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Abstract: Deep learning researchers believe that as deep learning models evolve, they can perform
well on many tasks. However, the complex parameters of deep learning models make it difficult
for users to understand how deep learning models make predictions. In this paper, we propose the
specific-input local interpretable model-agnostic explanations (LIME) model, a novel interpretable
artificial intelligence (XAI) method that interprets deep learning models of tabular data. The specific-
input process uses feature importance and partial dependency plots (PDPs) to select the “what”
and “how”. In our experiments, we first obtain a basic interpretation of the data by simulating user
behaviour. Second, we use our approach to understand “which” features deep learning models focus
on and how these features affect the model’s predictions. From the experimental results, we find that
this approach improves the stability of LIME interpretations, compensates for the problem of LIME
only focusing on local interpretations, and achieves a balance between global and local interpretations.

Keywords: explainable AI; interpretability; machine learning; tabular data

1. Introduction

Deep learning models have made significant advances in a variety of computer vi-
sion tasks, including image classification, object recognition, semantic segmentation, and
ancillary tasks such as visual question answering and autonomous driving. Artificial
intelligence (AI) is now widely used in our daily lives. To put this into perspective, the
International Data Corporation (IDC) predicts that global investment in AI will rise to
USD 154 billion by 2023. Meanwhile, according to Statista, global AI market revenues are
expected to reach USD 1.8 trillion dollars in 2030 [1]. This will influence the next generation
of digital business models and ecosystems, alongside immersive experiences, digital twins,
event thinking, and continuous adaptive security [2].

On the other hand, deep neural networks (DNNs) are difficult to understand because
they behave like black boxes. Most researchers emphasise the framework and many
internal parameters of the model when building deep neural network models, but if the
model is incorrect, they are unable to make a correct interpretation of the model’s output.
Determining confidence in individual predictions is an important issue when using the
model for decision making. For example, when applying machine learning to medical
diagnosis or terrorism detection, predictions cannot be trusted because their impact can be
catastrophic.

Despite the apparent effectiveness of AI algorithms in terms of outcomes and pre-
dictions, there remains an opacity that makes it difficult to gain insight into their core
operating mechanisms. As a result, users in healthcare, banking, and security are unable to
trust the decisions made by the models. We need to create transparent models that show
consumers how algorithms think. The creation of transparent models would benefit from
an understanding of errors, debugging, and the discovery of potential biases in the training
data.
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XAI advocates a move away from transparent artificial intelligence. The goal is to build
more understandable models while maintaining high levels of performance, making the
decisions of DNN models more transparent, understandable, and trustworthy to humans.

In this paper, we propose specific-input LIME, a novel XAI method for interpreting
deep learning models based on tabular data, by combining the specific-input procedure
with the LIME method. The specific-input LIME method replaces some of the steps in
LIME with feature importance and PDP. First, we obtain the basic interpretation of the data
by simulating user behaviour. Second, we use feature importance and PDP to understand
“what” features deep learning models focus on and how they affect the model’s predictions.
Analysis of the experimental results shows that our approach provides more detailed
explanations than the LIME approach, and also compensates for the vulnerability of LIME
to random sampling.

2. Literature Review of Explainability

Two inescapable position papers that attempt to formalise the concept of interpretabil-
ity are [3,4]. The former aims to provide a taxonomy of interpretability research aspirations
and techniques. Lipton’s study is not a survey per se. However, it provides a reliable
assessment of what interpretability means through the lens of the literature [3].

Doshi-Velez and Kim conducted a survey to establish taxonomies and best practices
for interpretability as a “rigorous science” [4]. The main contribution of this paper is the
evaluation of interpretability taxonomies. Therefore, the authors focus on one aspect of
scalability: measurement.

In a 2018 survey, Guidotti et al. [5] explored strategies for interpreting black-box
models in a wide range of domains, including data mining and machine learning. They
provide a classification of explainable strategies based on the problems they address.
Although the survey assesses completeness from a modelling perspective, it focuses only
on the process of interpretability and ignores additional dimensions of interpretability, such
as evaluation. Thus, a thorough technical overview of the techniques examined makes it
difficult to quickly grasp the interpretive method space.

2.1. Interpretability Strategies

With the urgent need for interpretability in AI systems, a large number of inter-
pretability methods and strategies have emerged in a short period of time, mainly targeting
machine learning algorithms. The purpose of this section is to provide an overview of
these interpretability methods. Indeed, much research has been devoted to improving the
interpretability of machine learning methods.

Based on our literature review, we classify these methods according to three criteria:
(i) the complexity of interpretability, (ii) the scope of interpretability, and (iii) model-based
methods. The main features of each category are described in the following subsections,
along with examples from current research.

2.2. The Complexity of Interpretability

The interpretability of a machine learning model is proportional to its complexity. The
more complex a model is, the more difficult it is to understand and explain. Therefore, the
most direct path to interpretable AI is to create an algorithm that is naturally and inherently
interpretable.

Letham et al. proposed a decision-tree-based model called Bayesian rule lists (BRL),
claiming that the preliminary interpretable model provides a simple and persuasive way to
gain the trust of domain experts [6].

Caruana et al. used a learning strategy based on generalised additive models for
the pneumonia problem. They used case studies on real medical data to demonstrate the
model’s comprehensibility [7].
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Xu et al. proposed an attention-based approach that learns to describe image informa-
tion automatically [8]. They demonstrated how the model could comprehend the results
using visualisation.

Due to its high level of sparsity and small integer coefficients, Ustun and Rudin
presented a sparse linear model for creating data-driven scoring systems called SLIM [9].
The results of this study underline the explainability of the proposed system in providing
users with an insightful understanding.

This suggests that the nature of the prediction effort affects the overall usefulness of
interpretability. Inherently decipherable models are adequate as long as they maintain
accuracy for the task and require a minimal amount of internal elements. It is also worth
noting that there is a collection of intrinsic approaches to complex uninterpretable models
in the literature. These methods attempt to increase the interpretability of a sophisticated
black-box model that is not primarily interpretable, such as a DNN, by modifying the
internal structure of the model.

2.3. The Scope of Interpretability

Interpretability refers to the ability to understand an automated model. There are
two types of interpretability: understanding the complete behaviour of the model or
understanding a specific prediction. In the literature reviewed, contributions are made in
both directions. Consequently, interpretability is divided into two categories: (i) global
interpretability and (ii) local interpretability.

When deep learning models are needed to inform population-level decisions, such
as drug consumption trends or climate change, this family of approaches comes in handy.
In such circumstances, a global effect estimate might be more valuable than a long list of
possible reasons. The pneumonia risk prediction model and the rule set built from a sparse
Bayesian generative model proposed in Section 2.2 are examples of work that provides
globally interpretable models.

Yang et al. proposed using recursive partitioning to generate a global interpretation
tree for a wide range of ML models based on their local explanations [10]. In their experi-
ments, the authors showed that their approach can detect whether a particular machine
learning model is working sensibly or being overly adapted to an illogical pattern.

While various methods have been used in the literature to promote global interpretabil-
ity, global models can be challenging in practice, especially for models with more than a
few parameters. Local interpretability can be more easily applied, similar to human efforts
to understand the whole model by focusing on only part of it.

Explainability occurs locally when explaining the reasoning behind a particular pre-
diction. This aspect of interpretability is used to generate a unique explanation of why
the model makes a particular decision in a particular situation. Several studies have pro-
posed local explanatory approaches. The following section summarises the explanatory
approaches examined in the peer-reviewed studies.

LIME stands for local interpretable model-agnostic explanations, as presented by
Ribeiro et al. [11]. This model can approximate a black-box model near any prediction.

Baehrens et al. make another attempt to generate local explanations. The authors
provide a method that uses local gradients to specify how a data point must move to change
its predicted label, in order to explain the local decisions made by arbitrary nonlinear clas-
sification algorithms [12]. In this vein, we find a number of studies of image classification
models that use a similar strategy. Locating regions of an image that have a strong influence
on the final classification is a typical technique for understanding the decisions of image
classification algorithms.

Combining the strengths and benefits of both local and global interpretability is an
exciting and promising research path. The following are the four possible combinations:
(i) How does the model create predictions? (ii) On a modular level, global model inter-
pretability identifies how different elements of the model influence predictions. (iii) For a
group of predictions, local interpretability reveals why the model made specific conclusions
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for a set of cases. (iv) Finally, the model’s usual local interpretability for a single prediction
is utilised to demonstrate why it drew a given conclusion for a particular case [13].

Another point worth mentioning is that local explanations are the most common way
of generating explanations in DNNs in the literature reviewed. Although these methods
were developed to explain neural networks, authors often emphasise that they can be used
to explain any type of model, making them agnostic models.

3. Materials and Methods
3.1. Local Interpretable Model-Agnostic Explanations

Artificial intelligence cannot evolve without trust, so models that do not provide a
clear rationale for their decisions will not be trusted. To address the trust problem, the local
interpretable model-agnostic explanations (LIME) approach has been proposed. LIME is
a human-centred approach that tries to bridge the gap between AI and humans. LIME
focuses on two key areas: model confidence and prediction confidence. LIME provides a
unique explainable AI system that explains predictions at the local level. The next section
defines LIME and its unique approach.

A deep learning model typically learns at least ten features to make a prediction. If all
of these features are displayed in an interface, it is practically difficult for a user to visually
verify the result. Compared to previous XAI approaches, LIME takes a unique approach.

LIME needs to know if a model is a local fidelity independent of the model. Local
fidelity does a good job of checking that a model reflects features close to a prediction.
However, local fidelity may not fit the model perfectly, and may only explain how the
prediction was produced. LIME examines the immediate context of a forecast to explain it
and assess its local fidelity. Consider the scenario where a prediction is accurate but for a
reason other than our global model. To explain the model’s decision, LIME will look for it
in the region of the predicted instance and may also find high-probability features in that
scenario.

3.2. Mathematical Representation of LIME

This section explains our understanding of LIME in mathematical terms.
The original, global representation of a given instance x is as follows:

x ∈ R2 (1)

A binary vector, on the other hand, is an explainable representation of an instance:

x′ ∈ {0, 1}d′ (2)

The explainable representation indicates whether a feature or set of features is present
or absent at a given location.

Let us have a look at LIME’s model-agnostic property. A deep learning model is
represented by the letter g. G denotes a set of models that includes g as well as other
models:

g ∈ G (3)

As a result, any other model will be explained similarly by LIME’s algorithm. Because
the gg domain is a binary vector, we can write it as follows:

g ∈ {0, 1}dn
(4)

The complexity of g ∈ G may make studying the neighbourhood of an instance
difficult. This is something we must consider. As an example of the complexity of a model
explanation, consider the following:

Ω(g) (5)

For humans to be able to explain a forecast, Ω(g) must be low enough.



Appl. Sci. 2023, 13, 8782 5 of 19

The model can thus also be defined as follows:

f : R2 → R (6)

The significance of a proximity measurement between an instance z and the neigh-
bourhood around x may be seen. This proximity measurement will be defined as follows:

Πx(z) (7)

Except for one crucial variable, we now have all the variables we need to define LIME.
How close is this prediction to our model’s global ground truth? Is it possible to explain
why it is reliable? Our challenge will be answered by determining how unreliable a model
g can be when estimating f in the locality Πx.

A prediction could be a false positive, for all we know! It is also possible that the
prognosis is a false negative! Worse yet, the prediction could be a true positive or negative
for the wrong reasons.

We use the letter L to represent unfaithfulness. L( f , g, Πx) will determine how un-
trustworthy g is when approximating f in the area we described as Πx.

Finally, we may define a LIME-generated explanation ε as follows:

ε(x) = argminL( f , g, Πx) + Ω(g) (8)

The above is a complete mathematical representation of the LIME method by Ribeiro
et al. [11]. Regardless of the model used, LIME will draw samples weighted by Πx to
optimise the equation and offer the best interpretation and explanations ε(x). LIME can
analyse a wide range of models, fidelity functions, and complexity metrics.

3.3. The Disadvantages of LIME

Tabular data represent information in the form of tables, where each row represents
an instance and each column represents a feature, and there are complex relationships
between tabular data, whereas LIME assumes that all features are independent, which
obviously reduces the accuracy of interpretation for tabular data. Although it improves
the possibility that some sample point predictions may deviate from the data points of
interest, LIME samples are taken from the centre of mass of the training data rather than
from the instances of interest, leading to problems of consistency, confidence, and stability
of interpretation.

It is easiest to describe how sampling and local model training work with Figure 1
(represented by Molnar C. [13]):

In Figure 1, the black-box model predictions are based on x1 and x2, where x1 and x2
represent the two features or input variables used to make the predictions. The predicted
classes (light) are 1 (dark) or 0 (bright). Subfigure A means that the data are sampled from a
normal distribution and a point of interest (large dots) is sampled (small dots). In subfigure
B, more weight is given to the points closer to the point of interest. In subfigure C, the grid
marks show the classifications of the locally learned model from the weighted samples. In
subfigure D, the decision boundary is marked by a white line (P(class = 1) = 0.5).

It is difficult to define a meaningful neighbourhood around a point. To define the
neighbourhood, LIME currently uses an exponential smoothing kernel [14]. A smoothing
kernel is a function that returns a measure of the closeness of two data instances. The kernel
width is a measure of the size of the neighbourhood: a minimal kernel width means that
an instance must be in close proximity to affect the local model, while an extended kernel
width means that instances at greater distances can also affect the model.

We found that it uses an exponential smoothing kernel with a width of 0.75 times the
square root of the number of columns in the training data. The main problem is that we do
not have a good method for the determination of the correct kernel or width. In some cases,
the adjustment of the kernel width can have a positive effect on the explanation, as shown
in Figure 2 (represented by Molnar C. [13]):
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Figure 1. LIME algorithm for tabular data.

Figure 2. Explanation of the example x = 1.6 prediction.

The predictions of the black-box model based on a single feature are shown by a
thick line, while carpets represent the data distribution. Three local surrogate models are
generated, each with a different kernel width.
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In this example, there is only one feature. In a high-dimensional feature space, the sit-
uation becomes worse. It is also uncertain whether all features should be treated equally in
the distance measurement. Distance measurements are arbitrary and distances in different
dimensions may not be comparable.

The correct definition of neighbourhoods is a huge, unresolved problem when using
LIME with tabular data, which is LIME’s most serious flaw and why experts recommend
using it only with extreme caution. You need to experiment with different kernel settings
for each application to see if the interpretation makes sense.

In the existing implementation of LIME, there is room for improvement in the sampling
technique. Currently, data points are generated according to a Gaussian distribution
without any consideration of feature correlation. This approach can lead to the creation
of unlikely data instances that can be used to learn local explanatory models despite their
improbability.

The complexity of the explanatory model must be determined in advance. This is
a minor problem because the end user has to choose between truthfulness and sparsity.
Another important issue is the instability of the interpretation. Furthermore, in our expe-
rience, results can vary when the sampling process is repeated. The uncertainty makes it
difficult to accept interpretations and you should be sceptical. Data scientists can change
the interpretation of LIME to hide bias. Accepting LIME-generated interpretations is more
difficult because of the potential for manipulation.

3.4. Specific-Input LIME
3.4.1. The Architecture of Specific-Input LIME

Here, we present the structure of the specific-input LIME, with our approach focusing
on feature importance and partial dependency plot (PDP) values as a complement to the
shortcomings of the LIME approach.

The specific-input LIME method is primarily used to analyse data learned from black-
box models, but unlike conventional methods, the specific-input LIME method allows for
greater interpretability of the data points used in the LIME method.

The structure of the specific-input LIME is shown in Figure 3:

Figure 3. The architecture of specific-input LIME.

The specific-input LIME has three main parts: feature importance, PDP and LIME. The
feature importance part also uses the gain feature importance and split feature importance.
The PDP part uses a binary PDP, which is used to partition the data learned by the black-box
model into regions. The feature importance and the binary PDP are then integrated into the
LIME method to obtain the final interpretation. Specifically, feature importance plots show
‘what’ features affect predictions the most. Partial dependence plots (PDP) show ‘how’ a
feature affects predictions.

3.4.2. Feature Importance

Feature importance refers to the methods used to calculate a score for each of the input
features in a model. The scores are a measure of the ‘importance’ of each feature. A higher
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score is an indication that a particular feature will have a greater impact on the model used
to predict a particular variable. Feature importance ranks features according to their impact
on the prediction of the model.

In the feature importance part, we use both gain feature importance and split feature
importance. In our experiments, we use the trained LightGBM Classifier model as a black-
box model for explanation. We obtain the “gain/split feature importance” of the LightGBM
Classifier model by calling the “plot importance” function of the LightGBM model.

The principle of split feature importance is that if a feature is used multiple times in
the model for segmentation, the feature is considered relatively important. The principle
of gain feature importance is based on the loss of the objective function at the point of
feature splitting; if a feature splitting point can significantly reduce the loss of the objective
function, the feature is considered to be relatively important. In this step, we filter out the
features that have more influence on the model and then proceed to the later steps.

We selected features that had a greater impact on the model predictions based on the
ranking of the importance of these features. For example, in the Wine Quality Dataset, the
features ‘alcohol’ and ‘sulphates’ had the highest gain and segmentation importance in
our model, so we selected these two features for further in-depth analysis. The selection of
these important features not only helped us to optimise the performance of our model, but
also enabled us to gain a deeper understanding of the working mechanism of the model.

3.4.3. Partial Dependency Plot

After the feature importance step, we draw the partial dependency plots of the features
that have a greater impact on the model. The partial dependency plot (PDP) describes the
marginal impact of one or two features on the expected outcome of a machine learning
model [15]. A PDP can determine whether the relationship between the target and the
features is a linear one, a monotone one or a complex one. For example, when applied to
linear regression models, PDPs will always show a linear relationship.

The partial dependence function for regression is defined as

f̂s(xs) = Exc

[
f̂ (xs, xc)

]
=
∫

f̂ (xs, xc)dP(xc) (9)

The characteristics for which partial dependence function should be drawn are xs,
and the other features utilised in the machine learning model, f̂ , which are represented as
random variables here, are Xc.

In most cases, the set S contains only one or two features. The feature in S for which we
wish to know the effect on prediction is that in S. The complete feature space x comprises
the feature vectors xs and Xc. The function reveals the association between the features in
set SS we are interested in and the expected outcome by marginalising the machine learning
model output over the distribution of the features in set C. By marginalising the other
features, we obtain a function that depends solely on features in S, including interactions
with other features.

The partial function f̂s is calculated using the Monte Carlo approach, which involves
calculating averages in the training data:

f̂s(xs) =
1
n ∑n

i=1 f̂
(

xs, xi
c

)
(10)

The partial function shows us the average marginal effect on prediction for a given
value of characteristics S. xi

c is the actual feature values from the dataset for the characteris-
tics we are not interested in, and n is the number of instances in the dataset in this formula.
The PDP assumes that the features in C are unrelated to the features in S.

The partial dependence plot illustrates the probability for a specific class given different
values for the feature in S for classification when the machine learning model produces
probabilities. Drawing one line or plot per class is a simple technique to deal with several
classes.
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We obtain the turning points of the folds of the feature’s PDP graph by means of the
feature’s partial dependency plot (PDP) and analyse and compute the turning points in
detail (see Algorithm 1 for the procedure), and present them together with the results of
the LIME analysis to obtain the results of the interpretations at both the global and local
levels. In fact, this approach also improves the stability of LIME in two ways:

(1) Feature space partitioning: By dividing the feature space into different intervals and
performing the specific-input function separately in each interval, we essentially reduce
the complexity of the prediction task within each interval. This leads to a more reliable
approximation of the model’s behaviour in each interval, as it is less affected by changes
that may occur in other regions of the feature space.

(2) Capturing local changes: This method also helps to capture local changes in the
model behaviour in different intervals. By running the specific-input function on each
interval, we are able to capture the effect on the predicted probabilities of specific feature
values varying in different regions of the feature space. This allows us to understand the
behaviour of the model at a more granular level than when considering the entire feature
space as a whole.

Algorithm 1 Calculate Prediction Probability Percentage_Change

1: Initialise an empty list named data_frame.array
2: Create a deep copy of the dataset named fake_data_frame
3: for each index i of feature content in fake_data_frame do
4: if feature content is between interval_minandinterval_max then
5: Set the feature content in fake_data_frame to interval_min + interval_max di-

vided by 2
6: Append index i to the data_frame.array
7: end if
8: end for
9: Calculate the probabilities of the original dataset at indices in array using the model

10: Calculate the probabilities of the fake_data_frame dataset at indices in array using the
model

11: Calculate the change in feature values between original and fake_data_frame
12: Take the absolute value of feature change and compute the sum
13: Calculate the change in probabilities and divide by 2
14: Calculate the total change (probability change divided by feature change)
15: Calculate the percentage_change (total change divided by the length of array)

Using a combination of PDP and LIME provides a more complete understanding
of the model’s behaviour: the PDP identifies general trends in the data, and the LIME
provides specific explanations for individual observations or localised regions of feature
space. This approach is well suited to explaining complex models where there is no clear
relationship between some features and the outcome variable.

4. Results and Discussion

In this section, we present simulated user tests to assess the usefulness of explanations
in classification tasks. In particular, we address the following question: can the explanations
help users decide whether or not to believe the predictions?

4.1. Data Description

The dataset used in this experiment is the Wine Quality Dataset used in [16]. This
dataset is publicly available and can be used for research and to perform classification or
regression tasks. This dataset is not balanced, but it is ordered, and consists of two smaller
datasets: a red wine sample and a white wine sample. The input consists of objective tests
and the output is based on sensory data. Each expert rated the quality of the wines between
0 (awful) and 10 (very excellent). Several data mining methods were used to model these



Appl. Sci. 2023, 13, 8782 10 of 19

datasets under a regression approach. The Support Vector Machine model gave the best
results.

The Pima Indians Diabetes Dataset is a publicly available dataset used in [17], down-
loaded from the UCI machine learning repository. The dataset comprises 8 attributes,
768 instances, and 1 binary class attribute. The outcome is whether or not a subject has
diabetes, where 0 is no diabetes and 1 is diabetes. This is a binary classification problem
that is commonly used in the development and evaluation of diabetes prediction mod-
els. Table 1 shows the specific description of the Wine Quality Dataset and Pima Indians
Diabetes Dataset.

Table 1. Data description.

Dataset Wine Quality Dataset Pima Indians Diabetes Dataset

Dataset Characteristics: Multivariate Multivariate

Area: Business Medical research

Associated Tasks: Classification Classification

Number of Instances: 4898 768

Number of Attributes: 11 8

Missing Values: N/A N/A

We first train a model to solve these two classification problems. After that, we
choose the model with the best performance, the LightGBM Classifier, as our black-box
model, which will be explained. We also use Python 3.6 version and other libraries as our
environment.

4.2. Model Training

We use the FLAML [18] auto-machine learning library for model training. which is
a lightweight Python library that finds accurate machine learning models automatically,
quickly, and inexpensively. It relieves the user of the burden of selecting learners and
hyperparameters for each learner. We use the model selected by this library as our black-
box model for explanation analysis in the following experimental part. In this experiment,
FLAML selected LightGBM Classifier as our experimental model. Table 2 shows the model
LightGBM Classifier and parameters obtained using the FLAML library.

Table 2. Model parameters.

Model: LightGBM Classifier

Num_leaves: 27

Min_child_samples: 7

Learining_rate: 0.1400468994301556

Log_max_bin: 10

Colsample_bytree: 0.9159235947614908

Reg_alphg: 0.0009765625

Reg_lambda: 3.136860108634179

In the Wine Quality Dataset, we split our data into a 70% training set and a 30% test
set. We also used 100 epochs to train the model. Table 3 and Figure 4 show the results of our
model. We obtained a model that performs reasonably well with the training dataset. In
the Wine Quality Dataset, the accuracy of our model is 0.7667, the F1 score of the model is
0.77 and the AUC of the model is 0.85. A ROC curve is a graph showing how the diagnostic
ability of a binary classifier model changes as the discrimination threshold is changed.
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Figure 4. AUC-ROC curve of the Wine Quality Dataset.

Table 3. The Wine Quality Dataset model performance.

Precision Recall F1-Score Accuracy

Low Quality: 0.73 0.75 0.74 0.7667

High Quality: 0.80 0.78 0.79 0.7667

Macro avg: 0.76 0.77 0.76 0.7667

Weighted avg: 0.77 0.77 0.77 0.7667

In the Pima Indians Diabetes Dataset, we also divided the data into a 70% training set
and a 30% test set. We used 100 epochs to train the model. Table 4 and Figure 5 show the
results of our model. In the Pima Diabetes Dataset, the accuracy of our model is 0.8117, the
F1 score of the model is 0.81 and the AUC of the model is 0.86.

Figure 5. AUC-ROC curve of the Pima Indians Diabetes Dataset.



Appl. Sci. 2023, 13, 8782 12 of 19

Table 4. The Pima Indians Diabetes Dataset model performance.

Precision Recall F1-Score Accuracy

0: 0.88 0.85 0.86 0.8117

1: 0.68 0.72 0.70 0.8117

Macro avg: 0.78 0.79 0.78 0.8117

Weighted avg: 0.82 0.81 0.81 0.8117

4.3. The Implementation of Specific-Input LIME

We use our method to explain our black-box model. Here, we use the trained Light-
GBM model as our black-box model for the explanation, and we select the first data point
in the tabular dataset as the instance to be explained. In our experiments, we obtain the
‘gain/split feature importance’ of the LightGBM model by calling it the ‘plot importance’
function.

In the Wine Quality Dataset, based on the feature importance in Figure 6, we can see
that the part of the graph marked with a green square is not essential when training our
deep learning model. Therefore, this part of the feature is not very important for our deep
learning model.

Figure 6. The feature importance of our black-box model in the Wine Quality Dataset.

In addition, we focus on the remaining essential features (i.e., ‘alcohol’ and ‘sulphates’)
in the PDP, which allows us to describe further how our model employs these features for
learning. Here, we use the ‘alcohol’ feature as an example. Figure 7 shows the PDP of the
‘alcohol’ feature.
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Figure 7. The PDP plot of ‘alcohol’ feature.

When the value of ‘alcohol’ is more than 11.9, the impact on the model converges to a
fixed value. This phenomenon shows that when learning the feature ‘alcohol’, our model
groups features with values larger than 11.9 into the same category.

In the Pima Indians Diabetes Dataset, based on the feature importance in Figure 8,
The same situation occurs. The next few features in the ranking are not important to our
deep learning model. Figure 9 shows the PDP of the ‘Glucose’ feature.

Figure 8. The feature importance of our black-box model in the Pima Indians Diabetes Dataset.



Appl. Sci. 2023, 13, 8782 14 of 19

Figure 9. The PDP plot of ‘Glucose’ feature.

4.4. The Results of Specific Input-LIME

The LIME method is used in our approach to obtain a local explanation. This expla-
nation is mainly used to illustrate the impact of the first point in the two datasets on our
model. Figures 10 and 11 show the results of the LIME interpretation in the two datasets.

Figure 10. The result of the LIME method in the Wine Quality Dataset.

Figure 11. The result of the LIME method in the Pima Indians Diabetes Dataset.

Based on the LIME method, we have added the explanation of feature importance and
the PDP. Using feature importance allows us to choose which features we should look for
to explain, and the PDP provides us with an interval in which the black-box model has a
different importance for the features in each interval.
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In the Wine Quality Dataset, our method allows us to expand LIME’s explanation ca-
pabilities, assuming we need to explain the feature ‘alcohol’. Using the PDP, we can see ten
turning points for the feature ‘alcohol’. There are nine intervals between these ten turning
points. Each interval can be considered a deep learning model learning circumstance for
the value of the ‘alcohol’ feature.

We then explain each of the intervals according to ‘alcohol’. The contribution of the
‘alcohol’ feature to the model varies across these intervals. So, we replicate the data points
in the dataset that belong to these intervals by finding them and assigning the value of the
‘alcohol’ feature to the mean of the interval, using the mean to obtain an average for the
‘alcohol’ feature. The averaged fake_data_frame is fed into the deep learning model as a
dataset to obtain the predicted value of this model for the fake_data_frame.

Algorithm 1 shows how the feature importance and PDP values can be used to illus-
trate this. In reality, we are primarily interested in obtaining the variable percentage_change.
This variable is usually calculated by subtracting the difference between the probability
projected by the deep learning model on the original data frame and the fake_data_frame.
The size of the difference represents the model’s influence when only one feature value is
replaced by the mean of the interval.

The influence of the feature ‘alcohol’ on the model’s projected values in each of the
nine intervals divided by the PDP is shown in Figure 12. We can conclude from this research
that ‘alcohol’ has a greater influence on the model before intervals 4 and 6 and that the
‘alcohol’ feature is regularly distributed. Our black-box model learns the ‘alcohol’ feature
by giving more weight to intervals 4 and 6.

Figure 12. The result of explaining the feature ‘alcohol’ using percent_change.

Figures 13 and 14 provide a more detailed explanation. The user can understand how
the model selects features within a particular interval and how these features affect the
model’s predictions.

4.5. Discussion

This paper uses specific-input LIME, a new approach to explaining models. This
method is based on the original LIME method and implements a more detailed explanation.
We use feature importance and PDP to compensate for the shortcomings of the LIME
method. The LIME method focuses on adding random fake_data around a particular data
point to obtain a boundary, whereas with the LIME method, generating fake_data will
result in another interval of fake_data that exceeds the range of data learned by the original
model, which interferes with the interpretability of the LIME method.
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Figure 13. The explanation of using specific-input LIME for the first data point in the Wine Quality
Dataset.

Figure 14. The explanation of using specific-input LIME for the first data point in the Pima Indians
Diabetes Dataset.

Since the main idea of this method is to combine the feature importance and the nodes
in the PDP, the different feature areas are divided into different “situations” and the nodes
of each fold in the PDP are segmented. For example, the point in the ‘alcohol’ PDP where
the fold appears represents a shift in the situation as the model is learned. Hence, we think
that the interval between the two folds in the PDP can be considered as a situation (this is
just a scenario and is tentatively considered to be valid in the experiment), so there are 10
points and 9 situations in the ‘alcohol’ PDP.

We also performed model interpretation on the same dataset using the LightGBM
classifier using Shapley additive explanation (SHAP), a method proposed by Lundberg
S M and Lee S I [19] in 2017 for interpreting the predictions of machine learning models.
It is based on the Shapley value in game theory, which is a fair allocation concept used to
determine the contribution of each player (here understood as a feature) to the outcome of
the game (in this case, the predicted outcome). The results are shown in Figures 15 and 16.
The SHAP figure is sorted from top to bottom according to the importance of the feature
and the horizontal coordinate represents the SHAP value, which is the influence value.
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The blue colour represents the influence value of the feature on class 0 and the red colour
represents the influence value of the feature on class 1. We analyse both approaches:

(1) The granularity of interpretation: Our method combines global feature importance
and local feature influence (divided by turning points in the PDP), and this method provides
the global influence of features in different intervals. The SHAP method, on the other hand,
provides a detailed explanation of the feature contribution for each sample, as shown in the
blue and red parts of Figures 15 and 16, which allows us to understand how the prediction
results for a single sample are jointly determined by the individual features. However, the
LIME method can only provide local explanations [20], i.e., explain the causes of individual
predictions. In this respect, SHAP and our approach are significantly better.

Figure 15. The explanation of using SHAP in the Pima Indians Diabetes Dataset.

Figure 16. The explanation of using SHAP in the Wine Quality Dataset.

(2) The accuracy of interpretation: SHAP values are calculated by a mathematical
formula that assigns a fair contribution value to each feature. While our method is based on
feature importance and PDP turning points, this approach can be affected by the complexity
of the model and the distribution of the data, which we intend to improve later.

(3) Intuitive understanding: Our method is easier to understand because it is based on
feature importance and segmentation, which are easily understood by humans. The SHAP
method, on the other hand, requires an understanding of more mathematical principles.

In conclusion, both methods have advantages and suitable scenarios. When dealing
with complex models, the SHAP method may be more accurate and stable, but it also has
the problem of a long computation time [21]. When focusing on the effect of a single feature
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on the results, the present method may be more intuitive and better suited to explain the
global model behaviour.

5. Conclusions

We use the specific-input LIME method to provide the user with a more detailed
explanation. Using our method, it is possible to obtain the influence of the data points that
need to be explained within a particular interval, and this influence provides the user with
a more intuitive explanation.

This approach can also have many applications in practice, such as in healthcare,
where this combination of global and locally interpretable models can be used to explain
how machine learning models predict whether a patient has a certain disease or not,
and to analyse the impact of individual features on this prediction result. This can help
physicians and patients to better understand the prediction results and help them make
better decisions.

Although our method gives good results, it still has limitations. Since LIME, PDP, and
feature importance are generated based on the perturbed data predicted by the model, they
may be sensitive to the size and direction of the perturbations. If the perturbation is too
large or in the wrong direction, it may lead to an unstable interpretation, so we will focus
on this issue in future work. The perturbation data require the generation of a large amount
of perturbation data, which can lead to high computational costs, especially for complex
models or large datasets.

In future work, we will focus on parameter optimisation to reduce the computational
cost and improve the robustness of this method.
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Abbreviations
As there are many abbreviations of technical terms in this paper, the following appendix explains
these abbreviations:

LIME Local interpretable model-agnostic explanations
XAI Explainable artificial intelligence
PDP Partial dependence plots
AI Artificial intelligence
DNNs Deep neural networks
BRL Bayesian rule lists
AUC Area under curve
ROC Receiver operating characteristic curve
SHAP Shapley additive explanation
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