective bug deduplication
and triage are of great significance in software development. This paper provides a comprehensive
investigation and survey of the recent developments in bug deduplication and triage. The study
begins by outlining the roadmap of the existing literature, including the research trends, mathematical
models, methods, and commonly used datasets in recent years. Subsequently, the paper summarizes
the general process of the methods from two perspectives—runtime information-based and bug
report-based perspectives—and provides a detailed overview of the methodologies employed in
relevant works. Finally, this paper presents a detailed comparison of the experimental results of
various works in terms of usage methods, datasets, accuracy, recall rate, and F1 score. Drawing on
key findings, such as the need to improve the accuracy of runtime information collection and refine
the description information in bug reports, we propose several potential future research directions in
the field, such as stack trace enrichment and the combination of new NLP models.

Keywords: bug deduplication; bug triage; information retrieval; machine learning; bug report;
software development

1. Introduction

The development and operation of software is always accompanied by bugs. For
example, the Mozilla project generates at least 300 bugs every day [1]. Current software
development cycles are getting shorter and shorter, meaning the software is not adequately
tested. In order to improve the robustness and usability of products, some institutions
maintain a large-scale bug repository and bug tracking system (BTS); then, users or testers
can input some features and parameters of bugs into the system so that it is easier and
faster to track and fix bugs. Some open-source projects invest a lot of manpower and energy
to fix bugs, e.g., Mozilla, Microsoft, Chromium, etc. There are also some open-source bug
tracking systems, such as Bugzilla, GitHub issues, and JIRA, that focus on bug process
management, as shown in Figure 1. Previous studies have conducted attribute analyses
on different open-source bug repositories and identified unique characteristics in terms
of the number of bugs, contributing developers, and other factors [2]. Additionally, some
works have highlighted the high cost associated with analyzing bug reports in large-scale
repositories. For example, a researcher may require a significant investment of USD 40,000
and two weeks of uninterrupted work to perform a comprehensive analysis of similarity
across four bug repositories [3]. This underscores the importance and necessity of bug
triage (classification of bugs according to some attributes) and deduplication (removal
of the same or similar bugs) in order to address the challenges posed by large-scale bug
repositories. Some organizations even encourage users to find and submit bugs in a paid

Appl. Sci. 2023, 13, 8788. https://doi.org/10.3390/app13158788 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13158788
https://doi.org/10.3390/app13158788
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app13158788
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13158788?type=check_update&version=2

Appl. Sci. 2023, 13, 8788 2 of 44

scheme. For example, Uber provides a reward of USD 600 for each user who finds a
bug. In the field of hardware testing, bug triage is also very helpful [4,5] and even more
necessary because the attachment of hardware bugs may be affected by more uncontrollable
environmental factors, which makes the bugs quite difficult to reproduce, and the extracted
features are totally different from those of the software.

Reporter Triager Assigner Commenter

Bug found Deduplication and triage Assign to fixer Information record

Description

Progress

Results…..

Figure 1. Bug management process.

Generally, project developers run vulnerability discovery tools, such as fuzzing tools,
for a long time to explore the vulnerability of the system. It is an obvious fact that vulnera-
bility fixers face a large number of bugs to deal with. However, there are many bugs that are
duplicates; a survey claims that 12% of bug reports are duplicates, on average. As far as the
bug reports generated by the Linux kernel are concerned, nearly ∼50% are duplicated [6].
There are many factors to consider in identifying bug deduplication, such as calling the
same crash function, triggering crashes of the same type, etc. An intuitive bug deduplica-
tion and triage method is to perform bug recovery and replay. For example, methods such
as symbolic execution, state space search, and taint analysis can be used to perform bug
recovery and replay, but these approaches have quite high runtime monitoring costs.

Unlike deduplication, bug triage considers factors including severity, bug platform,
theme, semantic/syntactic/functional similarity, etc. At present, it is difficult to ensure that
bug-fixing tasks are assigned to the most suitable developers. Some work [7] mentioned
that about half of the bugs in some large open-source projects are tossed, which means
that expertise cannot solve the assigned bug, indicating low efficiency of bug fixing. Bug
triage has another connotation in some cases: setting reducing the bug fix time cost as the
primary optimization point, regardless of the similarity between bugs. For example, the
goal of [8] was to distribute bugs to the right developers at the right time. Considering
random errors that may occur at any time and the specific reality of developers who plan to
change at any time, this work is based on the Markov decision process model (MDP), using
approximate dynamic programming (ADP) to minimize entropy, with the optimization
goal of minimizing bug repair time decision making. This is not aligned with the topic of
our article and is therefore beyond the scope of discussion.

Bug deduplication and bug triage play a crucial role in improving the efficiency of
bug fixes. The former helps reduce redundancy in bugs, alleviating the current situation
of a large number of bug submissions awaiting analysis. The latter classifies bugs based
on certain logical similarities and transfers them to the corresponding developers. This
approach maximizes the chances of pushing bugs to potential experts who can effectively
improve bug-fixing efficiency.

Bug deduplication and bug triage can be performed based on two types of information.
The first type is the bug report, which includes the bug’s category, the platform it occurred
on, the components involved, priority, the personnel involved, and some real-time records.
Typical bug reports, as shown in Figure 2, are generally semistructured files that contain
various information [9,10]. The content includes the context of the crashing thread, such as
the stack trace and processor registers, as well as a subset of the machine memory contents
at the time of the crash. It also includes basic information about the bug, such as the system,

Appl. Sci. 2023, 13, 8788 3 of 44

version, system components, description, fix comments, and a sequence of developers who
may have worked on the bug (tossing sequence), among other details [11].

Bug reportBug Title

Categories Comments

Tracking Chain Records

Product

Component

Type

Priority

Reporter Triager Assigner Commenter

11:16:28 INFO -
SimpleTest.ok@https://example.com/tests/SimpleTest/SimpleTest.js:424
:16
11:16:28 INFO -
workerTestExec/worker.onmessage@https://example.com/tests/dom/worker
s/test/worker_driver.js:35:9
11:16:28 INFO -
EventHandlerNonNull*workerTestExec@https://example.com/tests/dom/wor
kers/test/worker_driver.js:31:3
11:16:28 INFO -
@https://example.com/tests/dom/workers/test/test_worker_interfaces_s
ecureContext.html:16:15
11:16:28 INFO - Not taking screenshot here: see the one that was
previously logged

User1: Set release status flags based on info from the
regressing bug 1800658

User2: Changing the status-firefox 112/113. I don't think
we're ready to let ORB ride the train to release 114

User3:console messages, saying "A resource is blocked by
OpaqueResponseBlocking, please check browser console for
details."

Figure 2. Information contained in a typical bug report.

The life cycle of a bug report is illustrated in Figure 3. Once a bug is generated, its
corresponding bug report is generated, deduplicated, and triaged. It is initially marked
as “unconfirmed”, then assigned to an appropriate developer at the right time (referred to
as triage). If the developer cannot fix the bug correctly, the bug report is tossed back into
the bug pool and remarked as “unconfirmed”. Otherwise, it is marked as “resolved” and
awaits verification. Once a verifier confirms that the bug has been fixed, the bug report is
marked as “verified”, and the case is closed. If it is not confirmed, the bug report is tossed.

Unconfirmed

Assigned

Closed

Resolved Verified

Tossed

bug

Assign to fixer

Cannot

Fix

Back to bug pool

Bug Fixed

Not verified

Deduplication and Triage

Figure 3. The life cycle of a bug report.

Appl. Sci. 2023, 13, 8788 4 of 44

The second type is the runtime information triggered by the bug, such as stack trace,
coverage, control flow, crash point, etc. Achieving precise bug deduplication and triage is
challenging. Both concepts rely on similarity, with deduplication primarily focusing on
content similarity, while triage may also consider the characteristics of the fixer. Figure 4
illustrates the process of feature extraction and similarity calculation for bug reports, taking
bug reports as an example. The upper part of the figure shows a process using information
retrieval methods. It involves feature extraction using topic modeling techniques, followed
by similarity calculation using mathematical models such as Cosine similarity and Jaccard
similarity. The lower part of the figure presents a process using machine learning methods.
It starts by extracting the control flow graph from the crash code snippets in the bug report.
The control flow graph is then used as input to a neural network to compute the likelihood
of duplicated or similar bug reports.

Bug

Reports

Bug

Reports

Topic Modeling

Page v0

Bar v1

Symbol v2

Tool v3

Page v0

Bar v1

Symbol v2

Tool v3

Page v0

Bar v1

Symbol v2

Tool v3

Topic 1 Topic 2 Topic 3

Fun0 p0, p1

Fun1 p0, p2
Fun2 p3, p4

Fun3 p2, p3

Fun4 p4, p5

Control Flow Graph Generation

Similarity Evaluation

Bug Report 0

Bug Report 1

Bug Report 2

Bug Report 3

Bug Report 4

Similarity
High

Similarity
Low

Possibility Calculation

Poss 1

Poss 2

Poss 3

Poss 4

Poss 5

Feature extraction Report preparation Similarity calculation

Figure 4. Process of feature extraction and similarity calculation for bug reports.

Bug deduplication and bug triage have been hot topics in recent years. Figure 5
illustrates the trend of related works in recent years, showing an increasing number of
studies in this area. We conducted a survey of relevant works, summarized the research
methods and their effectiveness, analyzed the drawbacks of current approaches, and
proposed possible research directions for the future.

4

14

17

9

16

12

15

22

0

5

10

15

20

25

Figure 5. The number and trend of bug-deduplication- and triage-related work in recent years.

This paper focuses on the following research questions:

Appl. Sci. 2023, 13, 8788 5 of 44

1. What is the roadmap of deduplication- and triage-related work? What mathematical
methods are commonly used to address these problems?

2. What are the main approaches currently used for deduplication and triage? What are
the recent works on each approach and how are they implemented?

3. What datasets are used in the related works? How are these works evaluated, and
what are their actual results?

4. What conclusions can be drawn from the current works? What are the potential
research directions for the future?

The main contributions of this paper are as follows:

1. This paper summarizes the mathematical concepts and methods that are commonly
used by bug deduplication and triage methods.

2. This paper summarizes relevant works based on runtime information and analyzes
the commonly used technical approaches from three perspectives. This paper has
provides a comparison of the implementation methods and results of each work.

3. This paper summarizes relevant works based on bug reports and explains the technical
principles from two perspectives: information retrieval and machine learning. This
paper provides detailed descriptions of the implementation approaches of various
methods and a comparative analysis of their performance differences.

4. This paper draws some empirical findings and proposes some possible future research
points in terms of bug deduplication and triage.

The remainder of this paper is organized as follows. Section 1 introduces the moti-
vation, brief content, and contribution of the article Section. 2 discusses related surveys
and compares them with this paper. Section 3 describes the roadmap of existing literature
and background knowledge commonly used in existing works. Section 4 summarizes the
related research based on runtime information. Section 5 reviews the related works on bug
reports. Section 6 lists the datasets and evaluation methods used in the work and analyzes
the effectiveness of related works. Section 7 illustrates the existing issues in current methods
and proposes possible research directions for the future. Section 8 provides a conclusion
for the entire paper.

2. Related Survey

Many existing research works on bug deduplication and triage primarily focus on
bug reports. These methods generally require the involvement of domain experts, and
automated methods have shown limited accuracy.

Neysiani et al. compared IR-based and ML-based methods for bug report deduplication [12],
and the experimental results showed no significant difference in terms of accuracy or run-
time efficiency. Campbell et al. conducted a quantitative analysis of commonly used bug
classification methods, including signature-based approaches (such as functions, addresses,
and linked libraries) and text-tokenized methods. The results indicated that IR methods
based on TF-IDF had better triage effectiveness. Udden et al. surveyed bug prioritization
works based on bug reports up to 2017 [13], covering various methods, such as data min-
ing and machine learning techniques for bug identification, clustering, classification, and
rating, including supervised and unsupervised methods. The advantages and limitations
of the methods were analyzed, with the authors concluding that there is still room for
improvement in current approaches. However, this work is relatively early, focusing only
on bug prioritization using bug reports. Our work primarily focuses on research conducted
after 2015 to ensure the survey’s relevance and up-to-dateness. Sawant et al. conducted
a survey on bug classification work based on bug reports [14], summarizing various re-
lated techniques, such as text-based classification, recommendation-based approaches,
and tossing-graph-based methods. Neysiani et al. summarized commonly used features
and general steps in bug report deduplication [15], highlighting the existing issues and
potential research points for optimization. However, the coverage of these articles is not
comprehensive, and they do not specifically focus on runtime information for classifica-

Appl. Sci. 2023, 13, 8788 6 of 44

tion. Yadav et al. surveyed classification methods based on machine learning, profiles, or
metadata, comparing and discussing the pros and cons of different approaches [16]. They
concluded that no single method has advantages in all dimensions and provided insights
into potential research points such as the cold activation problem and load balancing.

Chhabra et al. briefly described the factors to consider in bug triage and listed methods
and contributions of some bug triage-related works [17]. Neysiani et al. provided a general
description of the processes for IR-based and machine-learning-based methods [18], along
with relevant works listed separately. Lee et al. surveyed deduplication methods based
on natural language processing (NLP) [7], information retrieval (IR), and clustering, as
well as classification techniques using naive Bayes combined with machine learning. They
suggested focusing on improving the efficiency of deep learning models for precise bug
report classification in future research. These works primarily focus on investigating
specific categories of techniques, while our work encompasses both common information
retrieval (IR) and machine learning (ML)-based techniques, providing a comprehensive
investigation into both categories of approaches.

Pandey et al. quantitatively analyzed bug triage using common machine learning
methods and tested six approaches [19], including SVM, naive Bayes, and random forest.
The experimental results showed that SVM performed better in terms of F-measure, average
accuracy, and weighted average F-measure metrics. However, it is worth noting that this
article focused on a binary classification problem, which differs from bug triage.

Goyal et al. mainly compared IR and machine learning methods for bug triage [20].
They summarized over seventy related articles to discuss the pros and cons of IR and
machine learning methods. Through experiments on multiple open-source projects, they
found that IR-based bug triage methods had better performance. However, compared to
our work, this study is relatively old and does not include recent developments. It also
focuses solely on bug triage based on bug reports, lacking research on runtime information
and deduplication. The previous works mainly investigated relevant research related to bug
reports as the target. In contrast, our work includes not only bug reports but also research
related to runtime information as the subject of analysis, making it more comprehensive. A
comparison between the related surveys and our work is presented in Table 1.

Table 1. Comparison between related survey and our work.

Cited Paper Study on Commonly
Used Methods

Study on Runtime
Information-Based
Approaches

Study on Information
Retrieval Approaches

Study on Machine
Learning Approaches

Neysiani et al. [12] Not included Not included
Bug report
deduplication using IR
methods

Bug report
deduplication using
ML methods

Udden et al. [13] Not included Not included Bug prioritization
using data mining

Bug prioritization
using machine learning

Sawant et al. [14] Not included Not included

Bug report
classification using
text-based analysis,
recommendation, etc.

Not included

Neysiani et al. [15] Not included Not included Not included
Features and general
steps for bug report
deduplication

Yadav et al. [16] Not included Not included Not included Comparison of
ML-based classification

Chhabra et al. [17] Not included Not included Factors to consider in
bug triage Not included

Appl. Sci. 2023, 13, 8788 7 of 44

Table 1. Cont.

Cited Paper Study on Commonly
Used Methods

Study on Runtime
Information-Based
Approaches

Study on Information
Retrieval Approaches

Study on Machine
Learning Approaches

Neysiani et al. [18] Not included Not included General description of
the IR-based methods

General description of
the ML-based methods

Lee et al. [7] Not included Not included Deduplication using IR
methods

Deduplication using
NLP, naive Bayes, etc.

Pandey et al. [19] Not included Not included Not included Bug triage using six ML
models

Goyal et al. [20] Not included Not included Bug triage using IR
methods

Bug triage using ML
methods

Our work
Feature extraction
methods and similarity
calculation methods

Deduplication and
triage based on runtime
stacks, coverage, and
context

Deduplication and
triage based on texture
analysis, topic
modeling, etc.

Deduplication and
triage based on CNN,
LSTM, transformer, etc.

3. The Roadmap of Existing Literature
3.1. Overview of Relevant Literature in Recent Years

Deduplication and triage fundamentally involve considering the similarity between
bugs; therefore, the extraction of bug features and the calculation of similarity are the main
research topics. As shown in Figure 6, the evolution of techniques used in related works
exhibits a clear temporal pattern. Around 2010, traditional text matching and machine
learning methods were the mainstream approaches for determining similarity. Traditional
text matching methods primarily used dynamic programming-based techniques such
as longest common subsequence and longest common substring. Meanwhile, machine
learning methods at that time mainly relied on SVM, naive Bayes, and other classification
models. Some representative works during this period include [21–23].

Figure 6. How the state-of-the-art deduplication and triage techniques evolved.

Around 2015, information retrieval methods started to be extensively developed and
used, including topic modeling, fuzzing set, and text feature extraction. These methods
can more accurately model bug reports, extract feature vectors, and measure the distance
between texts using similarity calculation techniques. Some typical works during this
period include [24–26].

After 2015, thanks to the rapid advancement of deep learning methods, especially var-
ious neural network models, such as NLP-based models, adjusted deep learning methods
showed outstanding effects in large-scale similarity analysis. Other typical neural network
models, such as CNNs, have also been applied in feature extraction. Some representative
works during this period include [27–29].

The future development of related techniques may follow two directions. First, combin-
ing the strengths of IR and ML for deduplication and triage may be a promising approach.
IR excels in accurate feature extraction, while ML outperforms in similarity analysis, rec-
ommendation, and prediction. Some works have already proposed methods based on
this idea [30,31]. Secondly, optimizing the application of the latest advances in machine
learning and information retrieval, such as transformer models used in large-scale language
processing, after appropriate transfer learning may lead to better results than the current

Appl. Sci. 2023, 13, 8788 8 of 44

models. These potential research directions are discussed in detail in Sections 4 and 5 of
this paper.

Figure 7 illustrates some of the recent works in the field of deduplication and triage,
including approaches based on runtime information, information retrieval methods for bug
reports, and machine learning approaches for bug reports. Overall, deduplication and triage
have been hot research topics in recent years. In terms of research quantity, the majority
of works have focused on deduplication and triage based on bug reports. This is mainly
because bug reports are commonly used as the medium for storing bugs in bug tracking
systems (BTS), making them more readily available. On the other hand, works utilizing
runtime information face higher difficulty and complexity, as they require collection and
analysis of various pieces of information related to crashes. Among the bug-report-based
works, information-retrieval-based approaches show a relatively steady distribution over
the years, while machine-learning-based approaches have seen a significant increase in
recent years due to the rapid development of machine learning techniques.

Figure 7. Overview of related work in recent years.

3.2. Background Knowledge
3.2.1. Feature Extraction and Selection

Regardless of whether using information retrieval (IR) or machine learning methods,
topic modeling of bug reports is a commonly used approach for feature extraction. Such
methods aim to abstract a piece of text into several keywords that can represent the entire
text. Common feature extraction models for natural language processing include N-Gram,
LDA, TF-IDF, and others.

(1) TF-IDF
The term frequency inverse document frequency (TF-IDF) method is used to extract

textual features from bug reports. It quantifies the importance of a term within a document
by calculating the frequency of the term in the document (TF(t, D)) and the number of
documents that contain the term (IDF(t)).

Appl. Sci. 2023, 13, 8788 9 of 44

Let DF(t) represent the terminology and t represent the number of documents in
which the terminology appears at least once. Let |D| represent the total number of reports.
Formula (1) represents the calculation process for IDF (inverse document frequency):

IDF(t) = log
|D|

DF(f)
(1)

The eigenvalue (wi) belonging to t can be expressed as:

TF_IDF(t) = wi = TF(t, D) ∗ IDF(t) (2)

Finally, the TF_IDF feature vector about terminology can be represented as:

~V = (W1, W2, W3, . . . , Wn) (3)

The TF-IDF feature vectors of two different documents can be used to estimate the
similarity between the texts based on cosine similarity, as Formula (4) shows.

cosine_similarity =
(AB)

||A|| ∗ ||B|| (4)

where A and B represent the TF-IDF feature vectors of the two documents, · denotes the
dot product, and ||A|| and ||B|| represent the Euclidean norms of the respective vectors.

(2) N-Gram
The N-Gram model is based on an N − 1 order Markov model, which assumes that

the current element (word) is only dependent on the previous N − 1 elements. In practical
applications, N is typically limited to 3 or 4 because larger values of N lead to a significant
increase in complexity while providing limited performance improvement.

The N-Gram model primarily aims to predict the probability of the current element,
given that the previous N− 1 elements are known, or to evaluate the likelihood of a sentence
composed of N elements. Formula (5) represents the calculation process for probability:

p(W1, W2, W3, . . . , Wn) = p(W1) · p(W2|W1) · · · · · p(Wn|W1, W2, . . . , Wn−1) (5)

where p(Wn|W1, W2, . . . , Wn−1) represents the probability of the current word (Wn), given
the previous N − 1 words ((W1, W2, . . . , Wn−1). This probability is estimated based on the
frequencies of N-grams observed in a training corpus.

(3) LDA
LDA (latent Dirichlet allocation) is an unsupervised probabilistic topic modeling

technology. Essentially, it aims to infer the topic distribution of a document based on its
content. To achieve this, LDA requires users to provide the expected number of topics,
denoted as K, for the given bug reports. LDA utilizes the Dirichlet distribution, as shown
in Equation (6), as a prior distribution. It then updates the prior distribution based on
the specific distribution observed in the bug reports to form the posterior probability
distribution. Gibbs sampling is then employed to infer the specific probability distribution
parameters of the LDA topic model.

Dir(~ρ|~α) = Γ(∑k=1
K ak)

∏k=1
K Γ(ak)

k=1

∏
K

ρ
ak−1
k (6)

where Γ(n) = (n− 1)!
(4) Chi-square (χ2) test
The chi-Square test can be used to assess the correlation between a particular feature

and the outcome, thereby identifying redundant or irrelevant features. It calculates the de-
viation between the observed and expected values for a given feature. The test determines

Appl. Sci. 2023, 13, 8788 10 of 44

whether the feature is independent of the outcome based on the chi-square distribution
with K degrees of freedom, as shown in Equation (7).

χ2 =
i=1

∑
k

(Ai − Bi)
2

Ei
=

i=1

∑
k

(Ai − npi)
2

npi
(7)

(5) Mutual Information
Mutual information measures the association between random variables, specifically

the reduction in uncertainty of variable Y given variable X. The concept of uncertainty
can be quantified using entropy. The mutual information between X and Y can be
calculated using Equation (8), where p(x, y) represents the joint probability of x and y
occurring simultaneously.

I(X, Y) = ∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
(8)

When x represents features and y represents labels or outcomes, a higher mutual
information value indicates a stronger correlation or dependence between the two. It
signifies that feature x provides more information about label y; therefore, it is more
relevant for predicting or explaining the target variable.

3.2.2. Similarity Evaluation Model

(1) BM25F
BM25F (Best Matching 25 with Fields) is a classical method used to measure the

similarity between texts. This method calculates a score based on the frequency of occur-
rence of words in different weighted segments of an article. Formula (9) represents the
calculation process:

Score(Q, d) =
n

∑
k=1

log
N − n(qi) + 0.5

n(qi) + 0.5
·

f u
i

k1 + f u
i

(9)

where f u
i = ∑k=1

u wk ·
fui

1−bu+bu · ulu
uvulu

, f is a word frequency statistical function, n is the num-

ber of texts containing a certain word, and ulu and uvulu represent the text segment fields.
(2) Support Vector Machine (SVM)
SVM is a supervised method that focuses on extracting feature vectors from bug

reports. It can label these feature vectors and train an SVM to construct a hyperplane that
maximizes the distance between feature vectors labeled with different tags. For linear SVM,
the general form of its hyperplane is

g(x) = ω · x + b = 0 (10)

where x is an n-dimensional vector. Solving the most optimistic hyperplane is essentially
solving the problem indicated by Equation (11).

min(
1
2
(ω ·ω) + C

l

∑
i=1

εi) (11)

where yi[(ω · x) + b] + εi ≥ 1 for i in 1 . . . l, and εi represents the slack variables in the case
of linear inseparability.

Nonlinear SVM only requires replacement of the direct inner product in linear SVM
with a kernel function. Widely used kernel functions include the polynomial kernel,
sigmoid kernel, and radial basis function kernel.

Polynomial kernel : (γxT
i xj + r)d, γ > 0 (12)

Appl. Sci. 2023, 13, 8788 11 of 44

Sigmoid kernel : exp(−γ||xi − xj||2), γ > 0 (13)

rb f kernel : tan h(γxT
i xj + r), γ > 0 (14)

(3) Logistic Regression
After extracting feature vectors from bug reports, one can use logistic regression to

make predictions by training a model, as shown in Equation (15). The training process
involves solving for the parameters in the equation to maximize the likelihood estimation
for the data in the training set.

P(x, y, B) =
exp(βT

k x)

∑
j=1
K Bjx

I(B, D) = ∑
i
[∑

k
yikβT

k xi − ln ∑
k

exp(βT
k xi)]

(15)

(4) Naïve Bayes
Consistent with the idea of Logistic Regression, the naïve Bayes model is constructed

using the eigenvectors of bug reports as shown in Formula (16).

P(y|x1, x2, . . . , xd) = C · P(y)
d

∏
i=1

P(xi|y) (16)

The final calculation process is the process of determining the corresponding result of
the maximum probability (P), expressed as

y = argmaxyP(y)
d

∏
i=1

P(xi|y) (17)

Specific to the bug report containing the text, the probability of using the parameter to
divide the document can be expressed as:

P(rj, dj, θ) = ∏r
k=1 P(wk, dj, θ)Nk (18)

Here, the variable P(wk, dj, θ) can be calculated after considering the statistical count
of words and the frequency of occurrence of all words in a particular bug report. In
this context, it is generally assumed that the words are independent. Otherwise, when
calculating P(wk, dj, θ), parameters (λ) are introduced to recompute the frequency of word
occurrences in the report.

(5) K-Nearest Neighbors
After obtaining the feature vector of a bug report, the KNN model calculates the dis-

tances between features using the Minkowski distance function (as shown in Equation (19)).
It selects the k nearest points based on distance and assigns the majority class among those
points to the current bug report.

dis(x, y) = p
√
(x0 − y0)p + (x1 − y1)p + · · ·+ (xk − yk)

p (19)

(6) Random Forest—Extreme Tree
Random Forest combines N CART decision trees and is trained using the bagging

technique. Each decision tree in RF is trained independently by randomly selecting N
samples with replacements. During the training process, RF randomly selects m sample
features and, according to a preset strategy, chooses one of them as the splitting attribute
for a node. When making predictions for a given instance, the majority classification result
from the decision trees is selected.

Appl. Sci. 2023, 13, 8788 12 of 44

Extreme tree, on the other hand, is an even more aggressive strategy within random
forest. It uses the entire training set during the bootstrap process and randomly selects
splitting attributes when constructing decision trees.

(7) Hidden Markov Model (HMM)
The hidden Markov model (HMM) can make predictions about possible states based

on current observations and adjust the model’s parameters using the observed and pre-
dicted results. An HMM can be described using a five-tuple,

HMM = (X, O, π, A, B) (20)

where X represents the hidden state vector, O represents the observed state vector, A is the
hidden state transition matrix, B is the confusion matrix representing the probabilities of
observed states given hidden states, and π is the initial probability vector for hidden states.

In the context of text classification, the training texts are first subjected to feature
extraction to obtain features such as frequency and probability distributions. These features
are used to form the initial state vector. By training the HMM with the corresponding class
labels of the texts, the parameters of the HMM are determined. This trained HMM can then
provide a probability distribution for classification of test texts.

(8) LSTM/CNN
Convolutional Neural networks (CNNs) are widely used in image processing and

have achieved outstanding results. Recently, there have been efforts to apply CNNs to
text classification tasks. The approach and model construction are similar to those used
in image processing. As shown in Figure 8, the text is first converted into vectors using
techniques like word2vec. Then, convolutional operations, pooling, and other operations
are performed to generate probability outputs corresponding to the classification results.

LSTM (long short-term memory) is a variant of a recurrent neural network (RNN) that
excels at capturing spatial dependencies in text, making it widely used in text-related fields
such as natural language processing (NLP). As shown in Figure 9, LSTM is an extended
version of RNN. It introduces a forget gate, which determines what information should
be retained and what should be forgotten. This helps alleviate the vanishing gradient
problem caused by forgetting hidden state variables in RNNs. Consequently, LSTM can
achieve higher accuracy in text classification tasks. In some works, CNN and LSTM are
also combined to leverage the strengths of both architectures.

Performing transfer learning based on existing models is an effective method for text
classification, as it reduces the time and complexity of model construction. As shown in
Figure 10, transfer learning involves fine tuning of the parameters of a pretrained model to
adapt to a new optimization objective.

Text

Context

Input Layer Convolutional Layer Maxpooling Layer Fully Connected layer Output

Word

Embedding

Vectors

Feature

Vectors

Sub-sampled

Vectors

Convolutional Neuron Network

Figure 8. Example image of a CNN for text classification.

Appl. Sci. 2023, 13, 8788 13 of 44

𝑋𝑡

𝐻𝑡

𝐶𝑡−1
𝐻𝑡−1

𝐶𝑡
𝐻𝑡

𝑓𝑡 = 𝜎(𝑊𝑓ℎ
𝑡−1 + 𝑈𝑓𝑥

𝑡 + 𝑏𝑓)Forget gate:

𝑖𝑡 = 𝜎(𝑊𝑖ℎ
𝑡−1 + 𝑈𝑖𝑥

𝑡 + 𝑏𝑖)

𝑜𝑡 = 𝜎(𝑊𝑜ℎ
𝑡−1 + 𝑈𝑜𝑥

𝑡 + 𝑏𝑜)

Input gate:

Output gate:

𝐶𝑜𝑛𝑡 = tanh(𝑊𝑐ℎ
𝑡−1 + 𝑈𝑐𝑥

𝑡 + 𝑏𝑐)Cell Content:

𝑐𝑡 = 𝑓𝑡 ∙ 𝑐𝑡−1 + 𝑖𝑡 ∙ 𝐶𝑜𝑛𝑡

ℎ𝑡 = 𝑜𝑡 ∙ tanh 𝑐𝑡

Cell State:

Hidden State:

Figure 9. Calculation process in an LSTM unit for text classification.

Basic Text Target Text

Transfer Learning

𝑊𝑏 , 𝜎𝑏 , 𝐵𝑏 𝑊𝑡, 𝜎𝑡, 𝐵𝑡

Figure 10. Transfer learning used to build ML models for text classification.

3.3. Commonly Used Datasets

Many datasets have been used in these works, as listed in Table 2. Among them,
Mozilla and Eclipse are two commonly used publicly available datasets. NetBeans, OpenOf-
fice, and others are also popular public datasets. Around 60% of the works also utilize
other public datasets, such as Jira, Apache, GCC, etc. Furthermore, some works make use
of private datasets from companies for their research purposes.

Table 2. Datasets used in the literature.

Dataset Proportion in Works

Mozilla ∼64.4%

Eclipse ∼37%

Netbeans ∼19.2%

Openoffce ∼11%

Others ∼60%

3.4. Evaluation Parameters

Most of the existing works in bug triage utilize some or all of the parameters, including
accuracy, precision, recall rate, and F1 score, to measure the performance of their methods.
These parameters are based on four fundamental statistical measures: true positive (TP),

Appl. Sci. 2023, 13, 8788 14 of 44

true negative (TN), false negative (FN), and false positive (FP). TP refers to the cases where
the actual and predicted results are consistent and both are duplicates (for deduplication) or
belong to the same class (for triage). TN refers to the cases where the actual and predicted
results are consistent and neither is duplicated (for deduplication) or belongs to a different
class (for triage). FN refers to the cases where the actual results are duplicates or belong to
the same class but the predictions are not duplicates or belong to a different class. FP refers
to the cases where the actual results are not duplicates or belong to a different class but the
predictions are duplicates or belong to the same class.

Based on TP, TN, FP, and FN, accuracy is defined as the measure of how well the
method performs on all samples, as shown in Formula (21).

Acc =
TP + TN

TP + TN + FN + FP
(21)

Precision is defined as the measure of the method’s accuracy in predicting dupli-
cates/same class, as shown in Formula (22).

Precision =
TP

TP + FP
(22)

The recall rate is defined as the measure that focuses on the samples that are actually
duplicates/same class, as shown in Formula (23).

Recall Rate =
TP

TP + FN
(23)

F1 score combines both recall and precision and provides an overall measure of the
method’s performance, as shown in Formula (24).

F-score =
2 · Recall · Precision
Recall + Precision

(24)

4. Works Based on Runtime Information

Runtime information, such as the core dump generated when a bug occurs, can be
utilized as bug features. This includes the crash-time register state, memory management
information, stack pointers, and more. With the advancements in hardware-assisted infor-
mation collection methods, developers can now gather more instruction-level details using
technologies like Intel PT during runtime.

4.1. Methods Based on Comparing Stack Trace

One of the most classic parameters used to determine whether a bug is a duplicate is
the stack trace. In general, stack trace has attributes including ID, timestamp, and a series of
function call records (also known as the frame) before the error occurred. Figure 11 shows
an example of frames in a stack trace from Eclipse. When a program crashes, it stores
several pieces of function call information on the runtime stack before the crash, which can
be extracted and used to identify the uniqueness of the bug. Some studies claim that 80%
of causes can be found in the stack trace hash [32].

Figure 11. Frames in a stack trace from Eclipse.

Appl. Sci. 2023, 13, 8788 15 of 44

Several approaches utilize or build upon the classic longest common subsequence
algorithm to measure the similarity between stack traces and determine if they are duplicate
bugs (known as “rebucketing”) [33]. While this method is simple and easy to use, it suffers
from low robustness. In 2022, Rodrigues et al. proposed TraceSim, which combines TF-IDF
and machine learning methods for bug deduplication. TraceSim first uses the Needleman–
Wunsch algorithm to determine the global optimal alignment by considering the position
and frequency of each stack trace frame to assign weights. The parameters used for weight
calculations are learned and adjusted using a Bayesian hyperparameter optimizer called
TPE. Ultimately, TraceSim [34] calculates a similarity score between two stack traces. The
alignment process is illustrated in Figure 12.

To enhance the practicality of alignment methods, some works have proposed ac-
celerated techniques for commonly used stack trace alignment methods. One example
is FaST, which achieves linear time complexity. Additionally, there are current efforts to
analyze stack traces using LSTM, which can extract temporal features. These advancements
aim to improve the efficiency and accuracy of bug deduplication by utilizing stack traces
and exploring different alignment techniques [35]. Dunn et al. proposed the use of GPU
acceleration to speed up the cosine similarity comparison, as well as calculation of longest
common subsequence, longest common substring, and other operations required for bug
triage [36]. The implementation results on approximately 1.8 million bug reports from
Eclipse and Mozilla showed that using GPU acceleration can improve the speed of bug
triage by nearly 100 times.

FrameA
FrameD
FrameC
FrameA

FrameD
FrameA
FrameC
FrameC
FrameB

FrameA(1)
FrameA(4)

FrameC(3)

FrameA(2)

FrameB(5)
FrameC(3)
FrameC(4)

FrameD(2) FrameD(1)

Original Stack Traces

Program A Program B Program A Program B

Aligned Stack Traces

Figure 12. Alignment process of stack traces.

The stack trace can also be used analyze and locate potential causes of vulnerabilities,
aiding in deduplication or triage processes. CrashLocator is a technique that extends the
stack trace information by recording the minimum number of times each function is called
throughout the execution leading up to a crash. It then expands the stack trace information
and performs spectrum analysis on the relevant functions marked in the crash execution
path to calculate a suspicion score for each function. The functions with the highest
suspicion scores can be attributed as potential bug causes, thereby facilitating effective
classification. CrashLocator served as a valuable tool in identifying and categorizing bugs
based on their stack trace information [37].

Koopaei et al. proposed CrashAutomata [38], which utilizes the stack trace of a bug to
extract variable-length N-gram features, overcoming scalability issues. They obtained trace
patterns of lengths of 1 to n and constructed an automaton to classify bugs. Experimental
results showed an average F measure of 97%. Sabor et al. introduced a multistep feature
extraction method called DURFEX [39]. It reduced the number of features by replacing
function names, then used variable-length N-grams to extract feature vectors. They con-
structed an adjacency matrix based on multiple feature vectors. For new bug reports, they
extracted feature vectors and compared them individually with the feature vectors in the
adjacency matrix to calculate similarity, thereby determining if there were bug duplication
issues. The advantage of this method lies in its reduced execution time. Compared to
using only 1-g functions, DURFEX can reduce execution time by 93%, and using 2-g can
reduce it by up to 70%. Tian et al. proposed FuRong [40], a tool for deduplicating and
merging Android bugs into presentable bug reports. This tool initially classifies bugs using

Appl. Sci. 2023, 13, 8788 16 of 44

pretrained decision trees and naive Bayes classifiers. It then extracts features from the bug’s
LogCat log and measures the similarity of the stack trace using the Levenshtein distance
to determine if the bugs are similar, enabling deduplication. The article evaluated bug
classification and reported an average bug classification precision of 93.4% and an average
classification accuracy of 87.9%.

Khvorov et al. proposed S3M [41], a machine learning model based on Siamese
architecture, for calculation of stack trace similarity. It consists of a biLSTM encoder and
two fully connected layers with ReLU activation. First, stack traces are trimmed and
tokenized, and feature vectors are constructed for pairs of similar/dissimilar stack traces.
These feature vectors are then fed into S3M for training. Experimental results showed an
RR@10 of 0.96 for JetBrains and 0.76 for Netbeans. Shi et al. introduced Abaci-finder [35],
which focuses on kernel bug reports. It uses preset regular expressions to extract and
trim stack traces. Then, the kstack2vec method is employed to vectorize the stack traces,
extracting semantic and kernel-related bias information, key frames, and their context.
Finally, an attention-based BiLSTM is used to classify multiple traces. Experimental results
demonstrated that Abaci-finder achieved an F1 score of 0.83, outperforming models such
as BiLSTM and TF-IDF.

4.2. Methods Based on Analysis Coverage

There are also approaches based on runtime coverage to determine if a test case is
a duplicate. As shown in Figure 13, typical fuzzing tools maintain a seed queue during
runtime. When the target program requires input, the fuzzing tool retrieves seeds from
the queue according to certain rules. The tool also maintains several bitmaps to record the
execution paths of the seeds. During runtime, the coverage is evaluated by considering new
coverage information, and it is used to determine if a bug is non-duplicate. These methods
utilize runtime boundary coverage information to evaluate the level of test duplication.
The coverage range during program execution and the frequency of visiting each boundary
coverage range can be obtained through instrumentation. When a bug occurs and covers a
previously unidentified path or does not match the boundaries covered by previous bugs,
it can be considered a non-duplicate crash.

Target

Program Seeds
Seeds

Queue

Mutation & Schedule
Fuzzing Bitmaps

New Coverage

Figure 13. Seed processing in fuzz testing.

Figure 14 illustrates the discovery of new coverage information during runtime using
AFL as an example. It shows two scenarios: discovering a new path and detecting a
change in the execution count of a path. AFL defines corresponding data structures, such
as trace_bits and virgin_bits, to determine the presence or absence of a path.

Yeh et al. proposed CRAXTriage [42], a triage tool that utilizes binary code coverage
information. It compares the coverage paths of successful executions with the execution
path that triggers a bug, aiming to eliminate unnecessary execution paths that contribute to
the bug. This approach helps in comparing coverage paths to determine their similarity.

Appl. Sci. 2023, 13, 8788 17 of 44

New Path found Paths detail differ

Path 𝐴 Path 𝐴+ Path 𝐴 Path 𝐵

Figure 14. New coverage cases.

4.3. Methods Based on Context Comparison

Some studies utilize bug context to determine duplication, which encompasses various
types of information, such as control flow graphs, data flow graphs, and more. For example,
in one study, RESTful API exception handling, the request and response parameters were
extracted as signatures. The Sørensen–Dice coefficient was then used as a distance metric
to classify them [43]. The most commonly used method is taint analysis, which involves
analyzing the code to generate a control flow graph (CFG), as shown in Figure 15. Symbolic
execution tools like Klee are then used for data flow analysis and reconstruction to recover
as much related bug context as possible. However, this approach tends to generate a
large amount of metadata, which often need to be optimized and condensed. Bug context
typically requires multiple types of metadata to accurately describe bug features, thereby
enhancing triage accuracy. For instance, relying solely on control flow graphs may lead to
misjudgment of crash sites related to transfer control. This is because the source value that
caused the transfer control error may not be explicitly represented in the control flow graph.
Therefore, the support of data flow analysis is necessary to capture such information.

Source Code Control flow graph

int partition(int arr[], int low, int high)
{

int pivot = arr[high];
int i = (low − 1);

for (int j = low; j <= high − 1; j++) {

if (arr[j] < pivot) {
i++;
swap(&arr[i], &arr[j]);

}
}
swap(&arr[i + 1], &arr[high]);
return (i + 1);

}

void quickSort(int arr[], int low, int high)
{

if (low < high) {
int pi = partition(arr, low, high);
quickSort(arr, low, pi − 1);
quickSort(arr, pi + 1, high);

}
}

Figure 15. Source code converted to CFG.

Based on generated context such as CFG, the uniqueness of a bug can be determined
by calculating the similarity of graphs. Currently, kernel methods used for graph similarity
computation often employ pattern-matching techniques. Taking the Weisfeiler–Lehman
subtree kernel algorithm as an example, as shown in Figure 16, for each node in each
subgraph, a first-order breadth-first search (BFS) is performed to obtain its neighboring
node set, which is then sorted. Each node is combined with its label and the labels of its
neighboring nodes to form a new label, which is then hashed. Finally, the original labels

Appl. Sci. 2023, 13, 8788 18 of 44

and the new labels are combined to form feature vectors for comparison and calculation. It
can be seen that this method has relatively high computational complexity.

1

2 3

4 5

6

1

2 3

4 5

6
1: 2, 3, 4

2: 1, 4, 5

……

1: 2, 3, 5

2: 1, 4, 5

……

(1) One-level BFS

1

3 5

6 9

2

3 4

7 8

(3) Relabel

1,2,3,4

2,1,4,5

4,1,2,6

6,3,4,5

3,1,5,6

5,2,3,6

(2) Sort & Hash

1,2,3,5

2,1,4,5

4,1,3,6

6,4,5

3,1,4,5

5,1,2,6

1110

(4) Feature Vector Generation

𝐺 = 2,1,2,1,1,2,2,0,0,1,0

෨𝐺 = 1,2,2,2,1,1,1,1,0,0,1

𝑆𝑖𝑚 =ራ𝑆𝑖𝑚𝑠𝑡 =ራ < 𝐺, ෨𝐺 >

22
2

Figure 16. Weisfeiler–Lehman subtree kernel algorithm.

Peng et al. studied the features of use-after-free (UAF) bugs and identified two similar-
ities [44]: the creation and deallocation related to the bugs are similar, and the crash contexts
are similar. This work mapped the bug context to a 2D plane for clustering and filtering of
duplicate bugs. The average clustering time was reduced to 12.2 s. Huisman et al. proposed
a clustering method based on symbolic analysis that also provides a semantic analysis of
bugs [45]. This work utilized the Klee symbolic analysis tool and employed a clustering-
aware search strategy (CLS) to traverse the semantic execution paths of bug-triggering
samples and identify the first differing branch from the semantic execution path of suc-
cessful samples with the longest matching path. This was considered the bug cause and
used as a feature for clustering. Experimental results showed that compared to methods
based on stack trace and crash site, approximately 50% of test cases could be clustered more
finely. Moroo et al. performed bug triage using Rebucket and Party-Crasher [46]. Given a
categorized bug pool and a bug to be classified, this work first designed a search engine
based on Camel to retrieve M similar bugs (measured using TF-IDF) from the bug pool.
Then, using Rebucket, the similarity between the bug to be classified and the M similar bugs
was calculated, and the bugs were reordered. Following the idea of Party-Crasher, if the
most similar similarity exceeded a threshold, they were grouped; otherwise, they formed
an independent class. The experimental results showed an accuracy of approximately 70%.

Cui et al. proposed RETracer [47], which applies reverse taint analysis to binary code.
It assumes that the first function containing a memory error is the corresponding bug
function, and this forms the basis for bug triage. RETracer does not require complete
memory dump information and only needs CPU context and stack information when the
bug occurs. It combines forward analysis to address the issue of unrecoverable values.
Different handling methods were implemented for tainted analysis within a single function
block and across multiple function blocks. Ultimately, a reverse data flow graph was
constructed to identify the blamed function. RETracer successfully located 118 out of
140 errors. Jeon et al. introduced CrashFilter [48], which reconstructs the possible path
from the crash site to the cause site based on the runtime information of the bug. During
construction, reaching-definition analysis was performed, followed by the creation of a
definition use Chain. Finally, an exploitability check was conducted, optimizing the process
using memory location analysis based on the BinNavi MonoRein framework. Compared to
!exploitable, CrashFilter provided more precise evaluations of crash exploitability. Cui et al.
proposed REPT [49], a method that utilizes hardware tracing to record control flow and

Appl. Sci. 2023, 13, 8788 19 of 44

combines it with core dump to recover data flow. Reverse debugging and taint analysis
were performed afterward. To address irreversibility in certain instructions, REPT uses
forward execution to recover values. Error correction was employed to handle write
instructions with unknown specific addresses. By limiting concurrent writes, the quality of
recovered stored values was further improved. The results showed that REPT achieved an
average accuracy of 92%, with bug analysis time not exceeding 20 s.

Xu et al. constructed the data flow leading to bugs and performed taint analysis to
locate critical statements related to the bug’s cause [50]. Although this work does not
directly aim at bug deduplication and triage, the identification of critical instructions can
still assist in crash localization. POMP builds use-define chains based on control flow
information and uses hypothesis testing with memory validation techniques to determine
potential values in cases of constraint conflicts, thus recovering data flow. Reverse analysis
is then applied to determine the bug cause. Experimental results show that out of 31 tested
bugs, the causes of 29 bugs were accurately identified. Mu et al. implemented POMP++
based on POMP [51]. Before conducting reverse analysis, POMP++ enhanced bias analysis
by incorporating value-set analysis (VSA) and hypothesis verification, allowing for the
recovery of more detailed data flow and increasing the efficiency of bug-cause identification.
Experimental results indicated that compared to POMP, POMP++ can recover an additional
12% of data flow while improving efficiency by 60%. Jiang et al. proposed IgorFuzz [52], a
technique for crash deduplication through root-cause clustering. It focuses on the proof
of concept (POC) that triggers crashes and uses coverage-guided fuzzing to reduce the
execution paths while ensuring the triggering of the same bug. This approach overcomes
the issue of high errors in comparing sequential execution traces. The control flow graph is
used for similarity calculation, and bug clustering is performed using spectral clustering
to determine whether a bug can be grouped with existing POCs. The results showed that
compared to other approaches, IgorFuzz achieved the highest F score in 90% of cases.

Tonder et al. proposed semantic crash bucketing [53], which utilizes approximate
patching techniques, such as automatic patch template generation and rule-based patch
application, to determine the root cause of a bug and map it to the corresponding bug,
completing bug triage. Experimental results demonstrated that 19 out of 21 bugs were
correctly classified using this approach. In 2022, Zhang et al. introduced DeFault [54]. To
eliminate the need for root cause analysis, they defined and quantified bug relevance based
on the concept of mutual information. Bug classification was performed by determining
whether a basic block is present in the bug execution trace. Bug relevance can be used to
optimize bug trace analysis and, in turn, help precisely identify the bug cause. Joshy et al.
proposed a method for bug deduplication using bug signatures [55]. Bug signatures are
composed of the key instructions that trigger a bug. They combine the use of PIN, srcML,
and bear to capture dynamic runtime and variable information, compilation information,
etc. They use C-Reduce to reduce the instructions and generate bug signatures. When two
bugs have signatures that are subsets of each other, they are considered to belong to the
same class. Additionally, the stack trace information in bug signatures is used to determine
the similarity of the bug signatures themselves for final classification. Experimental results
showed an accuracy of 99.1% for bug classification.

5. Works Based on Bug Reports

Throughout the entire life cycle of bug reports, in this paper, we focus on the dedupli-
cation and triage stages. Essentially, both deduplication and triage aim to find similarities
among bug reports. Common methods include text analysis, information retrieval, and
various machine learning techniques. For example, Yang et al. combined TF-IDF vectors,
word-embedding vectors, and component information from bug reports to comprehen-
sively assess the similarity between reports. The commonly used methods for assessing
similarity are briefly introduced in Section 3.2. During deduplication and triage, bug
reports are first preprocessed to eliminate irrelevant information. Common preprocessing
methods include word segmentation, which involves standard transformations such as

Appl. Sci. 2023, 13, 8788 20 of 44

removing punctuation and converting letter cases. Stop word removal is performed to
remove insignificant words such as conjunctions and adverbs. Stemming is also applied,
which involves extracting words in their base form, regardless of their different expressions.

5.1. Information Retrieval Approaches for Deduplication and Triage

Some work uses IR techniques to enhance the ability to automatically flag bugs. For
example, the work of Alawneh et al. [56] can enhance the quality of the bug report by
marking the valuable terms in the bug report. Test results showed that the marking accuracy
exceeds 70%, which is very beneficial to the deduplication and triage of the bug. Figure 17
illustrates the process of information-retrieval-based approaches in bug triage. This type of
work commonly begins by applying preset rules to preprocess bug reports. These rules
include removal of stop words and topic-irrelevant words, splitting and tokenization of
the contents, and normalization of the text. This preprocessing step aims to clean and
prepare the bug reports for further analysis [57]. After preprocessing, the next step involves
extracting useful knowledge from various information sources, such as bug properties,
stack traces, and others. These sources provide additional context and relevant information
about the bugs. Feature extraction techniques are then applied to capture the essential
characteristics or patterns from the extracted information. Finally, similarity measures such
as the Jaccard coefficient, cosine distance, or other similarity metrics are used to assess the
similarity or correlation between bug reports. These measures compare the feature vectors
representing the bug reports and determine their similarity or relatedness.

Signature Distance

Stack Trace

Function Names

Feature Extraction

nGram

Similarity Calculation

Cosine Distance

LDA

Word

Embedding

Bug Properties

Type Platform

Component Priority

Others

Crash

dump

Source

code

Developer

Context

TF-IDF

……

Jaccard

Cause

IFsim

……

(1) Information Retrieval (2) Feature Extraction (3) Similarity Calculation

Figure 17. General process of information-retrieval-based work.

Prifti et al. found that duplicate bug reports exhibit a certain degree of temporal
locality, which can be leveraged to reduce the search space of duplicate reports and im-
prove the search functionality of bug tracking systems (BTS) [23]. Banerjee et al. proposed
FactorLCS [21], which suggests that if two bug reports share the longest common subse-
quence of frequently occurring words in the same order, they are more likely to be similar.
Based on this idea, they detected duplicate bug reports by matching the sequences. The
authors introduced match size within group weight (MSWGW) to weigh the scores of the
longest common subsequence (LCS) and obtain the final matching score, aiming to reduce
the rate of false matches. Banerjee et al. proposed a fusion framework based on multilabel
classification to categorize bug reports into different groups [22]. The authors trained a
multilabel classification model using the MULAN module in the Weka machine learning
software package. For a given bug report to be classified, the framework retrieved the top
20 potential similar reports by combining the highest scores from multiple labels. Lee et al.
proposed a time-based model based on BM25Fext to model the submission time and version
information of bug reports [58]. This model combined the textual information, category
information, and time features to rank potentially similar bug reports. Wang et al. proposed
an approach to improve bug management using correlations in crash reports [59]. They
determined that if the same bug corresponds to different crashes under different scenarios,
these crashes can be correlated. They introduced five rules to determine whether crashes

Appl. Sci. 2023, 13, 8788 21 of 44

are correlated, including three based on stack trace signatures, one based on temporal
locality, and one based on the textual similarity of crash comments. They then used crash
correlation to identify duplicate bugs. Experimental results showed that the deduplication
method achieved a recall rate of 50% for the Firefox dataset and 47% for the Eclipse dataset,
with precision rates of 55% and 35%, respectively.

Rakha et al. conducted experiments and found that the effectiveness of previous
bug report duplication detection methods was overestimated by 17% to 42%. As a result,
they suggested using the resolution field extracted from bug reports (e.g., the “FIXED” or
“WONTFIX” tags) to improve the efficiency of duplication detection [60]. Banerjee et al.
developed a system for evaluating the similarity of documents [61]. Unlike previous works
that assumed reports to be duplicated, this system assigns an unknown status to newly
inputted reports. It then analyzes the cosine similarity of the text, time windows, and
document factors, comparing them with the reports in the repository. For reports identified
as duplicates, the system listed 20 potential matching reports. Finally, a Random Forest
model was employed for classification purposes. Savidov et al. presented Casr [62], a
bug classification approach based on two parameters: the distance of a function from
the top of the stack and the relative distance between identical function calls within two
call stacks. Smaller parameter values indicate higher similarity. Experimental results
demonstrated that this method effectively clustered similar crash reports. Saber et al.
proposed DURFEX [39], which determines whether bug reports are duplicates based on
stack traces. This work involved extracting features from stack traces in multiple steps. First,
function names were replaced with package numbers to reduce the number of features.
Then, N-grams were used to construct feature vectors. The similarity was measured by
calculating the distance between feature vectors and vectors in the model. Finally, similarity
and component features were considered together to generate a list of potential duplicates.
Experimental results showed that using two-gram sequences achieved a recall rate of 86%,
outperforming the use of distinct function names only (recall rate of 81%) and reducing
execution time by 70%.

Budhiraja et al. proposed the LWE method [63], which combines latent Dirichlet
allocation (LDA) and word embedding for deduplication. LWE leverages the high recall
rate of LDA and the high precision of word embedding. It first modifies bug reports
using LDA to exclude obviously dissimilar reports, then uses a word-embedding model
to determine the top k most similar reports. Experimental results showed a recall rate of
0.558 for the top 20 reports. Mu et al. analyzed and summarized the possible causes of
duplication [6], including input differences, thread interleaving, memory dynamics, differ-
ent kernel versions, inline functions, and sanitizers. They designed targeted deduplication
strategies based on these causes, such as using stable versions of the kernel, swapping
the execution of proofs of concept, reducing the impact of thread interleaving and inline
functions using stack traces, selecting specific sanitizers, and replacing the slab allocator
with the slub allocator to mitigate the impact of memory dynamics. Experimental results
showed the effective identification of duplicate error report pairs with a true-positive rate of
80% and a false-positive rate of 0.01%. Chaparro et al. proposed three methods for querying
duplicate bug reports, which are based on bug title (BT), observed behavior (OB), and a
combination of BT and OB [64]. Karasov et al. proposed an approach based on stack trace
information [65]. They compared the similarity between a given stack trace and existing
grouped stack traces, taking into account the time stamps of stack trace occurrences. They
used a linear aggregation model to calculate similarity rankings and selected the most
similar group for insertion. Experimental results demonstrated a 15% improvement in
RR@1 compared to the baseline.

James et al. introduced CrashSearch [66], a method for effectively mapping newly
discovered bugs to categories in a bug dataset. They extracted features from bug reports,
such as bug type and crash function, and generated bug fingerprints using the MinHashing
algorithm with MurmurHash. In the similarity determination process, bugs were divided
into multiple bands, and locality-sensitive hashing (LSH) was used to compute the hash

Appl. Sci. 2023, 13, 8788 22 of 44

values for each band. By comparing the bug index with the index of the bug band, similar
bugs were stored in the same band, thus facilitating bug triage. Additionally, this work
used the bidirectional extension algorithm to further classify bugs based on the different
relationships between similar bug pairs. Experimental results showed that CrashSearch
achieved improved F scores compared to Tracesim, top-k prefix match, major hashing,
and minor hashing, with increases of 11%, 15%, 19%, and 31%, respectively. Yang et al.
proposed a custom knowledge-based detector (K-detector) [67]. This method takes source
code, crash dumps, and historical crash data as input. It first performs data filtering to
extract information such as functions and calls from the stack trace. Then, using the the AST
generated by Clang, it establishes correspondences between functions and components
and defines a mathematical model to measure the similarity between bugs. Experimental
results showed that bug report classification for SAP HANA achieved an AUC of 0.986.

Dhaliwal et al. performed a two-level classification of bugs based on stack traces [32].
The first level was based on the top-method signature, and the second level used the
Levenshtein distance between traces to determine similarity. Experimental results showed
that bug fix time was reduced by 5% after grouping bugs according to method. Park et al.
proposed CosTriage [68], which determines whether assigning a bug to a specific devel-
oper has a low enough cost based on the similarity of bug content and the collaboration
relationship with the developer. CosTriage aims to not only triage bugs to the appropriate
individuals but also minimize costs. It categorizes bugs, models the developers themselves,
and captures attribute changes over time. It then calculates cost scores and ranks them,
recommending the developer with the lowest cost. Experimental results showed that
CosTriage helped reduce costs by 30%.

Hindle et al. used context features to optimize bug deduplication based on infor-
mation retrieval (IR) [69]. These features included software architecture, non-functional
descriptions (such as portability and reliability), topic words, random content, and more.
This work first extracted error-related information from bug reports, then measured their
similarity to an existing database using BM25F. Additionally, a machine-learning-based
classifier was used to identify duplicated bug reports in the dataset. The results showed an
improvement in the accuracy of duplicate bug detection of up to 11.5%, a 41% increase in
Kappa measurement, and a 16.8% increase in AUC measurement. Badashian defined the
bug triage problem as the allocation of a group of bugs to a group of developers with the
lowest cost, considering both minimization of tossing and the cost of developers [70]. This
work first modeled developers based on their contributions to code and Q & A platforms.
They constructed a professional knowledge graph and a knowledge domain graph required
for bug reports. Then, they used the Jaccard similarity measurement to find the developer
whose professional knowledge graph was most similar to the knowledge domain graph
of the bug report. They considered using evolutionary algorithms or the Kuhn–Munkres
algorithm for an optimal solution to the cost of developers for bug resolution.

Zhang et al. considered the impact of developers playing different roles during the
bug-fixing process [71]. They first used the Unigram model to abstractly represent bug
reports, then used Kullback–Leibler (KL) divergence to measure the similarity between bug
reports. This allowed them to extract relevant feature information about potential fixers
from similar bug reports in the dataset. Finally, they ranked the potential fixers based on the
extracted feature information to complete the classification. Experimental results showed
that the average precision, recall rate, and F1 measure for recommending 10 developers
were approximately 75%, 40%, and 52%, respectively. Xia et al. extended latent Dirichlet
allocation (LDA) and proposed a multifeature topic model (MTM) [25]. They designed
TopicMinerMTM to compute the likelihood of recommending a developer. The process
involved two stages: model construction and recommendation. In the model construction
stage, MTM was used to extract multiple topic feature vectors from bug reports, which
were then input to TopicMinerMTM for model construction. In the recommendation stage,
TopicMinerMTM was used to score and recommend developers. After the recommendation,
the model was updated using the recommended results. Experimental results showed that

Appl. Sci. 2023, 13, 8788 23 of 44

TopicMinerMTM achieved an average top-one precision of 68.7% and a top-five precision
of 90.8%.

Goyal et al. proposed three models [72]. The first one is the “Visheshagya” time-
based bug triage model, which considers the factor of developers’ knowledge changing
over time. Experimental results showed a 15% improvement in accuracy compared to
models that do not consider the time factor. The second model is called “W8Prioritizer”,
which assigns different weights and priorities to bug parameters to help classify bugs.
Experimental results demonstrated a 29% increase in accuracy compared to models that did
not consider the priority factor. The third model, “NRFixer”, was developed specifically
for non-reproducible bugs. It uses bug metadata to predict the probability of an NR (non-
reproducible) bug being fixed. The evaluation results indicated that NRFixer achieved
an accuracy of around 70%. Zhang et al. proposed En-LDA [73], which utilizes LDA
(latent Dirichlet allocation) to extract topics from bug reports. The topics are used as word
probability labels, and the entropy of each word is calculated and aggregated based on the
topic distribution to optimize the number of topics. Experimental results showed that En-
LDA achieved an RR@5 of 84% for JDT and an RR@7 of 58% for Firefox. Pham et al. focused
on bug classification using the symbolic analysis tool Klee [45]. They searched for execution
paths that caused bugs through a combination of symbolic analysis and a clustering-aware
search strategy. By comparing the execution paths with successful paths using longest
common prefix (LCP), they analyzed the root cause of bugs and classified them or created
new ones. The experimental results showed that more fine-grained classification results
could be obtained using this approach.

Hindle et al. proposed a method for bug report duplication detection called continuous
querying [74], which involves continuously searching and querying bug reports to deter-
mine if they could be duplicates before reporting the bugs. Experimental results showed
that this query-intensive method can prevent over 42% of observed duplicate bug reports
from occurring. Zhao et al. addressed the issue of different formats between lightweight
bug reports from third-party testing and general bug reports [10]. They proposed a unified
bug report triage framework that involves feature extraction using information gain (IG)
and chi-square (CHI) statistical methods. They then adjusted parameters, vectorized the
features using TF-IDF, generated LDA representations for reports, and applied a three-layer
neural network combined with SVM for triage. Experimental results showed that the
proposed framework achieved an optimal accuracy rate of 49.22% for Eclipse, 85.99% for
baiduinput, and 74.89% for the Mooctest dataset. Yadav et al. developed a scoring system
for developers based on priority, versatility, and average fix time [75]. They used similarity
measurement methods such as Jaccard and cosine similarity to identify bugs in the database
that were similar to the current bug. This helped determine potential developers who could
handle the bug and rank them based on their respective scores. The experimental results
showed average accuracy, precision, recall rate, and F score of 89.49%, 89.53%, 89.42%, and
89.49%, respectively.

Alazzam et al. proposed a method called RSFH (relevance and similarity-based feature
hierarchy) for bug triage [76]. It involves treating the key terms in bug reports as nodes in a
graph. Feature extraction is performed using latent Dirichlet allocation (LDA) to extract
topics. The neighborhood overlap of nodes is used to enhance the feature analysis of
bug reports. Finally, graph classification is used for triage. Experimental results showed
improvements in accuracy, precision, recall, and F measure compared to term frequency
inverse document frequency (RFSTF) and CNN methods when classifying bugs of different
priorities. For example, for bugs with priority p1, the accuracy, precision, recall, and
F measure were 0.732, 0.871, 0.732, and 0.796, respectively. Neysiani et al. proposed a
feature extraction model to aid in bug triage deduplication [12]. The model aggregates
various features extracted from bug reports, including multiple text features extracted
using TF-IDF, time features, context features, and classification features. The authors also
proposed a heuristic feature efficiency detection method for evaluation. Experimental
results showed that using the extracted features improved deduplication accuracy, recall

Appl. Sci. 2023, 13, 8788 24 of 44

rate, and F measure by 2%, 4.5%, and 5.9%, respectively. Nath et al. addressed discrete
and non-discrete features in bug reports using different approaches [77]. They employed
principal component analysis (PCA) for discrete features, specifically using the one-hot
encoded method for analysis. For non-discrete features, they transformed the text into
a bag-of-words (BOW) representation and used an entropy-based keyword extraction
method (greedy variant) for analysis, defining an entropy threshold to filter features. They
combined developer contributions and used multiple classifiers to calculate the probability
of assigning a bug to a specific developer or team. Experimental results showed that
random forest achieved an accuracy of 79% for top-1, 87% for top-5, and 90% for top-10
team assignments. For developer assignments, the accuracy was 54% for top-1, 63% for
top-5, and 67% for top-10.

Panda et al. pointed out that many bug reports contain ambiguous descriptions and
excessive terminology [27], leading to classification hesitation. Traditional machine learning
or precise information retrieval methods may not be effective in such cases. Therefore,
they proposed an approach based on intuitionistic fuzzy sets (IFS) for classification in
the presence of uncertainty. The work included two subparts: IFSDTR and IFSDCR.
IFSDTR focuses on the relationship between developers and terminology, while IFSDCR
aims to assign multiple fixers to multiple bugs. Experimental results showed that the
accuracy of the IFSDTR technique was 0.90, 0.89, and 0.87 for the Eclipse, Mozilla, and
NetBeans datasets, respectively. The accuracy of IFSDCR was even higher for the Eclipse,
Mozilla, and NetBeans datasets, reaching 0.93, 0.90, and 0.88, respectively. Krasniqi et al.
proposed a quality-based classifier that categorizes bugs into six types based on the ISO
25010 standard [57], including reliability, maintainability, usability, and others. They
combined multiple feature extraction tools, such as TF-IDF, chi-square, and random trees.
Experimental results showed that using TF-IDF + chi-square with random forest yielded
the best results in terms of accuracy (76%), recall (70%), and F1 score (70%) for the triage of
bugs related to quality. However, the performance was not as good when triaging bugs
related to functionality. Panda et al. proposed using fuzzy logic, specifically intuitionistic
fuzzy sets (IFS), for bug triage [26]. They first applied LDA to the bugs to generate topic
models and classify them into several classes. They then used the Sugeno complement
generator to estimate the association value between developers and bug models. Finally,
they used IFSim to calculate the similarity between bugs and developers. Experimental
results for the Eclipse dataset showed an accuracy of 0.894, precision of 0.897, recall of 0.893,
and F measure of 0.896.

Khanna et al. proposed TM-FBT (topic modeling-based fuzzy bug triaging) [78], which
combines topic modeling and fuzzy logic for bug triage. Topic modeling is used to define
bug-related models, and fuzzy logic is used to learn the relationship between developers
and bug-related models, enabling the mapping between developers and bugs. Experimental
results on the Eclipse, Mozilla, and NetBeans datasets showed accuracy rates of 0.903, 0.887,
and 0.851, respectively, for the TM-FBT method. Wu et al. introduced CTEDB [79], a
method that utilizes information retrieval (IR) techniques to detect duplicated bug reports.
This approach begins by extracting terminology from bug reports using Word2Vec and
TextRank. Then, it computes semantic similarity using Word2Vec and SBERT. Finally, it
employs DeBERTaV3 to process the extracted terminology from bug reports and calculate
the confidence score for duplicate detection.

Some works focus on data reduction for bugs before performing triage, which involves
converting bugs into important features stored in a bug repository. This approach has the
advantage of reducing the dimensionality of bugs, reducing redundancy, and improving
the quality of the bug dataset. Priyanka et al. surveyed the literature on bug triage based
on data reduction and described the methodological framework, including preprocessing,
vector model construction, data reduction, feature extraction, and triage modules.

Appl. Sci. 2023, 13, 8788 25 of 44

5.2. Machine Learning Approaches for Deduplication and Triage

Based on the machine learning approach, a class of methods often draws inspiration
from NLP techniques. Figure 18 illustrates the process of using machine learning for
deduplication and triage. Unlike IR-based approaches, these methods typically take the
textual information directly from bug reports, developer information, and stack traces
as input. They then employ suitable feature extraction methods such as LDA, graph
extractors, etc., to extract feature vectors or graph representations that can be used by
machine learning models. Finally, trained machine learning models such as CNN, LSTM,
and DNN or classical ML models like SVM are utilized for deduplication and triage tasks.

Ebrahimi et al. proposed a method for detecting duplicate bug reports based on stack
traces and hidden Markov models (HMMs) [80]. They divided the stack traces into several
groups, each containing a main stack trace and multiple stack traces marked as duplicates.
They trained an HMM model to compare and determine whether a new stack trace is a
duplicate. Experimental results showed that for the Firefox and GNOME datasets, the
mean average accuracy reached 76.5% and 73%, respectively. When k > 10, the RR@K
exceeded 90%. Rodrigues et al. introduced a DNN model for bug deduplication [81].
They first used a ranking method to identify the k most similar candidates to the target
report. Then, they employed a soft attention alignment approach to compare the content
of the reports and determine if they were duplicates. The soft alignment model consisted
of a categorical module and a textual module. The categorical module predicted the
probability of similarity between the target report and previous reports, while the textual
module dynamically extracted information from the textual content to remove duplicated
reports. Experimental results showed an improvement of approximately 5% in the recall
rate across four datasets. He et al. proposed a method based on a dual-channel CNN to
detect duplication in bug reports [82]. The key of this approach was to use word2vec to
transform bug reports into two-dimensional matrices and combine the matrices of two bug
reports into a dual-channel matrix. They then trained a CNN to predict the similarity of the
dual-channel matrices extracted from the input bug reports. Experimental results showed
that the detection accuracy, recall rate, precision, and F1 score all exceeded 0.95 on datasets
such as Open Office.

CNN

HMM

ML model

LSTM

Combined

SVM

Kmeans

Feature Extraction

nGram

LDA

Word

Embedding

TF-IDF

AST/CFG

extractor

word2vec

Bug content

Developer Info

GNN

FrameA
FrameB
FrameC
FrameD

Stack traces

Transfer

(2) Feature Extraction (3) Similarly Calculation(1) Information collection

Figure 18. General process of machine-learning-based work.

Aggarwal et al. presented a method that uses the BM25F similarity measure to
classify bug reports by extracting the generic and project-independent context of the bug
report and word lists derived from software engineering textbooks and multiple open-
source projects [83]. They performed the classification on various machine learning models
and achieved a classification accuracy of approximately 92%. Angell et al. focused on
triaging hardware bugs [4]. They used bug reports and hardware design files (HDFs)
as inputs. First, they parsed the HDF to generate several structure-related subgraphs to
ensure the inclusion of potential problematic signals. Bug reports were utilized to extract
signal values, which were used as features and input to a k-means model for clustering.

Appl. Sci. 2023, 13, 8788 26 of 44

Experimental results showed that the average verification efficiency increased by 243%,
with a 99% confidence interval. Dedik et al. aimed to test the differences between bug
triage requirements in industrial settings and open-source projects [84]. They employed an
SVM + TF-IDF method for classification on a private company dataset. Experimental results
showed an accuracy of 53%, precision of 59%, and recall of 47%. These results are similar
to the features exhibited in open-source projects. Lin et al. defined duplication detection
as a ranking problem [85]. They used TF-IDF to compute term weights and BM25 and
Word2Vec to calculate similarities and trained an enhanced SVM model (SVM-SBCTC) to
detect duplicated bug reports. Experimental results demonstrated an RR@5 improvement
of 2.79% to 28.97% compared to SVM-54.

Lee et al. used a combination of CNN and Word2Vec for bug triage [86]. They
transformed bug reports into feature vectors using Word2Vec, taking into consideration
the handling of multilingual environments and field-related terminology. A CNN was
then employed to compute the probability of assigning a bug report to a specific developer.
Experimental results showed that compared to manual triage, their approach achieved
82.83% and 35.83% higher performance in top-one and top-three accuracy than open-
source projects. Xuan et al. attempted to address the issue of insufficient labeled bug
reports [87]. They used an expectation maximization enhanced naive Bayes classifier to
handle a mixture of labeled and unlabeled bug reports. The labeled bug reports were
used to train the classifier, and based on this, an iterative process of labeling the unlabeled
bug reports (E step) and retraining the classifier (M step) was performed. The training
process incorporated a weighted recommendation list to facilitate iterative training of the
classifier. Experimental results demonstrated that this semisupervised method achieved a
6% improvement in accuracy.

Song et al. proposed DeepTriage [88], a method that combines bidirectional LSTM
with pooling for bug triage. DeepTriage considers both the textual information in bug
reports and the activity information of developers. It consists of four layers. The input layer
encodes the textual content of the bug report and the developer sequence, which is then
passed to the feature extraction layer, which contains two extraction models. Bidirectional
LSTM is used to extract features from the bug report content, while unidirectional LSTM
is used to extract features from the developer activity sequence. Experimental results
showed a top-one accuracy of 42.96%. Chaparro aimed to improve the quality of textual
information in bug reports to enhance the accuracy of IR-based deduplication [89]. First,
the author defined and identified relevant information about the observed behavior (OB),
expected behavior (EB), and steps to reproduce (S2R) in bug reports. Then, heuristic text
phrasing or machine learning models like SVM were used to predict whether the bug
reports contained OB, EB, or S2R, and recommendations were provided to the reporter to
improve the related descriptions. Finally, the improved OB, EB, and S2R were utilized to
optimize duplication detection. Xi et al. presented an effective approach for routing of bug
reports to the right fixers called SeqTriage [90], which considers the potential relationship
chain between developers and fixers. SeqTriage consists of an encoder that extracts text
information into hidden states/features and a decoder that computes the tossing sequence.
The encoder is based on bidirectional RNN and GRU neurons, while the decoder uses
RNN to model the tossing sequence. An attention model is introduced in the decoder to
account for the varying contribution weights of each word to the overall text. In practical
applications, the output could be the last developer in the tossing sequence. Experimental
results showed that SeqTriage outperformed other approaches by 5% to 20% in terms
of accuracy.

Xie et al. proposed DBR-CNN [91], which preprocesses bug reports by removing
irrelevant words and tokenizing them. The tokenized words are then transformed into
feature vectors using word embedding. Finally, a CNN is used to compute the similarity
score between two bug reports. Experimental results showed that the F score and accuracy
reached 0.903 and 0.919, respectively. Jiang et al. introduced the TERFUR framework to
address fuzzy clustering test reports (FULTERs) [24]. This framework clusters bug reports

Appl. Sci. 2023, 13, 8788 27 of 44

by defining rules to identify and remove invalid reports. The bug reports are preprocessed
by removing stop words and enhancing the textual content using NLP models. The
vector space model is employed to calculate the similarity between bug reports, and a
merging algorithm is used for clustering, achieving an average accuracy, recall rate, and
F1 measure of 78.15%, 78.41%, and 75.82%, respectively. Alenezi et al. extracted structural
features from bug reports [92], including component, operating system, and priority. They
used a naive Bayes classifier to predict the probability that a developer can handle a bug.
Experimental results showed F scores of 0.633, 0.584, and 0.38 for Netbeans, Freedesktop,
and Firefox, respectively.

Budhiraja et al. employed word embedding to convert bug report descriptions into
vectors and trained a DNN model called DWEN for classification [93]. Experimental
results showed an RR@20 (reciprocal rank at 20) score of over 0.7. Choquette-Choo et al.
considered the role of developers in bug triage and proposed a DNN model to predict triage
results [29]. The model had two outputs: team prediction and more refined developer
prediction. It utilized a multilabel classifier and was trained in two stages. The first
stage focused on training for team bug resolution labels, while the second stage involved
training for labels related to the relationships between developers, coding teams, and
bugs. Experimental results showed a 13% improvement in 11-fold incremental-learning
cross-validation accuracy (IL-CV) compared to traditional DNN models. The accuracy for
team assignment reached 76%, and for individual assignment, it reached 55%. Kukkar et al.
proposed a CNN- and boosting-enhanced random forest (BCR) structure to classify bugs
according to the severity of bug reports [94]. They first preprocessed the bug reports by
removing irrelevant information and extracting text features using N-gram. These features
were then fed into a CNN to extract bug severity features. Finally, random forest was used
to categorize each bug, making the result more reliable and avoiding overfitting issues. The
DNN model achieved an accuracy of 96.34% and an F measure of 96.43%. Xi et al. presented
iTriage [95], which extracts features for bug triage based on the textual content, metadata,
and tossing sequence of bug reports. The textual content and tossing sequence are used to
train a feature learning model, while the metadata are used to train a fixer recommendation
model. The feature learning model takes the textual content as input, incorporates attention
mechanisms to extract word properties, and adapts them to corresponding developers,
generating a tossing sequence combined with metadata for subsequent classification tasks
using a simple neural network. Experimental results showed that iTriage achieved a 9.39%
improvement in top-one accuracy compared to TopicMinerMTM.

Mani et al. proposed DeepTriage [96], which utilizes a deep bidirectional RNN and
attention models to identify and preserve important content in bug reports. After extracting
features, a softmax classifier is used for classification. Experimental results showed a rank-
10 triage accuracy ranging from 34% to 47%. Catolino et al. believed that mining the
root cause of bugs can help with classification [97]. They manually labeled 1280 bug
reports based on the root cause to determine potential causes. They then profiled the
causes based on their frequency, associated topics (extracted using enhanced LDA: LDA-
GA), and required fixing time. Finally, they proposed a classification model based on
logistic regression. Experimental results showed an F measure of 64%. Poddar et al.
presented a neural network architecture that can simultaneously perform deduplication
and clustering [98]. Bug reports are first transformed into d-dimensional vectors using
word embedding, and bidirectional GRU units generate two sets of g-dimensional vectors
containing coarse-grained topic information and other fine-grained information. The model
employs topic clustering using vector topic information combined with self-attention,
and the remaining information is utilized for deduplication using conditional attention.
Experimental results showed F1 scores of 0.95 and 0.88 for deduplication in Firefox and
JDT, respectively. Sarkar et al. used machine learning models to classify bug reports based
on Ericsson’s bug data [99]. They extracted text features from bug reports using the TF-IDF
method, obtained categorical features using one-hot encoding, and collected log features
such as alarms and crash dumps. Bug triage was performed using L2-regularized logistic

Appl. Sci. 2023, 13, 8788 28 of 44

regression with the Liblinear solver. Experimental results showed precision and recall rates
of 89.75% and 90.17%, respectively, with a confidence level of 90%.

Pahins et al. proposed T-REC [100], which combines machine learning and infor-
mation retrieval (IR) techniques. After preprocessing and normalizing text information,
unstructured natural language descriptions and structured software engineering data are
obtained. The vector space model (VSM) is used to convert text into 300-dimensional vector
representations, and machine learning ranking methods are employed to rank the technical
groups. T-REC also uses a series of BM25F-based extension versions for detection. Finally,
a noisy-or classifier is used to calculate the joint probability distribution and provide the
final recommendations. Experimental results showed an accuracy of 76.1% for ACC@5,
83.6% for ACC@10, and 89.7% for ACC@20. Guo et al. used a CNN-based method for
bug triage [101]. This approach involved converting the content of bug reports into vector
representations using word2vec. By combining developer activity information, a CNN
was utilized to map bug reports and developers. Experimental results showed a top-10
accuracy of 0.7489. Lee et al. proposed using backpropagation techniques to improve
the accuracy of multiple LDA (latent Dirichlet allocation) [11]. They first applied LDA
to bug reports for topic modeling and classification, obtaining the union topic set (UTS).
They then performed modeling and classification on priority and severity to obtain the
partial topic set (PTS), allowing for the identification of cases where priority or severity
was not correctly captured in the classification. Bug reports that were misclassified were
analyzed to extract the feature topic set (FTS), and based on FTS information, the bug
reports were retriaged to obtain an updated UTS. Experimental results showed that the
classification accuracy for different priorities exceeded 84%. Xiao et al. proposed HINDBR,
a neural network for detecting semantic similarity in bug reports [102]. It transforms the
structured or unstructured semantic relationships in bug reports into low-dimensional
vector representations and determines whether reports are duplicates based on the distance
between vectors in the latent space.

Zhang et al. argued that directly assigning bug triage to a specific developer in the in-
dustry is not reasonable due to frequent personnel changes [103]. Therefore, they proposed
using components as the target for triage and recommending the current active developer
associated with the component. The process of this method is similar to typical machine
learning approaches. Bug reports are preprocessed to remove irrelevant information; then,
LDA is used to extract topic features. Finally, a DNN model is constructed to predict the
relationship between topic features and corresponding labels. Experimental results showed
RR@5 rates of 85.1%, 70.1%, and 92.1% for recommending active developers on the JDT,
Platform, and Firefox datasets, respectively. Russo et al. employed an NLP approach
using word2vec to transform the text in bug reports into bag-of-words (BOW) and extract
feature vectors [104]. LSTM was trained for bug triage. Experimental results showed that
this approach achieved approximately 78% accuracy after six iterations. Neysiani et al.
proposed a new feature extraction model that uses a combination of TF-IDF-based features
to improve the efficiency of deduplication [105]. He et al. used a hierarchical attention
network for automatic bug triage [106]. Considering the limitations of existing feature
extraction methods, the authors utilized Word2Vec and GloVe to extract features from bug
reports. A hierarchical attention network based on an RNN was employed to overcome
the limitations of CNNs, focusing on local information and LSTM being distracted by long
sequences. The hierarchical nature in this context refers to the use of different attention
mechanisms for words and sentences. Experimental results showed accuracy ranging from
50% to 65% for different datasets.

Wang et al. built a hybrid DNN model using RNN and CNN for triage [107]. LSTM
was utilized to capture sequence information in the text, while CNN was used to extract
local information. Attention mechanisms were employed to weight the features, and the
features were fed into fully connected and softmax layers to obtain the triage results. Ex-
perimental results showed top-five accuracy of 80% on the Eclipse dataset and 60% on the
Mozilla dataset. Yu et al. proposed a bug triage model called BTCSR that considers the co-

Appl. Sci. 2023, 13, 8788 29 of 44

operation and order relationships among elements involved in the bug-fixing process [108],
including reviewers and fixers. BTCSR first analyzes the content of bug reports, extracts
topic and terminology-related features, and searches for similar bug reports in the dataset.
Then, a sequence graph model is constructed that considers the cooperation relationships
of various elements and includes several types of metapaths extracted from historical
bug reports. The most suitable fixer is determined by comparing the similarity of paths.
Experimental results showed RR@3, RR@5, and RR@10 of 51.26%, 63.25%, and 74.14%.
respectively, on average, outperforming SVM and DeepTriage. Zaidi et al. transformed
the bug triage problem into a node classification problem in a graph [109], which can be
solved using a graph convolution network (GCN). This method first performs common
preprocessing on bug reports, such as stop word removal, then converts the documents
into graphs, where words are transformed into nodes and the relationships between words
and between words and documents are converted into edges. TF-IDF is used to weight the
edges. The transformed graph is then used as input for GCN to compute the classification
results. Experimental results showed top-10 accuracy rates of 84%, 72.11%, and 66.5% on
the JDT, Platform, and Firefox datasets, respectively.

Jahanshahi et al. proposed DABT [110], a method that considers bug dependency and
factors such as developers’ fix time. They first built a bug dependency graph (BDG) to
represent the existence of dependencies among bugs. They used LDA for topic modeling
to estimate the time required for developers to fix bugs. Based on TF-IDF features, they
used SVM to obtain classification labels and calculate the suitability between bugs and
developers. Finally, they abstracted the triage problem into an integer programming
problem to determine how to assign bugs to developers or defer them. Experimental results
showed that although DABT had a decrease in triage accuracy, it significantly reduced the
time required for bug fixes by less than 50%. Zaidi et al. used one-class SVM to address
the issue of new developers who cannot effectively participate in bug triage [111]. They
trained an independent model for each developer to determine whether a bug can be
assigned to them. The process aligns with the common process of preprocessing bug
reports, extracting features, training classifiers, and making predictions. Experimental
results showed an average accuracy of approximately 93% and an average recall rate of
approximately 53%. Zhang et al. focused on the importance of assigning bugs to less
experienced developers to maintain project sustainability [112]. They proposed SusTriage,
which categorizes developers into three types—core, active, and peripheral developers—
and models each type separately. For each type of developer, they used multimodal learning
to construct a model that predicts the probability of using a certain type of developer for a
given bug report. Finally, they integrated multiple recommendation models for different
types of developers, along with corresponding learning weights, to make recommendations.
Experimental results showed that SusTriage outperformed baseline methods, with a 69%
increase in MAP and a 61% increase in MRR in the Eclipse project. It also increased MAP by
57% and MRR by 46% in the Mozilla project. For Eclipse and Mozilla, it increased diversity
by 14% and 6% and entropy by 55% and 13%, respectively.

Aktaş attempted to classify bugs for the technical team in an industrial environment [113].
They first tokenized the description and summary parts of bug reports and transformed
them into n-dimensional vectors using TF-IDF, corresponding to the terminology and
weights in the reports. They then trained a two-level classifier, where the lower-level
classifiers were a series of classifiers such as KNN, SVM, and decision tree, and the high-
level classifier was a linear logistic regression that integrated the predictions of the lower-
level classifiers. Experimental results showed a slight drop in accuracy compared to manual
classification, with an accuracy of 0.83 compared to 0.86. However, it significantly reduced
the human resource cost. Jang et al. extracted features from bug reports and inputted the
obtained feature vectors into a CNN+LSTM model for bug triage recommendation [28].
The recommended accuracy was approximately 52.4%. Aung et al. designed a multitask
learning model for bug triage [114] that uses a context extractor and an AST extractor to
extract textual information and code information from bug reports and obtain developer

Appl. Sci. 2023, 13, 8788 30 of 44

and bug categories. They used a context augmenter to replace words in the original reports
to enhance functionality and generate augmented reports. Finally, they used a CNN-based
text encoder and a BiLSTM-based AST encoder to simultaneously determine the developer
to be assigned and the possible bug type. Experimental results showed an average accuracy
of 57% for developers and 47% for bug types.

Lee et al. proposed an optimized version of bug triaging called LBT-P [49], which is
based on pretrained language models (PLMs). They used the patient knowledge distillation
(PKD) technique to transfer knowledge from the PLM module to the Roberta module,
making it faster and more efficient for specific tasks while minimizing knowledge loss. To
address the catastrophic forgetting problem in transfer learning, this work used knowledge
preservation to prevent forgetting of general knowledge. They froze earlier layers, since
general knowledge is retained in this part. They defined a weighted loss function based
on the presentation of earlier layers to handle the overthinking problem, where excessive
computation may lead to performance degradation. The framework consists of a text-
embedding module based on PLMs, which converts bug reports into text-embedding
vectors, and a classifier based on a CNN (rather than RNN) due to the high time cost.
Experimental results showed accuracy rates of 75.2%, 82.7%, 78.2%, and 79.3% on Google
Chrome, Mozilla Core, Mozilla Firefox, and a private dataset, respectively, outperforming
TF-IDF, DBRNN-A, and RoBERTa-large + CNN. Yu et al. aimed to mitigate the impact of
low-quality bug descriptions and proposed MSDBT [115], which also considers component
and product information. They primarily used LSTM to process the content of bug reports
and calculate the textual content and fixer features. They introduced an attention layer to
determine the influence of features on the results and generated a series of probabilities
corresponding to fixers for each bug. Experimental results showed RR@3, RR@5, and
RR@10 values of 0.5424, 0.6375, and 0.745, respectively.

Wu et al. built upon the developer collaboration network (DCN) and considered the
interaction between developers to propose the ST-DGNN model for bug triaging [9]. It
includes the joint random walk (JRWalk) mechanism and a graph recurrent convolutional
neuron network (GRCNN). JRWalk is used to sample the developer collaboration network
and obtain the attributes related to developers themselves and their interactions. GRCNN
uses the sampled attributes to learn the spatiotemporal cyclic features of DCN in hour, day,
and week units. This functionality was achieved using a CNN (for extraction of spatial
features) and LSTM (for extraction of temporal features). An attention layer was introduced
to balance the three types of time-spatial features. Finally, a simple neural network was
used to perform three classification tasks: (1) determining the most suitable developer to
fix a specific type of bug, (2) predicting whether a developer has a good willingness to
collaborate, and (3) assigning bugs to the predicted most suitable developer. Experimental
results showed an average F1@k value of 0.7 for multiterm prediction in bug triage tasks.
Chao et al. introduced DeepCrash [116], which utilizes frame2vec to split and extract frame
representations from stack traces. A Bi-LSTM-based DNN model was used to convert the
frame representations into vector representations and compute similarities. Finally, the
Rebucket clustering algorithm was applied to complete the triage. Experimental results
showed that DeepCrash achieved an F score of 80.72%. Zaidi et al. proposed using a
transformer (BERT) to recommend developers for a given bug [117]. Structural features
were extracted from bug report descriptions, and the unstructured text was tokenized and
fed into a fine-tuned BERT model. The output was connected with fully connected layers
and a classification layer for the final classification. Fine-tuning was essentially a transfer
learning method, and when adding a new developer, 40% of existing developer data were
randomly selected for retraining of the model. Experimental results showed that this work
achieved over 60% top-10 accuracy on multiple datasets.

Samir et al. emphasized the significance of interpretability in improving the rationale
of bug triage [118]. They proposed two interpretable machine learning models for bug
triage. The first model is designed to model developers and predict the bug types that are
best-suited for a specific developer to fix. The second model is aimed at modeling bugs

Appl. Sci. 2023, 13, 8788 31 of 44

and predicting the most suitable developer to fix a particular bug. Chauhan et al. proposed
DENATURE, a method that combines information retrieval (IR) and machine learning (ML)
techniques for detection of duplicate bug reports and bug triage [30]. They first convert bug
reports into TF-IDF vectors using an IR-based approach and calculate cosine similarity to
determine if bug reports are duplicates. Then, they utilize machine learning classifiers such
as SVM and logistic regression to perform bug triage, which involves identifying the type
of bug. Jiang et al. conducted experiments and demonstrated that both IR-based and ML-
based methods suffer from information loss when evaluating text similarity [31] and that
ML-based approaches do not necessarily outperform IR-based methods. To address this
issue, the authors proposed a hybrid approach that combines both IR and ML techniques
for calculation of text similarity. In this approach, IR methods are used to compute textual
and semantic features, while ML methods are employed for classification and prediction
tasks. By integrating these two approaches, the authors aimed to improve the accuracy and
performance of text similarity evaluation and bug triage.

6. Evaluation Methods and Results

Table 3 presents an effect comparison of relevant works based on runtime information
categorized into three groups based on method. It can be observed that methods in this
category achieve relatively good results, with accuracy exceeding 70% in general. This
is mainly because real-time access to runtime information provides more comprehensive
data, resulting in higher precision in analysis. However, these methods often come with
significant real-time overhead. Therefore, some works also evaluate the cost of these
methods, such as the time consumed and the efficiency of parameter collection.

Table 4 presents an effect comparison of relevant works using information retrieval
methods based on bug reports. This category of works primarily utilizes text processing
and topic modeling techniques to identify similarities between text documents. Therefore,
the effectiveness of these methods is highly influenced by the quality of the text. Some
works also incorporate the developer’s expertise and the bug report handling process as
modeling factors to improve the results. Overall, the results of this category of methods
do not show a significant improvement or decline compared to the methods based on
runtime information.

Table 5 presents an effect comparison of relevant works using machine learning
methods based on bug reports. This category of methods primarily relies on NLP techniques
to convert bug reports into feature vectors, which are then fed into machine learning models
for classification. Generally, the accuracy of these methods is slightly lower that that of
the methods based on runtime information and those using IR methods with bug reports.
Apart from the precision issues inherent in bug reports themselves, the lower effectiveness
can also be attributed to the limitations of the machine learning models used for NLP
tasks. However, the advantage of using machine learning methods lies in their efficiency in
handling large-scale inputs.

Appl. Sci. 2023, 13, 8788 32 of 44

Table 3. Effect comparison of works based on runtime information.

Category Work Methods Runtime
Information Effect Dataset

Methods based
on comparing

stack traces

CrashAutomata N-gram Stack traces F measure: 97% 5.7 k traces
from Mozilla

DURFEX Variable-length
N-gram Stack traces

93% and 70% less
execution time

compared with 1,
2-g

380 k traces from
Firefox and Eclipse

FuRong Levenshtein
distance

Stack trace in
Android bug log

93.4% precision
and 87.9%

accuracy, on
average

91 bugs from
8 Android

applications

S3M biLSTM encoder Stack traces

0.96 and 0.76
RR@10 for JetBrain

and Netbeans,
respectively

340 k traces from
JetBrains and

Netbeans

abaci-finder kstack2vec,
BiLSTM Stack traces 0.83 F1 score 17 k traces

from syzbot

Methods based on
analyzing coverage CRAXTriage Coverage

comparison Bug execution path Not mentioned 11 programs

Methods based
on comparing

contexts

Fast clustering
for UA

Clustering in
2D plane UAF bug context 12.2 s clustering

time
1.2 K samples

from IE8

Clustering based
on symbolic

analysis

symbolic analysis
and clustering Bug execution path

50% cases allow for
finer-grained

analysis
21 programs

Reranking-based
deduplication TF-IDF, Rebucket races ∼7 Stack T0%

accuracy

51 k reports from
Launchpad and

Firefox 48

REPT

Hardware
tracing,reverse
debugging, and

taint analysis

Program with bugs 92% accuracy,
on average 14 programs

POMP
Reverse

debugging, taint
analysis

Program with bugs
More than 93%

bug causes
identified

28 prgrams

POMP++ reverse debugging,
taint analysis Program with bugs 12% more data

flow recovered 30 programs

IgorFuzz
Graph similarity

calculation,
spectral clustering

Crash poc
Achieved the

highest F score in
90% of cases

Magma and
Moonlight
benchmark

Triage based on
bug signature

PIN, srcML, bear,
C-Reduce Program with bugs 99.1% precision Reports from

7 programs

Appl. Sci. 2023, 13, 8788 33 of 44

Table 4. Effect comparison of works using the IR method based on bug reports.

Work Methods Effects Dataset

Deduplication through local references Reducing search space based on
temporal locality Up to 53% recall rate 74 k from FireFox

Time-based deduplication BM25Fext 45 k from eclipse 77% RR@20

FactorLCS Enhancing LCS using size matching within
group weight ≥70% recall rate 97 k+ from Firefox and 41 k+ from Eclipse

Fusion approach For deduplication MULAN-based multilabel classification model 72% recall rate and up to 40% performance
improvement 111 k from Firefox

Triaging for very large bug repositories Text cosine similarity, time window, and
document factors

≥95% original recall and low duplicate recall
as a filtration aide; ∼70% recall rate as
triaging guide

246 k from Eclipse, Firefox, and Open Office

Deduplication using correlations Stack trace signature, temporal locality, and
crash comment textual similarity

50% and 47% Recall Rate and 55% and 35%
precision for the FireFox and Eclipse datasets,
respectively

1 k+ types from FireFox and MSR and 20 k+
from Eclipse

LWE LDA and word embedding 0.558 RR@20% 768 k from Mozilla

Refined feature-based deduplication Resolution field extraction Not mentioned 10∼22% recall rate improvement and 7∼18%
precision improvement

Duplication based on multiple factors Reasonable parameter selection 80% TP and 0.01%FP for deduplication 3 M from syzbot

Stack trace similarly aggregation Aggregate computing 15% RR@1 improvement 40 k from Netbeans and 210 k from JetBrains

CrashSearch Locality-sensitive hashing 11% F-score improvement compared with
minor hashing 1 k from eight real-world programs

K-detector AST comparison 0.986 AUC on SAP HANA 10 k dump from SAP HANA

Reformulating queries Three different queries 42 k from 20 open-source projects 56.6∼78% duplication detection

CosTriage Reduce cost of assigning bugs 30% cost reduction 13 k from Apache, 152 k from Eclipse, 5 k
from Linux kernel, and 162 k from Mozilla

Duplicate based on contextual approach Multiple context feature comparison 11.5% accuracy improvement, 41% Kappa
improvement, and 16.8% AUC improvement

37 k from Android, 43 k from Eclipse, 71 k
from Mozilla, and 29 k from OpenOffice

Triage based on developer analysis Unigram model and Kullback–Leibler (KL)
divergence ∼75% precision and ∼40% and ∼52% F1 score 8 k from Eclipse and 10 k from Mozilla

Appl. Sci. 2023, 13, 8788 34 of 44

Table 4. Cont.

Work Methods Effects Dataset

TopicMiner Multiple-topic model 68.7% and 90.8% for top-one and top-five
precision, respectively

27 k from GCC, 42 k from OpenOffice, 46 k
from Netbeans, 82 k from Eclipse, and 86 k
from Mozilla

Triage for non-reproducible bug Time analysis, priority assignment, and
NRFixer ∼70% precision Mozilla and Eclipse

En-LDA LDA and entropy calculation 84% RR@5 for JDT and 58% RR@7 for Firefox 3 k from Mozilla and 2 k from Eclipse

Deduplication by continuous querying Continuous querying Over 42% duplication prevention

222.4 k from Android, App Inventor, Bazaar,
Cyanogenmod, Eclipse, K9Mail, Mozilla,
MyTrack, OpenOffice, Openstack, Osmand,
and Tempest

Unified triage framework Information gain, chi-square statistics, TF-IDF,
LDA, and SVM

49.22%, 85.99%, and 74.89% precision for
Eclipse, Baiduinput, and Mooctest,
respectively

2 k reports from Eclipse and 0.2 k reports from
Baiduinput

Triage based on expertise score Jaccard and cosine similarity 89.49% accuracy, 89.53 % precision, 89.42%
recall rate, and 89.49% F-score

41 k reports from Mozilla, Eclipse, Netbeans,
Firefox, and Freedesktop

RSFH LDA and graph classification 0.732 accuracy, 0.871 precision, 0.732 recall
rate, and 0.796 F score 135 k from Bugzilla

Feature extraction model for triage TF-IDF and heuristic feature detection 2% precision, 4.5% recall rate, and 5.9%
F-score improvement Not mentioned

Triage based on principal component analysis Principal component analysis and
entropy-based keyword extraction

90% top-10 team precision and 67% individual
precision 43 k from a private dataset

Intuitionistic fuzzy-set-based triaging Intuitionistic fuzzy sets (IFS) 15% 0.93, 0.90, and 0.88 precision for Eclipse,
Mozilla, and NetBeans, respectively 32 k from Eclipse, Mozilla, and NetBeans

Quality-based classifier Multiple-feature extraction 76% precision, 70% recall rate, and
70% F1 score 5 k from Jira and Bugzilla

Intuitionistic fuzzy-set-based triage LDA and IFSim 0.894 accuracy, 0.897 precision, 0.893 recall
rate, and 0.896 F1 score for Eclipse Eclipse

TM-FBT Topic modeling and fuzzy logic 0.903, 0.887, and 0.851 precision for Eclipse,
Mozilla, and NetBeans, respectively Eclipse, Mozilla, and NetBeans

CTEDB Word2Vec, TextRank, SBERT, and DeBERTaV3 66 k from eclipse and 230 k from mozilla Over 98% accuracy, ∼96% precision, 96%
recall rate, and 96% F1 score

Appl. Sci. 2023, 13, 8788 35 of 44

Table 5. Effect comparison of works using ML methods based on bug reports.

Work Methods Effects Dataset

HMM-based deduplication Hidden Markov models (HMMs) 76.5% and 73% average accuracy for Firefox
and GNOME, respectively 1 M from Firefox and 753 k from GNOME

Soft alignment model for deduplication Soft-attention alignment and DNN 5% RR@K improvement 25 k from Eclipse, 54 k from Mozilla, 11 k from
NetBeans, and 15 k from OpenOffice

Dual-channel CNN-based deduplication Word2vec and dual-channel CNN Over 0.95 accuracy, recall rate, precision, and
F1 score

90 k from OpenOffice, 246 k from Eclipse, and
184 k from Netbeans

Domain knowledge-based deduplication BM25F and multiple ML models Up to 92% accuracy 37 k from Android, 42 k from OpenOffice, 72 k
from Mozilla, and 29 k from Eclipse

Triage in industrial context SVM and TF-IDF 53% accuracy, 59% precision, and 47% recall
rate 2 k from Jira and 9 k from Mozilla

Deduplication with manifold correlation
features TF-IDF, BM25, and word2Vec 2.79∼28.97% RR@5 improvement 6 k from ArgoUML, 9 k from Apache, and 4 k

from SVN

Deep-learning-based automatic bug triage Word2Vec and CNN 82.83% and 35.83% higher performance in
top-one and top-three accuracy, respectively 24 k from four datasets

Semisupervised bug triage Enhanced naive Bayes classifier 6% accuracy improvement 20 k from Eclipse

DeepTriage-song BiLSTM and LSTM 42.96% top-one accuracy 200 k from Eclipse and 220 k from Mozilla

SeqTriagle Bidirectional RNN and attention model 5∼20% accuracy improvement 210 k from Eclipse, 300 k from Mozilla, and
165 k from Gentoo

DBR-CNN Word embedding and CNN 0.903 F score and 0.919 accuracy 1.8 k from Hadoop, 12 k from hdfs, 7 k from
Mapreduce, and 22 k from Spark

TERFUR NLP model, vector space model, and merging
algorithm

78.15% accuracy, 78.41% recall rate, and
75.82% F1 score

0.3 k from Justforfun, 0.3 k from SE-1800, 0.4 k
from iShopping, 0.2 k from CloudMusic, and
0.4 k from UBook

Triage using categorical features Naive Bayes classifier 0.633, 0.584, and 0.38 F score for Netbeans,
Freedesktop, and Firefox, respectively Netbeans, Freedesktop, and Firefox

DWEN Word embedding and DNN Over 0.7 RR@20 700 k from Mozilla and 100 k from OpenOffice

Multilabel, dual-output DNN for triaging Mutilabel classifier 76% accuracy for team assignment and 55%
accuracy for individual assignment 236 k from a private dataset

Appl. Sci. 2023, 13, 8788 36 of 44

Table 5. Cont.

Work Methods Effects Dataset

Triage Using CNN and RF with Boosting CNN, and boosting-enhanced random forest
(BCR) 96.34% accuracy, and 96.43% F score Mozilla, Eclipse, JBoss, OpenFOAM, and

Firefox

itriage Tossing sequence model and RNN with GRU 9.39% top-one accuracy improvement 210 k from Eclipse, 300 k from Mozilla, and
165 k from Gentoo

DeepTriage-mani Bidirectional RNN and softmax classifier 34∼47% accuracy 383 k from Chromium, 314 k from Mozilla
Core, and 162 k from Mozilla Firefox

Triage based on bug cause Enhanced LDA 64% F score 1k+ from Apache, Eclipse, and Mozilla

Partially supervised neural network for
deduplication and clustering

Word embedding, bidirectional GRU units,
topic clustering, and conditional
attention-based deduplication

0.95 and 0.88 F score for Firefox and JDT,
respectively

17 k from SnapS2R, 46 k from Eclipse, and
34 k from FireFox

Triage with high confidence TF-IDF, one-hot encoding, and logistic
regression 89.75% Precision, and 90.17% recall rate 11 k from Ericsson

T-REC Vector space model, BM25F, and noisy-or
classifier

76.1% CC@5, 83.6% ACC@10, and 89.7%
ACC@20 9.5 M from Sidia

Developer activity-motivated triage Work2vec and CNN 0.7489 top-10 accuracy 39 k from Eclipse, 15 k from Mozilla, and 19 k
from Netbeans

AI-based document generation model LDA and backpropagation Over 84% accuracy 3 k from Bugzilla and 41 k from MSR

Triage for industrial environments LDA and DNN 85.1%, 70.1%, and 92.1% RR@5 for JDT,
Platform, and Firefox, respectively

1 k from JDT, 4 k from Platform, and 13 k
from Firefox

NLP-based triage Word2vec and LSTM ∼78% accuracy Not mentioned

Hierarchical attention network for triage Word2Ve, GloVe, and hierarchical attention
network 50∼65% accuracy

633 k from Chromium, 1 M from Core, 1 M
from Firefox, 187 k from Netbeans, and 318 k
from Eclipse

Mixed DNN for triage LSTM and CNN 80% and 60% top-five accuracy for Eclipse and
Mozilla, respectively 200 k from Eclipse and 220 k from Mozilla

BTCSR TF-IDF, LDA, random walk, and cooperative
SkipGram

51.26% RR@3, 63.25% RR@5, and 74.14%
RR@10

14 k from Eclipse, 10 k from Mozilla, 11 k from
Netbeans, and 2 k from GCC

Triage using GCN TF-IDF and graph convolutional network 84%, 72.11%, and 66.5% top-10 accuracy for
DT, Platform, and Firefox, respectively

1 k from JDT, 4 k from Platform, and 37 k from
Firefox

Appl. Sci. 2023, 13, 8788 37 of 44

Table 5. Cont.

Work Methods Effects Dataset

HINDBR Low-dimensional space vector conversion 2 M from nine datasets 98.83% accuracy and 97.08% F1 score

DABT Bug dependency graph, LDA, TF-IDF, and
SVM 50% bug fix time reduction 16 k from JDT, 70 k from LibreOffice, and

112 k from Mozilla

One-class classification-based triage One-class SVM ∼93% average accuracy and ∼53% average
recall rate 4 k from Platform and 20 k form Firefox

SusTriage Multimodal learning
69% mean average precision improvement
and 61% mean reciprocal rank improvement
in Eclipse project

16 k from Eclipse and 15 k from Mozilla

Efficient feature extraction model TF-IDF-based feature extraction Android, Eclipse, Mozilla, and OpenOffice 97% accuracy, precision, recall rate, and
F1 score

Triage in large-scale industrial contexts TF-IDF and two-level classifier Human resource reduction 78 k reports

Triage using CNN-LSTM CNN and LSTM 52.4% accuracy 383 k from Chromium, 314 k from Firefox, and
162k from Mozilla core

Multi-triage AST extractor, context augmenter, text
encoder, and AST encoder

57% accuracy for developer triage and 47%
accuracy for bug triage

81.6 k from aspnetcore, azure-powershell,
Eclipse, efcore, elasticserach,
mixedrealitytoolkit-unity, monogame, nunit,
realm-java, Roslyn, and rxjava

Triage based on transfer learning Transfer learning
75.2%, 82.7%, 78.2%, and 79.3% accuracy for
Chrome, Mozilla Core, Firefox, and a private
dataset, respectively

163 k from Chromium, 186 k from Mozilla
Core, 138 k from Mozilla Firefox, and 75 k
from a private dataset

MSDBT LSTM 0.5424 RR@3, 0.6375 RR@5, and 0.745 RR@10 14 k from Mozilla, 10 k from Eclipse, 11 k from
Netbeans, and 2 k from Gcc

ST-DGNN Joint random walk and graph recurrent
convolutional neural network ∼0.7 F1@k 150 k from Eclipse and 170 k from Mozilla

Deepcrash frame2vec, Bi-LSTM, and Rebucket 80.72% F score 10 k from SAP hana and 47 k from Netbeans

Triage using transformer BERT and transfer learning Over 60% top-10 accuracy Eclipse, Firefox, and NetBeans

DENATURE TF-IDF, SVM, and logistic regression 45 k from Eclipse 88.8% accuracy

XAI-based triage XAI model 208 K from Eclipse Not mentioned

CombineIRDL IR + ML 1 M from Eclipse, Mozilla, and OpenOffice 7.1∼11.3% precision improvement

Appl. Sci. 2023, 13, 8788 38 of 44

7. Findings and Future Direction
7.1. Findings from Existing Works

• The currently used BTS use the approaches based on bug reports to implement dedu-
plication and triage, which is mainly determined by the ease of obtaining and transmit-
ting bug reports. The biggest obstacle to using runtime information-based methods
lies in the complete acquisition and format conversion of runtime information, which
is also a possible research direction in the future. The similarity measurement used by
BTS also generally requires more accurate text matching, which also reduces the effec-
tiveness of automatic deduplication and requires more human resources to complete
accurate deduplication and triage.

• Stack trace hash has been widely used in many works(∼50%) due to its ready availabil-
ity and general benefits. It is helpful in identifying root causes and facilitating quick
scenario reconstruction and has a certain level of usability. However, its accuracy in
determining bug uniqueness is not high. For example, different paths leading to the
same crash point may result in splitting of what should be considered the same bug
into different ones. Similarly, identical call sequences with different specific values
may result in grouping of bugs that should be considered different.

• Relying solely on coverage information is also inaccurate. This is mainly because
there may be new execution paths unrelated to triggering the bug, which can lead to
different coverage information for the same bug.

• When using runtime information of a program for bug deduplication and triage, false
positives may occur because the same bug may exhibit different crash points, error
messages, etc.

• In works based on information retrieval, the main sources of information include the
bug’s basic attributes, crash dumps, stack traces, etc. Among them, stack trace is the
most important analysis component, and almost all works(over 90%) refer to it to
some extent.

• In works using machine learning methods based on bug reports, the basic approach
aligns well with NLP processing approaches. Therefore, most of these works(∼67%)
utilize neural network models such as LSTM and CNN. The key input for such works
is the textual description information in the bug report. In some works(∼33%), the
abilities of developers are also modeled and extracted as features to enhance the
model’s recognition capability.

• More than 90% of works use open-source databases as test objects. For authors
belonging to certain companies, in addition to public, open-source datasets, they also
use the company’s datasets, such as JetBrains, Ericsson, etc.

• Generally, works based on runtime information tend to have better performance
compared than those based on bug reports, but they also come with greater overhead.
This is mainly because the accuracy of bug reports cannot be fully guaranteed.

7.2. Future Directions

• Stack trace is a primary source of information for works based on information retrieval.
However, existing research has shown that this information may not be sufficient to
accurately locate bug characteristics. Therefore, future work can consider studying
methods to enrich and strengthen stack traces.

• Works based on bug reports heavily rely on bug descriptions, and the accuracy of
these descriptions has a significant impact on the results. Currently, most works lack
an evaluation analysis of the availability of bug reports. In future work, it would be
beneficial to construct models to evaluate the usability of bug reports.

• Current works using DNN models mainly focus on CNN and LSTM. In future work,
consideration of the use of updated models such as transformers can be explored to
evaluate their effectiveness.

• Exploring ways to improve the efficiency of collecting runtime information and reduc-
ing the complexity of processing is a hopeful research point.

Appl. Sci. 2023, 13, 8788 39 of 44

8. Conclusions

The continuous iteration and maturation of software development techniques have
resulted in two consequences. First, both developers and users have demanded increased
robustness and stability of software. Secondly, software development cycles have become
shorter, making thorough software testing increasingly challenging. Currently, many
organizations maintain bug repositories and bug tracking systems to ensure real-time
updates of bugs. Each day, a large number of bugs is discovered and sent to the repository,
which imposes a heavy workload on bug fixers. Therefore, effective bug deduplication
and classification play a crucial role in software development. Numerous studies have been
conducted on how to efficiently deduplicate and classify bugs. This paper first introduces
the roadmap of related work on deduplication and triage, including recent research trends,
mathematical methods, commonly used data sets, and evaluation parameters. Afterward, the
specific implementations of deduplication and triage-related works using different technical
roadmaps are listed and explained in detail, and the results are quantitatively compared
and evaluated. By summarizing various works related to bug deduplication and triage, this
paper proposes some key findings and suggests potential future research directions.

Author Contributions: Conceptualization, C.Q. and M.Z.; methodology, C.Q.; software, C.Q. and
S.L.; validation, C.Q., Y.N. and S.L.; formal analysis, C.Q.; investigation, C.Q.; resources, M.Z.;
data curation, Y.N.; writing—original draft preparation, C.Q.; writing—review and editing, M.Z.;
visualization, Y.N.; supervision, H.C.; project administration, Y.N.; funding acquisition, H.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data were collected from all the sources that are presented in the
References section.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Anvik, J.; Hiew, L.; Murphy, G.C. Coping with an open bug repository. In Proceedings of the 2005 OOPSLA Workshop on Eclipse

Technology Exchange, San Diego, CA, USA, 16–17 October 2005; pp. 35–39.
2. Banerjee, S.; Helmick, J.; Syed, Z.; Cukic, B. Eclipse vs. mozilla: A comparison of two large-scale open source problem report

repositories. In Proceedings of the 2015 IEEE 16th International Symposium on High Assurance Systems Engineering, Daytona
Beach Shores, FL, USA, 8–10 January 2015; pp. 263–270.

3. Banerjee, S.; Cukic, B. On the cost of mining very large open source repositories. In Proceedings of the 2015 IEEE/ACM 1st
International Workshop on Big Data Software Engineering, Florence, Italy, 23 May 2015; pp. 37–43.

4. Angell, R.; Oztalay, B.; DeOrio, A. A topological approach to hardware bug triage. In Proceedings of the 2015 16th International
Workshop on Microprocessor and SOC Test and Verification (MTV), Austin, TX, USA, 3–4 December 2015; pp. 20–25.

5. Golagha, M.; Lehnhoff, C.; Pretschner, A.; Ilmberger, H. Failure clustering without coverage. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis, Beijing, China, 15–19 July 2019; pp. 134–145.

6. Mu, D.; Wu, Y.; Chen, Y.; Lin, Z.; Yu, C.; Xing, X.; Wang, G. An In-depth Analysis of Duplicated Linux Kernel Bug Reports. In
Proceedings of the Network and Distributed Systems Security (NDSS) Symposium 2022, San Diego, CA, USA, 24–28 April 2022.

7. Lee, D.G.; Seo, Y.S. Systematic Review of Bug Report Processing Techniques to Improve Software Management Performance.
J. Inf. Process. Syst. 2019, 15, 967–985.

8. Jahanshahi, H.; Cevik, M.; Mousavi, K.; Başar, A. ADPTriage: Approximate Dynamic Programming for Bug Triage. arXiv 2022,
arXiv:2211.00872.

9. Wu, H.; Ma, Y.; Xiang, Z.; Yang, C.; He, K. A spatial—Temporal graph neural network framework for automated software bug
triaging. Knowl.-Based Syst. 2022, 241, 108308. [CrossRef]

10. Zhao, Y.; He, T.; Chen, Z. A unified framework for bug report assignment. Int. J. Softw. Eng. Knowl. Eng. 2019, 29, 607–628.
[CrossRef]

11. Lee, D.G.; Seo, Y.S. Improving bug report triage performance using artificial intelligence based document generation model.
Hum.-Centric Comput. Inf. Sci. 2020, 10, 26. [CrossRef]

http://doi.org/10.1016/j.knosys.2022.108308
http://dx.doi.org/10.1142/S0218194019500256
http://dx.doi.org/10.1186/s13673-020-00229-7

Appl. Sci. 2023, 13, 8788 40 of 44

12. Neysiani, B.S.; Babamir, S.M. Automatic duplicate bug report detection using information retrieval-based versus machine
learning-based approaches. In Proceedings of the 2020 6th International Conference on Web Research (ICWR), Tehran, Iran,
22–23 April 2020; pp. 288–293.

13. Uddin, J.; Ghazali, R.; Deris, M.M.; Naseem, R.; Shah, H. A survey on bug prioritization. Artif. Intell. Rev. 2017, 47, 145–180.
[CrossRef]

14. Sawant, V.B.; Alone, N.V. A survey on various techniques for bug triage. Int. Res. J. Eng. Technol. 2015, 2, 917–920.
15. Neysiani, B.S.; Babamir, S.M. Methods of feature extraction for detecting the duplicate bug reports in software triage systems. In

Proceedings of the International Conference on Information Technology, Communications and Telecommunications (IRICT),
Tehran, Iran, 1 March 2016; Volume 2016.

16. Yadav, A.; Singh, S.K. Survey based classification of bug triage approaches. APTIKOM J. Comput. Sci. Inf. Technol. 2016, 1, 1–11.
[CrossRef]

17. Chhabra, D.; Malik, M.; Sharma, S. Literature survey on automatic bug triaging using machine learning techniques. In Proceedings
of the AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2022; Volume 2555, p. 020017.

18. Neysiani, B.S.; Babamir, S.M. Duplicate Detection Models for Bug Reports of Software Triage Systems: A Survey. Curr. Trends
Comput. Sci. Appl. 2019, 1, 128–134.

19. Pandey, N.; Sanyal, D.K.; Hudait, A.; Sen, A. Automated classification of software issue reports using machine learning techniques:
An empirical study. Innov. Syst. Softw. Eng. 2017, 13, 279–297. [CrossRef]

20. Goyal, A.; Sardana, N. Machine learning or information retrieval techniques for bug triaging: Which is better? e-Inform. Softw.
Eng. J. 2017, 11, 117–141.

21. Banerjee, S.; Cukic, B.; Adjeroh, D. Automated duplicate bug report classification using subsequence matching. In Proceedings of
the 2012 IEEE 14th International Symposium on High-Assurance Systems Engineering, Omaha, NE, USA, 25–27 October 2012;
pp. 74–81.

22. Banerjee, S.; Syed, Z.; Helmick, J.; Cukic, B. A fusion approach for classifying duplicate problem reports. In Proceedings of the
2013 IEEE 24th International Symposium on Software Reliability Engineering (ISSRE), Pasadena, CA, USA, 4–7 November 2013;
pp. 208–217.

23. Prifti, T.; Banerjee, S.; Cukic, B. Detecting bug duplicate reports through local references. In Proceedings of the 7th International
Conference on Predictive Models in Software Engineering, Banff, AB, Canada, 20–21 September 2011; pp. 1–9.

24. Jiang, H.; Chen, X.; He, T.; Chen, Z.; Li, X. Fuzzy clustering of crowdsourced test reports for apps. ACM Trans. Internet Technol.
(TOIT) 2018, 18, 1–28. [CrossRef]

25. Xia, X.; Lo, D.; Ding, Y.; Al-Kofahi, J.M.; Nguyen, T.N.; Wang, X. Improving automated bug triaging with specialized topic model.
IEEE Trans. Softw. Eng. 2016, 43, 272–297. [CrossRef]

26. Panda, R.R.; Nagwani, N.K. Topic modeling and intuitionistic fuzzy set-based approach for efficient software bug triaging. Knowl.
Inf. Syst. 2022, 64, 3081–3111. [CrossRef]

27. Panda, R.R.; Nagwani, N.K. Classification and intuitionistic fuzzy set based software bug triaging techniques. J. King Saud
Univ.-Comput. Inf. Sci. 2022, 34, 6303–6323. [CrossRef]

28. Jang, J.; Yang, G. A Bug Triage Technique Using Developer-Based Feature Selection and CNN-LSTM Algorithm. Appl. Sci. 2022,
12, 9358. [CrossRef]

29. Choquette-Choo, C.A.; Sheldon, D.; Proppe, J.; Alphonso-Gibbs, J.; Gupta, H. A multi-label, dual-output deep neural network for
automated bug triaging. In Proceedings of the 2019 18th IEEE International Conference on Machine Learning and Applications
(ICMLA), Boca Raton, FL, USA, 16–19 December 2019; pp. 937–944.

30. Chauhan, R.; Sharma, S.; Goyal, A. DENATURE: Duplicate detection and type identification in open source bug repositories. Int.
J. Syst. Assur. Eng. Manag. 2023, 14, 275–292. [CrossRef]

31. Jiang, Y.; Su, X.; Treude, C.; Shang, C.; Wang, T. Does Deep Learning improve the performance of duplicate bug report detection?
An empirical study. J. Syst. Softw. 2023, 198, 111607. [CrossRef]

32. Dhaliwal, T.; Khomh, F.; Zou, Y. Classifying field crash reports for fixing bugs: A case study of Mozilla Firefox. In Proceedings of
the 2011 27th IEEE International Conference on Software Maintenance (ICSM), Williamsburg, VA, USA, 25–30 September 2011;
pp. 333–342.

33. Dang, Y.; Wu, R.; Zhang, H.; Zhang, D.; Nobel, P. Rebucket: A method for clustering duplicate crash reports based on call
stack similarity. In Proceedings of the 2012 34th International Conference on Software Engineering (ICSE), Zurich, Switzerland,
2–9 June 2012; pp. 1084–1093.

34. Rodrigues, I.M.; Khvorov, A.; Aloise, D.; Vasiliev, R.; Koznov, D.; Fernandes, E.R.; Chernishev, G.; Luciv, D.; Povarov, N. TraceSim:
An Alignment Method for Computing Stack Trace Similarity. Empir. Softw. Eng. 2022, 27, 53. [CrossRef]

35. Shi, H.; Wang, G.; Fu, Y.; Hu, C.; Song, H.; Dong, J.; Tang, K.; Liang, K. Abaci-finder: Linux kernel crash classification through
stack trace similarity learning. J. Parallel Distrib. Comput. 2022, 168, 70–79. [CrossRef]

36. Dunn, T.; Banerjee, N.K.; Banerjee, S. GPU acceleration of document similarity measures for automated bug triaging. In
Proceedings of the 2016 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), Ottawa, ON,
Canada, 23–27 October 2016; pp. 140–145.

37. Wu, R.; Zhang, H.; Cheung, S.C.; Kim, S. Crashlocator: Locating crashing faults based on crash stacks. In Proceedings of the 2014
International Symposium on Software Testing and Analysis, San Jose, CA, USA, 21–25 July 2014; pp. 204–214.

http://dx.doi.org/10.1007/s10462-016-9478-6
http://dx.doi.org/10.11591/APTIKOM.J.CSIT.94
http://dx.doi.org/10.1007/s11334-017-0294-1
http://dx.doi.org/10.1145/3106164
http://dx.doi.org/10.1109/TSE.2016.2576454
http://dx.doi.org/10.1007/s10115-022-01735-z
http://dx.doi.org/10.1016/j.jksuci.2022.01.020
http://dx.doi.org/10.3390/app12189358
http://dx.doi.org/10.1007/s13198-023-01855-x
http://dx.doi.org/10.1016/j.jss.2023.111607
http://dx.doi.org/10.1007/s10664-021-10070-w
http://dx.doi.org/10.1016/j.jpdc.2022.06.003

Appl. Sci. 2023, 13, 8788 41 of 44

38. Koopaei, N.E.; Hamou-Lhadj, A. CrashAutomata: An approach for the detection of duplicate crash reports based on generalizable
automata. In Proceedings of the CASCON, Markham, ON, Canada, 2–4 November 2015; pp. 201–210.

39. Sabor, K.K.; Hamou-Lhadj, A.; Larsson, A. Durfex: A feature extraction technique for efficient detection of duplicate bug reports.
In Proceedings of the 2017 IEEE International Conference on Software Quality, Reliability and Security (QRS), Prague, Czech
Republic, 25–29 July 2017; pp. 240–250.

40. Tian, Y.; Yu, S.; Fang, C.; Li, P. FuRong: Fusing report of automated Android testing on multi-devices. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering: Companion Proceedings, Seoul, Republic of Korea,
27 June–19 July 2020; pp. 49–52.

41. Khvorov, A.; Vasiliev, R.; Chernishev, G.; Rodrigues, I.M.; Koznov, D.; Povarov, N. S3M: Siamese stack (trace) similarity measure.
In Proceedings of the 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR), Madrid, Spain,
17–19 May 2021; pp. 266–270.

42. Yeh, C.C.; Lu, H.L.; Lee, Y.H.; Chou, W.S.; Huang, S.K. CRAXTriage: A coverage based triage system. In Proceedings of the 2017
IEEE Conference on Dependable and Secure Computing, Taipei, Taiwan, 7–10 August 2017; pp. 408–415.

43. Liu, Y. RESTCluster: Automated Crash Clustering for RESTful API. In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, Rochester, MI, USA, 10–14 October 2022; pp. 1–3.

44. Peng, J.; Zhang, M.; Wang, Q. Deduplication and Exploitability Determination of UAF Vulnerability Samples by Fast Clustering.
KSII Trans. Internet Inf. Syst. 2016, 10, 4933–4956.

45. Pham, V.T.; Khurana, S.; Roy, S.; Roychoudhury, A. Bucketing failing tests via symbolic analysis. In Proceedings of the
Fundamental Approaches to Software Engineering: 20th International Conference, FASE 2017, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, 22–29 April 2017; Proceedings 20;
Springer: Berlin/Heidelberg, Germany, 2017; pp. 43–59.

46. Moroo, A.; Aizawa, A.; Hamamoto, T. Reranking-based Crash Report Deduplication. In Proceedings of the SEKE, Pittsburgh, PA,
USA, 5–7 July 2017; Volume 17, pp. 507–510.

47. Cui, W.; Peinado, M.; Cha, S.K.; Fratantonio, Y.; Kemerlis, V.P. Retracer: Triaging crashes by reverse execution from partial
memory dumps. In Proceedings of the 38th International Conference on Software Engineering, Austin, TX, USA, 14–22 May 2016;
pp. 820–831.

48. Eom, K.J.; Paik, J.Y.; Mok, S.K.; Jeon, H.G.; Cho, E.S.; Kim, D.W.; Ryu, J. Automated crash filtering for arm binary programs. In
Proceedings of the 2015 IEEE 39th Annual Computer Software and Applications Conference, Taichung, Taiwan, 1–5 July 2015;
Volume 2, pp. 478–483.

49. Cui, W.; Ge, X.; Kasikci, B.; Niu, B.; Sharma, U.; Wang, R.; Yun, I. {REPT}: Reverse debugging of failures in deployed software.
In Proceedings of the 13th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 18), Carlsbad, CA,
USA, 8–10 October 2018; pp. 17–32.

50. Xu, J.; Mu, D.; Xing, X.; Liu, P.; Chen, P.; Mao, B. Postmortem Program Analysis with Hardware-Enhanced Post-Crash Artifacts.
In Proceedings of the USENIX Security Symposium, Vancouver, BC, Canada, 16–18 August 2017; pp. 17–32.

51. Mu, D.; Du, Y.; Xu, J.; Xu, J.; Xing, X.; Mao, B.; Liu, P. Pomp++: Facilitating postmortem program diagnosis with value-set
analysis. IEEE Trans. Softw. Eng. 2019, 47, 1929–1942. [CrossRef]

52. Jiang, Z.; Jiang, X.; Hazimeh, A.; Tang, C.; Zhang, C.; Payer, M. Igor: Crash Deduplication Through Root-Cause Clustering. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic of Korea,
15–19 November 2021; pp. 3318–3336.

53. van Tonder, R.; Kotheimer, J.; Le Goues, C. Semantic crash bucketing. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, Montpellier, France, 3–7 September 2018; pp. 612–622.

54. Zhang, X.; Chen, J.; Feng, C.; Li, R.; Diao, W.; Zhang, K.; Lei, J.; Tang, C. DeFault: Mutual information-based crash triage for
massive crashes. In Proceedings of the 44th International Conference on Software Engineering, Pittsburgh, PA, USA, 21–29 May
2022; pp. 635–646.

55. Kallingal Joshy, A.; Le, W. FuzzerAid: Grouping Fuzzed Crashes Based On Fault Signatures. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering, Rochester, MI, USA, 10–14 October 2022; pp. 1–12.

56. Alawneh, A.; Alazzam, I.M.; Shatnawi, K. Locating Source Code Bugs in Software Information Systems Using Information
Retrieval Techniques. Big Data Cogn. Comput. 2022, 6, 156. [CrossRef]

57. Krasniqi, R.; Do, H. Automatically Capturing Quality-Related Concerns in Bug Report Descriptions for Efficient Bug Triaging. In
Proceedings of the International Conference on Evaluation and Assessment in Software Engineering 2022, Gothenburg, Sweden,
13–15 June 2022; pp. 10–19.

58. Lee, C.Y.; Hu, D.D.; Feng, Z.Y.; Yang, C.Z. Mining temporal information to improve duplication detection on bug reports. In
Proceedings of the 2015 IIAI 4th International Congress on Advanced Applied Informatics, Okayama, Japan, 12–16 July 2015;
pp. 551–555.

59. Wang, S.; Khomh, F.; Zou, Y. Improving bug management using correlations in crash reports. Empir. Softw. Eng. 2016, 21, 337–367.
[CrossRef]

60. Rakha, M.S.; Bezemer, C.P.; Hassan, A.E. Revisiting the performance evaluation of automated approaches for the retrieval of
duplicate issue reports. IEEE Trans. Softw. Eng. 2017, 44, 1245–1268. [CrossRef]

http://dx.doi.org/10.1109/TSE.2019.2939528
http://dx.doi.org/10.3390/bdcc6040156
http://dx.doi.org/10.1007/s10664-014-9333-9
http://dx.doi.org/10.1109/TSE.2017.2755005

Appl. Sci. 2023, 13, 8788 42 of 44

61. Banerjee, S.; Syed, Z.; Helmick, J.; Culp, M.; Ryan, K.; Cukic, B. Automated triaging of very large bug repositories. Inf. Softw.
Technol. 2017, 89, 1–13. [CrossRef]

62. Savidov, G.; Fedotov, A. Casr-Cluster: Crash clustering for Linux applications. In Proceedings of the 2021 Ivannikov Ispras Open
Conference (ISPRAS), 2–3 December 2021; pp. 47–51.

63. Budhiraja, A.; Reddy, R.; Shrivastava, M. Lwe: Lda refined word embeddings for duplicate bug report detection. In Proceedings
of the 40th International Conference on Software Engineering: Companion Proceeedings, Gothenburg, Sweden, 27 May–3 June
2018; pp. 165–166.

64. Chaparro, O.; Florez, J.M.; Singh, U.; Marcus, A. Reformulating queries for duplicate bug report detection. In Proceedings of the
2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER), Hangzhou, China, 24–27
February 2019; pp. 218–229.

65. Karasov, N.; Khvorov, A.; Vasiliev, R.; Golubev, Y.; Bryksin, T. Aggregation of Stack Trace Similarities for Crash Report
Deduplication. arXiv 2022, arXiv:2205.00212.

66. James, K.; Du, Y.; Das, S.; Monrose, F. Separating the Wheat from the Chaff: Using Indexing and Sub-Sequence Mining Techniques
to Identify Related Crashes During Bug Triage. In Proceedings of the 2022 IEEE 22nd International Conference on Software
Quality, Reliability and Security (QRS), Guangzhou, China, 5–9 December 2022; pp. 31–42.

67. Yang, H.; Xu, Y.; Li, Y.; Choi, H.D. K-Detector: Identifying Duplicate Crash Failures in Large-Scale Software Delivery. In
Proceedings of the 2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), Coimbra,
Portugal, 12–15 October 2020; pp. 1–6.

68. Park, J.w.; Lee, M.W.; Kim, J.; Hwang, S.w.; Kim, S. Costriage: A cost-aware triage algorithm for bug reporting systems. In
Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 7–11 August 2011; Volume 25, pp. 139–144.

69. Hindle, A.; Alipour, A.; Stroulia, E. A contextual approach towards more accurate duplicate bug report detection and ranking.
Empir. Softw. Eng. 2016, 21, 368–410. [CrossRef]

70. Badashian, A.S. Realistic bug triaging. In Proceedings of the 38th International Conference on Software Engineering Companion,
Austin, TX, USA, 14–22 May 2016; pp. 847–850.

71. Zhang, T.; Yang, G.; Lee, B.; Chan, A.T. Guiding bug triage through developer analysis in bug reports. Int. J. Softw. Eng. Knowl.
Eng. 2016, 26, 405–431. [CrossRef]

72. Goyal, A. Effective Bug Triage for Non-Reproducible Bugs. In Proceedings of the 2017 IEEE/ACM 39th International Conference
on Software Engineering Companion (ICSE-C), Buenos Aries, Argentina, 20–28 May 2017; pp. 487–488.

73. Zhang, W.; Cui, Y.; Yoshida, T. En-lda: An novel approach to automatic bug report assignment with entropy optimized latent
dirichlet allocation. Entropy 2017, 19, 173. [CrossRef]

74. Hindle, A.; Onuczko, C. Preventing duplicate bug reports by continuously querying bug reports. Empir. Softw. Eng. 2019,
24, 902–936. [CrossRef]

75. Yadav, A.; Singh, S.K.; Suri, J.S. Ranking of software developers based on expertise score for bug triaging. Inf. Softw. Technol.
2019, 112, 1–17. [CrossRef]

76. Alazzam, I.; Aleroud, A.; Al Latifah, Z.; Karabatis, G. Automatic bug triage in software systems using graph neighborhood
relations for feature augmentation. IEEE Trans. Comput. Soc. Syst. 2020, 7, 1288–1303. [CrossRef]

77. Nath, V.; Sheldon, D.; Alphonso-Gibbs, J. Principal Component Analysis and Entropy-based Selection for the Improvement of
Bug Triage. In Proceedings of the 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA),
Virtually Online, 13–15 December 2021; pp. 541–546.

78. Panda, R.R.; Nagwani, N.K. An Improved Software Bug Triaging Approach Based on Topic Modeling and Fuzzy Logic. In
Proceedings of the Third Doctoral Symposium on Computational Intelligence: DoSCI 2022; Springer: Berlin/Heidelberg, Germany, 2022;
pp. 337–346.

79. Wu, X.; Shan, W.; Zheng, W.; Chen, Z.; Ren, T.; Sun, X. An Intelligent Duplicate Bug Report Detection Method Based on Technical
Term Extraction. In Proceedings of the 2023 IEEE/ACM International Conference on Automation of Software Test (AST),
Melbourne, Australia, 15–16 May 2023; pp. 1–12.

80. Ebrahimi, N.; Trabelsi, A.; Islam, M.S.; Hamou-Lhadj, A.; Khanmohammadi, K. An HMM-based approach for automatic detection
and classification of duplicate bug reports. Inf. Softw. Technol. 2019, 113, 98–109. [CrossRef]

81. Rodrigues, I.M.; Aloise, D.; Fernandes, E.R.; Dagenais, M. A soft alignment model for bug deduplication. In Proceedings of the
17th International Conference on Mining Software Repositories, Virtual Online, 29–30 June 2020; pp. 43–53.

82. He, J.; Xu, L.; Yan, M.; Xia, X.; Lei, Y. Duplicate bug report detection using dual-channel convolutional neural networks. In
Proceedings of the 28th International Conference on Program Comprehension, Virtual Online, 13–15 July 2020; pp. 117–127.

83. Aggarwal, K.; Timbers, F.; Rutgers, T.; Hindle, A.; Stroulia, E.; Greiner, R. Detecting duplicate bug reports with software
engineering domain knowledge. J. Softw. Evol. Process 2017, 29, e1821. [CrossRef]

84. Dedík, V.; Rossi, B. Automated bug triaging in an industrial context. In Proceedings of the 2016 42th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), Limassol, Cyprus, 31 August–2 September 2016; pp. 363–367.

85. Lin, M.J.; Yang, C.Z.; Lee, C.Y.; Chen, C.C. Enhancements for duplication detection in bug reports with manifold correlation
features. J. Syst. Softw. 2016, 121, 223–233. [CrossRef]

http://dx.doi.org/10.1016/j.infsof.2016.09.006
http://dx.doi.org/10.1007/s10664-015-9387-3
http://dx.doi.org/10.1142/S0218194016500170
http://dx.doi.org/10.3390/e19050173
http://dx.doi.org/10.1007/s10664-018-9643-4
http://dx.doi.org/10.1016/j.infsof.2019.03.014
http://dx.doi.org/10.1109/TCSS.2020.3017501
http://dx.doi.org/10.1016/j.infsof.2019.05.007
http://dx.doi.org/10.1002/smr.1821
http://dx.doi.org/10.1016/j.jss.2016.02.022

Appl. Sci. 2023, 13, 8788 43 of 44

86. Lee, S.R.; Heo, M.J.; Lee, C.G.; Kim, M.; Jeong, G. Applying deep learning based automatic bug triager to industrial projects. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, Paderborn, Germany, 4–8 September 2017;
pp. 926–931.

87. Xuan, J.; Jiang, H.; Ren, Z.; Yan, J.; Luo, Z. Automatic bug triage using semi-supervised text classification. arXiv 2017, arXiv:1704.04769.
88. Song, H.-Z.; Ma, Y.-T. DeepTriage:An Automatic Triage Method for Software Bugs Using Deep Learning. J. Chin. Comput. Syst.

2019, 40, 126–132.
89. Chaparro, O. Improving bug reporting, duplicate detection, and localization. In Proceedings of the 2017 IEEE/ACM 39th

International Conference on Software Engineering Companion (ICSE-C), Buenos Aires, Argentina, 20–28 May 2017; pp. 421–424.
90. Xi, S.; Yao, Y.; Xiao, X.; Xu, F.; Lu, J. An effective approach for routing the bug reports to the right fixers. In Proceedings of the

10th Asia-Pacific Symposium on Internetware, Beijing, China, 16 September 2018; pp. 1–10.
91. Xie, Q.; Wen, Z.; Zhu, J.; Gao, C.; Zheng, Z. Detecting duplicate bug reports with convolutional neural networks. In Proceedings

of the 2018 25th Asia-Pacific Software Engineering Conference (APSEC), Nara, Japan, 4–7 December 2018; pp. 416–425.
92. Alenezi, M.; Banitaan, S.; Zarour, M. Using categorical features in mining bug tracking systems to assign bug reports. arXiv 2018,

arXiv:1804.07803.
93. Budhiraja, A.; Dutta, K.; Reddy, R.; Shrivastava, M. DWEN: Deep word embedding network for duplicate bug report detection in

software repositories. In Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings,
Gothenburg, Sweden, 27 May–3 June 2018; pp. 193–194.

94. Kukkar, A.; Mohana, R.; Nayyar, A.; Kim, J.; Kang, B.G.; Chilamkurti, N. A novel deep-learning-based bug severity classification
technique using convolutional neural networks and random forest with boosting. Sensors 2019, 19, 2964. [CrossRef]

95. Xi, S.Q.; Yao, Y.; Xiao, X.S.; Xu, F.; Lv, J. Bug triaging based on tossing sequence modeling. J. Comput. Sci. Technol. 2019, 34, 942–956.
[CrossRef]

96. Mani, S.; Sankaran, A.; Aralikatte, R. Deeptriage: Exploring the effectiveness of deep learning for bug triaging. In Proceedings
of the ACM India Joint International Conference on Data Science and Management of Data, Kolkata, India, 3–5 January 2019;
pp. 171–179.

97. Catolino, G.; Palomba, F.; Zaidman, A.; Ferrucci, F. Not all bugs are the same: Understanding, characterizing, and classifying bug
types. J. Syst. Softw. 2019, 152, 165–181. [CrossRef]

98. Poddar, L.; Neves, L.; Brendel, W.; Marujo, L.; Tulyakov, S.; Karuturi, P. Train one get one free: Partially supervised neural
network for bug report duplicate detection and clustering. arXiv 2019, arXiv:1903.12431.

99. Sarkar, A.; Rigby, P.C.; Bartalos, B. Improving bug triaging with high confidence predictions at ericsson. In Proceedings of the
2019 IEEE International Conference on Software Maintenance and Evolution (ICSME), Cleveland, OH, USA, 29 September–4
October 2019; pp. 81–91.

100. Pahins, C.A.D.L.; D’Morison, F.; Rocha, T.M.; Almeida, L.M.; Batista, A.F.; Souza, D.F. T-REC: Towards accurate bug triage for
technical groups. In Proceedings of the 2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA),
Boca Raton, FL, USA, 16–19 December 2019; pp. 889–895.

101. Guo, S.; Zhang, X.; Yang, X.; Chen, R.; Guo, C.; Li, H.; Li, T. Developer activity motivated bug triaging: Via convolutional neural
network. Neural Process. Lett. 2020, 51, 2589–2606. [CrossRef]

102. Xiao, G.; Du, X.; Sui, Y.; Yue, T. Hindbr: Heterogeneous information network based duplicate bug report prediction. In
Proceedings of the 2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE), Coimbra, Portugal,
12–15 October 2020; pp. 195–206.

103. Zhang, W. Efficient bug triage for industrial environments. In Proceedings of the 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME), Adelaide, Australia, 28 September–2 October 2020; pp. 727–735.

104. Russo, F.; Raju, R.; Clarke, C.; Yang, N.; Escalona, A.; Tappert, C.C.; Leider, A. Software Bug Triage Using Machine Learning and
Natural Language Processing; Pace University: New York, NY, USA, 2020.

105. Neysiani, B.S.; Babamir, S.M.; Aritsugi, M. Efficient feature extraction model for validation performance improvement of duplicate
bug report detection in software bug triage systems. Inf. Softw. Technol. 2020, 126, 106344. [CrossRef]

106. He, H.; Yang, S. Automatic Bug Triage Using Hierarchical Attention Networks. In Proceedings of the 2021 IEEE 21st International
Conference on Software Quality, Reliability and Security Companion (QRS-C), Hainan Island, China, 6–10 December 2021;
pp. 1043–1049.

107. Wang, H.; Li, Q. Effective Bug Triage Based on a Hybrid Neural Network. In Proceedings of the 2021 28th Asia-Pacific Software
Engineering Conference (APSEC), Taipei, Taiwan, 6–9 December 2021; pp. 82–91.

108. Yu, X.; Wan, F.; Du, J.; Jiang, F.; Guo, L.; Lin, J. Bug Triage Model Considering Cooperative and Sequential Relationship. In
Proceedings of the Wireless Algorithms, Systems, and Applications: 16th International Conference, WASA 2021, Nanjing, China,
25–27 June 2021; Proceedings, Part II 16; Springer: Berlin/Heidelberg, Germany, 2021; pp. 160–172.

109. Zaidi, S.F.A.; Lee, C.G. Learning graph representation of bug reports to triage bugs using graph convolution network. In
Proceedings of the 2021 International Conference on Information Networking (ICOIN), Jeju Island, Republic of Korea, 13–16
January 2021; pp. 504–507.

110. Jahanshahi, H.; Chhabra, K.; Cevik, M.; Baþar, A. DABT: A dependency-aware bug triaging method. In Evaluation and Assessment
in Software Engineering, Proceedings of the 25th International Conference on Evaluation and Assessment in Software Engineering, Virtual
Online, 21–24 June 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 504–507.

http://dx.doi.org/10.3390/s19132964
http://dx.doi.org/10.1007/s11390-019-1953-5
http://dx.doi.org/10.1016/j.jss.2019.03.002
http://dx.doi.org/10.1007/s11063-020-10213-y
http://dx.doi.org/10.1016/j.infsof.2020.106344

Appl. Sci. 2023, 13, 8788 44 of 44

111. Zaidi, S.F.A.; Lee, C.G. One-class classification based bug triage system to assign a newly added developer. In Proceedings
of the 2021 International Conference on Information Networking (ICOIN), Jeju Island, Republic of Korea, 13–16 January 2021;
pp. 738–741.

112. Zhang, W.; Zhao, J.; Wang, S. SusTriage: Sustainable Bug Triage with Multi-modal Ensemble Learning. In Proceedings of the
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, Melbourne, VIC, Australia,
14–17 December 2021; pp. 441–448.

113. Aktaş, E.U. Automated Software Issue Triage in Large Scale Industrial Context. Ph.D. Thesis, Sabanci University, Tuzla, Türkiye, 2021.
114. Aung, T.W.W.; Wan, Y.; Huo, H.; Sui, Y. Multi-triage: A multi-task learning framework for bug triage. J. Syst. Softw. 2022,

184, 111133. [CrossRef]
115. Yu, X.; Wan, F.; Tang, B.; Zhan, D.; Peng, Q.; Yu, M.; Wang, Z.; Cui, S. Deep Bug Triage Model Based on Multi-head Self-attention

Mechanism. In Proceedings of the Computer Supported Cooperative Work and Social Computing: 16th CCF Conference,
ChineseCSCW 2021, Xiangtan, China, 26–28 November 2021; Revised Selected Papers, Part II; Springer: Berlin/Heidelberg,
Germany, 2022; pp. 107–119.

116. Chao, L.; Qiaoluan, X.; Yong, L.; Yang, X.; Hyun-Deok, C. DeepCrash: Deep metric learning for crash bucketing based on stack
trace. In Proceedings of the 6th International Workshop on Machine Learning Techniques for Software Quality Evaluation,
Singapore, 18 November 2022; pp. 29–34.

117. Zaidi, S.F.A.; Woo, H.; Lee, C.G. Toward an effective bug triage system using transformers to add new developers. J. Sens. 2022,
2022, 4347004. [CrossRef]

118. Samir, M.; Sherief, N.; Abdelmoez, W. Improving Bug Assignment and Developer Allocation in Software Engineering through
Interpretable Machine Learning Models. Computers 2023, 12, 128. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jss.2021.111133
http://dx.doi.org/10.1155/2022/4347004
http://dx.doi.org/10.3390/computers12070128

	Introduction
	Related Survey
	The Roadmap of Existing Literature
	Overview of Relevant Literature in Recent Years
	Background Knowledge
	Feature Extraction and Selection
	Similarity Evaluation Model

	Commonly Used Datasets
	Evaluation Parameters

	Works Based on Runtime Information
	Methods Based on Comparing Stack Trace
	Methods Based on Analysis Coverage
	Methods Based on Context Comparison

	Works Based on Bug Reports
	Information Retrieval Approaches for Deduplication and Triage
	Machine Learning Approaches for Deduplication and Triage

	Evaluation Methods and Results
	Findings and Future Direction
	Findings from Existing Works
	Future Directions

	Conclusions
	References

