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Abstract: Although vision-guided robotic picking systems are commonly used in factory environ-
ments, achieving rapid changeover for diverse workpiece types can still be challenging because the
manual redefinition of vision software and tedious collection and annotation of datasets consistently
hinder the automation process. In this paper, we present a novel approach for rapid workpiece
changeover in a vision-guided robotic picking system using the proposed RoboTwin and FOVision
systems. The RoboTwin system offers a realistic metaverse scene that enables tuning robot move-
ments and gripper reactions. Additionally, it automatically generates annotated virtual images for
each workpiece’s pickable point. These images serve as training datasets for an AI model and are
deployed to the FOVision system, a platform that includes vision and edge computing capabilities for
the robotic manipulator. The system achieves an instance segmentation mean average precision of
70% and a picking success rate of over 80% in real-world detection scenarios. The proposed approach
can accelerate dataset generation by 80 times compared with manual annotation, which helps to
reduce simulation-to-real gap errors and enables rapid line changeover within flexible manufacturing
systems in factories.

Keywords: metaverse; auto annotation; robotic random bin picking

1. Introduction

In today’s manufacturing industry, vision-guided robotic picking systems play a vital
role in automating various tasks. However, achieving rapid changeover and adaptability
for diverse workpiece types has remained a significant challenge. Traditional approaches
require constant redefinition of vision software and manual annotation of datasets, lead-
ing to time-consuming and tedious processes. To address these limitations, this study
introduces a novel approach that leverages the capabilities of the RoboTwin, a metaverse
platform developed by the Industrial Technology Research Institute (ITRI) of Taiwan.

The RoboTwin serves as a realistic virtual environment, replicating actual factory
layouts, robotic cells, and workpieces. It offers a range of key features that revolutionize
vision-guided robotic picking systems. Firstly, it incorporates physics engines that accu-
rately simulate the real-world behavior of workpieces, enabling precise interaction with
other objects. Secondly, it provides a modeling and automated AI tool capable of mapping
real-world textures onto 3D CAD models of workpieces. This tool not only enhances the
realism of the virtual environment but also automates the generation of annotated datasets,
capturing pickable and unpickable points for each workpiece. Thirdly, the RoboTwin
includes robotic models equipped with motion control algorithms for robotic arms and
gripper reactions, ensuring realistic and optimized movements. Lastly, virtual reality (VR)
modules are included to allow operators to immerse themselves in the virtual factory, which
further facilitates testing and fine-tuning of the robotic picking system. To provide a visual
demonstration of the RoboTwin system in action, we prepared a video that showcases its
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features and capabilities: [RoboTwin (https://www.youtube.com/watch?v=AnX3v12v8y4
(accessed on 25 August 2022))].

Once highly realistic datasets are generated using RoboTwin, and the AI model is
trained, they can be seamlessly integrated to form the FOVision system. FOVision rep-
resents an all-in-one robot vision module that combines machine vision, intelligent com-
puting, and active guide light sources within a compact and highly flexible design. This
versatile module can be effortlessly integrated with diverse robotic arms and machining
equipment from different brands, enabling the convenient implementation of various
functions including visual positioning, material handling, and assembly. By eliminating
the need for complex programming, FOVision streamlines the deployment and opera-
tion of vision-guided robotic systems. To see the FOVision system in action and gain
a better understanding of its capabilities, we created a video demonstration: [FOVision
(https://www.youtube.com/watch?v=BuUc_1zTrrg (accessed on 17 August 2020))].

This research aims to address the existing technology gap by proposing a comprehen-
sive solution that enables rapid workpiece changeover in vision-guided robotic picking
systems. By utilizing the highly realistic metaverse scene provided by RoboTwin, the
proposed approach offers several advantages. It significantly reduces the need for manual
annotation by automating dataset generation, resulting in faster training of AI models.
Moreover, it minimizes the simulation-to-real gap errors, enhancing the reliability and accu-
racy of the robotic picking system. The proposed approach enables rapid line changeover,
meeting the demands of flexible manufacturing systems in today’s factories.

To provide a comprehensive understanding of the research, this paper is organized as
follows: Section 2 provides a literature review of relevant prior work and highlights the
motivation behind this research by identifying the existing technology gap that this study
aims to address. In Section 3, methods, materials, and procedures used by the RoboTwin
system from dataset generation to the deployment of AI on the robot are described, as well
as the FOVision. Calibrated experimental results are presented in Section 4, followed by a
discussion in Section 5. Concluding remarks are presented in Section 6 with thoughts and
recommendations for future work.

2. Background

According to the literature, researchers have shown that utilizing virtual scenes can
be a replacement or comparison source to their real-world counterparts. As addressed
by Rivera-Calderón et al. in [1], a lack of resources and accessibility to real-world scenes
can be an issue in training robots in the digital twin. For instance, in [1], the visualization
of a virtual robot that is controlled based on data captured from cameras in the physical
environment was introduced to allow for the integration of knowledge and remote prac-
tice without the need for a physical robot, thereby increasing equity and inclusivity in
assessment. Bansal et al. in [2] argued that advanced manufacturers often require dynamic
changes on the factory floor to enable manufacturing. To address these requirements,
they employed the ant colony optimization algorithm to program an industrial robot for
obstacle avoidance and pathfinding for object picking and placement. In their work, the
optimization was completed in a digital-twin environment, and after human inspection,
the movements are transferred to a real robot, with all trials completed at a minimal cost.
Borangiu et al. in [3] posited that although digital-twin systems consider the manufacturing
process, they often ignore the gaps and discrepancies between the simulated and real-world
cases. To cope with the problems, they proposed a smart manufacturing control model
that ensures cost optimization and reality awareness of resource usage and suggested
that this solution could enhance a digital-twin system by connecting it to the cloud and a
management execution system (MES).

To summarize, the authors of [1–3] have provided valuable strategies and contributions
for using virtual systems to support the digital-twin platform. However, the reported
methods are not sufficiently robust to account for factory environments, primarily due to
the following reasons:

https://www.youtube.com/watch?v=AnX3v12v8y4
https://www.youtube.com/watch?v=BuUc_1zTrrg
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• The level of realism in the virtual scene plays a crucial role in its corresponding
generated value. If the simulated virtual scene is not realistic enough, the performance
gap can be significant. In contrast, achieving a higher level of realism is more important
than designing the platform itself, as the latter is readily available in the market.

• The movement of equipment is also an important factor to consider. Identifying
and resolving issues in the virtual simulated scene before deployment in the real
environment can greatly reduce deployment, tuning, and debugging time, as well as
protect the equipment.

Research on using vision-guided robots in engineering applications such as surgical
operations [4], where surgeons are assisted with automated surgical subtasks, has reported
several challenges due to backlash, hysteresis, and variable tensioning in cable-driven
robots. To address these issues, the authors in [4] proposed to employ visual feedback,
referred to as deep intermittent visual servo (IVS), to estimate the robot’s next-step action
instead of using information from the robot’s encoders. The results showed that IVS could
achieve the highest published success rates for automated surgical peg transfer and was
significantly more reliable than previous techniques when instruments were changed.

Lee et al. in [5] stated that operating a robot in a robotic bin-picking system’s en-
vironment, where workpieces are randomly stacked in the crate, could be a challenging
task for the robot because the posture of each workpiece is unknown and therefore could
not be preprogrammed. To solve this issue, 3D cameras were used in their research to
obtain the corresponding point cloud datasets to match with the CAD model to identify
the posture. However, this solution was only useful for educational settings, not for real-
world implementations in factories. In industrial settings, the role of operators involves
the manufacturing of workpieces rather than their design. Consequently, access to the
workpiece’s CAD model is often unavailable to these operators. To address this limita-
tion, an artificial intelligence system was introduced by the authors in reference [5]. This
system aims to facilitate 2D object segmentation of workpieces, thereby enabling precise
pixel-wise alignment of the bounding box. which could be used to determine whether
the workpiece was pickable or not. Based on the segmentation, the model from [5] was
able to estimate the normal direction of the targeted workpiece’s surfaces in guiding the
robot to conduct picking operations. Since the system does not require CAD models for
matching, and high-resolution 3D cameras are not required, it significantly reduces the cost
of common robotic random bin-picking systems. Additionally, with the use of AI to change
and train the dataset, the aforementioned system can be easily transferred to detect another
workpiece, which facilitates the need for rapid line change in factories.

Qiao et al. [6] tackled the long-standing and challenging inverse projection problem in
computer vision by proposing the depth-aware video panoptic segmentation method. This
method combines monocular depth estimation and video panoptic segmentation as a step
toward solving the inverse projection problem. The method demonstrated that instance
segmentation, although challenging, is useful in image processing. In another study [7],
Shen et al. reported that a low-resolution grid is not sufficient to capture details, while a
high-resolution grid would significantly increase the training. Discrete cosine transform
(DCT) was proposed to encode the high-resolution binary grid mask into a compact
vector. The DCT was demonstrated to be able to perform instance segmentation with
high resolution and to achieve an AP50 score of 55.4, a higher score than with traditional
Mask R-CNN.

Few-shot instance segmentation methods are promising in the case when labeled train-
ing data for novel classes are scarce. Using stored embedding vectors rather than images
can effectively solve memory overhead problems [8]. The results are promising and can
narrow the gap between non-incremental and incremental few-shot instance segmentation.
The work presented by Chen et al. in [9] defines a new scale-aware search space where
both image- and box-level augmentations are designed to maintain the scale invariance,
resulting in higher AP scores for different models. Understanding the scene is a complex
yet important task for a vision-based self-driving system. Researchers in [10] proposed a
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part-aware panoptic segmentation method that combines instance and semantic segmenta-
tion methods. In deep learning, collecting a vast quantity of data is time-consuming and
labor-intensive. To alleviate this issue, Yuan and Veltkamp [11] suggested utilizing a 3D
environment simulator to provide photorealistic simulations by using a view synthesis
module to support a flexible configuration of multimodal sensors. Their results showed
that vision-based algorithms developed in the simulation can be transferred to real physical
platforms without domain adaptation. In machine learning, if the labeled datasets are inac-
curate, the annotations generated by the ensemble may lead to performance degradation of
the trained model. To address this, Simon et al. [12] suggested a trained model that predicts
the quality of the annotation from the degree of consensus between ensemble models. The
results obtained in this study indicate that the process necessitates only 30% of the original
data, and the rest can be replaced with automatically annotated data.

The research from [4–12] offers valuable insights and contributions regarding the
utilization of AI-based vision systems for object detection without the need for reprogram-
ming. Instead, these studies emphasize the retraining of the AI model using different
datasets to achieve robust detection capabilities. However, there are still concerns specific
to factory environments, including the following problems:

• The generation of images without annotations is insufficient for training the AI model,
as manual annotations are still required;

• Manual annotation introduces instability, which directly affects the repeatability and
reproducibility of the results obtained from the trained AI model;

• The image generation process only considers the object’s posture, lighting intensity,
and light colors. It does not consider factors such as lighting position, camera shooting
posture, and realistic textures, all of which are crucial in providing diverse and realistic
image datasets for training the AI model.

3. The RoboTwin System and FOVision
3.1. RoboTwin System

In this section, the model RoboTwin system is described in detail. The system includes
the following four subsystems:

• Physics engines—These engines encompass physics models that are utilized to calcu-
late the real-world reaction of the workpiece when it is physically picked or interacts
with other objects.

• Modeling and auto AI annotation tool—This tool facilitates the mapping of real-
world textures onto the 3D CAD model of the workpiece and automates the gener-
ation of datasets with annotations indicating the pickable and unpickable points of
each workpiece.

• Motion control—The motion control aspect encompasses robotic models equipped
with motion control algorithms for the robotic arms and gripper reactions.

• VR modules—These modules provide an immersive experience for operators, allowing
them to immerse themselves in a realistic virtual factory environment. This enables
testing and fine-tuning of the robotic picking system.

Additionally, in what follows, the FOVision system will be described, of which the
system deploys the trained AI model into the real-world robot for visual guidance in picking
and placing operations. It allows bridging the gap between virtual and real environments
by accurately detecting and identifying issues in the virtual scene, and then implementing
solutions in the real world, resulting in a more efficient deployment, tuning, and debugging
process, as well as better protection for equipment.

(1) Physics engines:

The proposed RoboTwin system goes beyond utilizing existing physics engine func-
tions. It incorporates additional physics algorithms to enhance the realism and robustness
of the simulation. Within the simulator, various functions have been developed to calculate
and retrieve important parameters, such as the workpiece’s material, surface roughness,
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weight, motion speed, the kinematics of the vacuum gripper, and other crucial factors that
significantly impact the success of the robotic picking system.

Similar to the work of Tuleja and L. Šidlovská [13,14], who demonstrated positive
results in workpiece picking using multiple grippers, we developed and fine-tuned our
algorithm based on physics models to optimize the performance and minimize the disparity
between the simulated and real values. This is achieved through a comparison of predicted
outcomes obtained from the simulation with actual measurements. By doing so, we
ensure that the RoboTwin system offers accurate and realistic simulations of the factory
environment and the robotic picking system, enabling efficient testing and fine-tuning
before deployment in real-world applications. As an example, the equation for successful
pressurized picking is expressed as follows:

p =
4mt(α ± g)

10−3πµ(103d)2 , (1)

where p is the minimum air pressure required by the robot vacuum gripper to hold
the workpiece; m represents the mass of the workpiece; α + g is the net acceleration at
the gripping point from both the acceleration and gravity, respectively; µ stands for the
coefficient of friction; t is a safety factor defined by the orientation of the gripper in grasping
a workpiece; and d is the diameter of the gripper. However, there are often gap errors that
come from unaccounted variables and small imperfections in measurements. To address
this issue, after running experiments using Equation (1) on both the simulation and real-
world environments, this gap error can be reduced by fine-tuning the parameters and
applying linear minimum mean square error (LMMSE) on the acquired data. Suppose the
real measurement is expressed as Y and the simulated one as Ỹ, one can improve upon the
estimated value Ŷ as a function of Ỹ as follows:

Ŷ = g
(

Ỹ
)
= aỸ + b (2)

where a and b are scalars to be determined. More specifically, the goal is to choose a and b
such that the mean square error (MSE) of the above estimator is minimized through the
following equation:

MSE = E
[(

Y − Ŷ
)2
]

(3)

Since Ŷ = p̂, Equation (1) now becomes

p̂ = a
4mt(α ± g)

10−3πµ(103d)2 + b (4)

(2) Modeling and Auto AI Annotation Tool:

It is crucial to accurately replicate the real-world environment within the simulator,
particularly when it comes to the workpiece in the metaverse robotic random bin-picking
system. The fidelity of the workpiece’s geometry and texture directly impacts the realism
of the virtual scene and can influence the gap error. For instance, if a simulator generates
images without considering real-world characteristics, training an AI model with those
images may result in overfitting unrealistic features and lead to failure when applied to
real images. To address this challenge, we employed an RGBD camera to capture the
workpiece’s real-world texture and simultaneously obtained the 3D geometry point cloud
for generating the workpiece’s mesh. This allowed us to achieve proper UV mapping
of the texture [15]. UV mapping enables the determination of the relationship between
the 2D image pixel (u, v) and 3D coordinates (x, y, z) of the mesh using the following
geometric equations:

u= 1/2 + tan−1(2(x, z))/ 2π and (5)
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v= 1/2+ sin−1(y)/ π, (6)

where u represents the horizontal coordinate, and v represents the vertical coordinate. The
resulting values of u and v fall within the range of [0, 1] and are used to determine the
texture mapping for the corresponding 3D point. By combining real-world scanned point
clouds with 3D-model-generated point clouds, The accuracy of the simulated workpiece as
a representation of its real-world counterpart can be assured. This approach enables us to
train the AI model using realistic data, thereby reducing the gap error and improving the
performance of the robotic picking system.

The auto AI annotation tool proposed in this research performs the following three
main tasks: (1) scene generation, (2) image capturing, and (3) auto annotations. For scene
generation, the tool utilizes a domain randomization algorithm to control several parame-
ters to randomize the reaction of the camera, the lighting, the crates, and the workpieces.
This process introduces variations in the scene setup, enabling a more comprehensive
training dataset. Once the scene is generated, the tool captures high-quality images of
the scene with the workpieces positioned within it. These images, along with the details
extracted from the simulator, serve as the input for subsequent annotation processes. The
tool automates the annotation process by accurately labeling the workpieces within the
captured images based on the specified labeling conditions. It performs instance segmenta-
tion and identifies and categorizes objects of interest within the image using details that
can only be accessed from the simulator.

For this tool, a simulator with a physics engine and domain randomization was
implemented, the latter of which can be defined using the following function:

D(P, Q, CP, LP, LI, LC, CR), (7)

where each of the parameters and functions is defined as follows:

• Domain randomization (D): A function that takes multiple randomization parameters
and initiates the scene randomly based on these values.

• Object posture (P): Random postures (x, y, z, rx, ry, rz) for the workpieces so each
of them has a distinct posture and surface facing the camera while being randomly
stacked inside a crate. Here, rx, ry, and rz represent the orientation or rotation angles
with respect to the x-, y-, and z-axis, respectively.

• Quantity (Q): Random quantities of workpieces for each simulation scene. Depending
on the quantities of workpieces, scenarios such as stacking and occlusion can have a
higher probability of occurrence.

• Camera posture (CP): Random position for the camera to enhance or reduce work-
pieces in the image.

• Lighting posture (LP): Random posture for the lighting for each simulation scene so
the light reflections are different.

• Light intensity (LI): Random light intensities are employed to simulate the light
decay intensity.

• Light color (LC): Random light red, green, and blue colors (R, G, and B) influence the
lighting in the scene.

• Color rendering (CR): Different color renderings of the objects are generated from the
changes in the light sources. Only the high general color rendering index (Ra) allows
the objects to show their natural color.

It is important to clarify that the parameters provided serve as bounds and conditions
for the randomization process, i.e., when setting Q = [1, 5], it specifies a range of workpieces
from 1 to 5 that can be included in each generated scene. These parameters define the
variability and constraints applied during scene generation, allowing for flexibility and
control over the characteristics of the generated scenes. By doing so, the tool can generate
a diverse set of images with different lighting conditions, camera angles, and workpiece
poses. This ensures that the AI model is trained on a diverse set of images and can perform
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well in real-world scenarios with varying conditions. Furthermore, the use of automated
annotation tools can save time and effort compared with manual annotation, allowing for
faster and more efficient dataset generation for training AI models.

Like in the real-world scenario where only the easily accessible workpieces can be
picked, we designed the annotations so the picking class for each workpiece would consider
occlusion level and the visible pixel surface area seen with the camera. For example,
workpieces on the top of the crate normally have a higher priority for being picked since
they have less occlusion and higher pixel surface area visible to the camera in comparison
to other workpieces. The inclusion of this annotation makes the picking easier for the
robot. Normally, workpieces closer to the middle of the crate should have a higher priority
than those closer to the walls as they can be considered obstacles, potentially increasing
the difficulty in the picking operations. With the annotations, the proposed system can
simulate real-world scenarios and allows the AI model to learn the difficulties of picking
workpieces in different positions, both of which can improve the performance of the robot
in real-world applications.

(3) Motion control:

In a robotic picking system, vision detection and guidance serve as core functions,
while path planning is essential for navigating environmental obstacles. Established
algorithms like rapidly exploring random tree (RRT) [16] are commonly used for path
planning in robotics, but our focus in this paper is on the areas that require further research
and improvement.

In many factory settings, obtaining 3D CAD models of machines and workpieces
can be challenging due to copyright concerns. This is particularly true when using older
equipment, where manual teaching of the robot’s desired posture becomes necessary.
Without a CAD model to import into a simulator, automatic path generation is not possible,
making manual teaching a crucial aspect of motion control in the factory environment.

To address this challenge, the proposed RoboTwin system enables the robot to op-
erate effectively in factory environments, even when 3D CAD models of machines and
workpieces are unavailable. This enhanced capability provides greater flexibility and
adaptability in various factory scenarios.

(4) VR modules:

To circumvent the time-consuming and tedious task of manually teaching the robot
postures, as shown in Figure 1, we propose using a VR glass to link the simulator and
the real world. This allows users to control the robot via a joystick in the virtual world,
facilitating the teaching of the robot for postures both for the inspection and exploration of
feasibility. Once confirmed, the posture point can be directly transmitted to the real-world
robot, allowing for a more efficient and accurate teaching process. This approach not
only reduces the time and effort required for manual teaching but also allows for greater
flexibility and adaptability in the factory environment.
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Figure 1. Platform structure of the VR modules with the RoboTwin system and the real-world robot.

3.2. FOVision

As illustrated in Figure 2, the FOVision system was adopted in the proposed system
to verify the performance of the AI-trained model on synthesizing data by implementing
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the path generated using the simulator and the VR modules. It deploys the AI model into a
real-world edge computing system to detect the workpiece and calculate the path between
the real robot gripper and the targeted pick-and-place locations [17]. The vision modules of
the FOVision system include an edge computing unit, lighting, and an RGBD camera, all
of which are integrated to connect the robot and the simulator via an ethernet hub. This
allows for real-time visual guidance and detection of the workpieces, enabling the robot to
efficiently pick and place the workpieces in the factory environment.
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4. Results

To validate the performance of the proposed methods, we separate this section into
two subsections, namely the RoboTwin system and the FOVision system, respectively.

4.1. RoboTwin System
4.1.1. Physics Engines

In the experiments, we used a robot equipped with a vacuum gripper to pick up and
place standard weights of varying masses to assess the effectiveness of Equation (4). The
experiments were conducted using the variables outlined in Section 3.1 and the values
listed in Table 1 following the procedure described herein. We first picked up a weight of
mass m, activated the vacuum gripper with the maximum allowable air pressure p (i.e., 160
kpa as listed in Table 1), and then attached the weight to the gripper. We then gradually
decreased the pressure until the weight dropped due to insufficient pressure, and recorded
the corresponding p value. This recorded value indicates the minimum pressure required
to hold an object of that specific mass. We repeated this process with weights of increasing
mass m and compared the results from the real gripper to those from the simulator using
the physics engines.

Table 1. Experiment parameters.

Parameters Value

α
0

(Push the object toward the Suction Pad)

m 0.5–4 kg

p 10–160 kpa

d 0.04 m

µ
1

(Suction pad must be parallel to the ground)

t {1, 4} (Safety factor introduced by authors in [14]
to account for the orientation of gripper)

The results from the aforementioned experiment are provided in Figure 3, where the
solid blue line are values obtained from the gripper with measured pressure, while the
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green and orange solid lines are the predicted values from the simulator using t values
of 1 and 4, respectively. Note that t = 1 indicates no safety factor employed, whereas t = 4
indicates the safety factor is four times that of no safety factor applied. According to the
experiment conducted on the real gripper and provided in Figure 3, when the mass is 1 kg,
the gripper is not able to hold the standard weight if the air pressure provided falls below
25 kpa. However, from the simulations using a t = 1, this standard weight falls with 7.8 kpa
or lower, and when t = 4, 31 kpa or lower as calculated from Equation (4). This indicates
that the simulator’s predictions are not accurate enough, and more realistic factors need
to be considered. Such factors include the friction and deformation of the gripper and the
workpiece. Additionally, the safety factor t may need to be adjusted to a higher value to
account for these factors. Overall, these results indicate the importance of verifying the
simulator’s predictions with real-world experiments to ensure the accuracy and reliability
of the picking system.
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As discussed in Section 3, there exists a gap between simulation and real-world results.
To fulfill this gap, we optimized the results by adding parameters for tuning through
the LMMSE algorithm. Optimizing the scalars in Equation (4) gives us a = 1.619 and
b = 10.400 for t = 1 and a = 0.405 and b = 10.400 for t = 4, respectively, which reduces the
mentioned error and provides comparable results. As shown in Figure 4, the dashed green
and orange lines are the corrected prediction using the LMMSE. Note that this correction
leads to the overlapping of both green and orange dashed lines, even with different a and
b values. The loss provided in the description of Figure 4 was calculated using the MSE
between the measured and the respective simulated pressure values. The predicted values
with t = 1 yield a lower error rate than the predicted values with t = 4 in terms of their
deviation from the real measured pressure, but both can achieve an even lower error rate
through LMMSE. A detail worth noting is that the real measured pressure recorded was
read directly from an analog pressure valve, so the recorded p value may not be precise.
As such, a possible error region of ±7 kpa is provided by the shaded blue area in Figure 4.
Furthermore, in these simulations, the smallest mass used was 0.5 kg due to challenges in
determining the pressure measurements for lower mass values.
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Figure 4. Gripper pressure required given a specified mass and constant parameters provided in
Table 1. Using the experimental results for the gripper with measured pressure in blue solid lines,
simulated pressure with t = 1 (MSE: 476.19) in orange, and t = 4 (MSE: 1538.68) in green for both
solid lines. The dashed lines indicate LMMSE correction on the prediction (MSE: 10.39), and the
blue shaded area indicates an error region on the recorded pressure due to imprecise readings on the
pressure valve.

4.1.2. Modeling and Auto AI Annotation Tool

To capture the geometry and texture of the workpiece, we utilized a fixture equipped
with a 3D camera. The camera is integrated into the fixture in a way that allows it to capture
the workpiece’s geometry and texture simultaneously, producing a data point cloud. This
data point cloud is saved in the standard obj format, creating a functional model of the
workpiece that preserves its textural information. Figure 5 provides an illustration of
this process.
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The proposed system incorporates a scanning apparatus to create a realistic model,
which is then integrated into a simulator. This integration enables the utilization of domain
randomization techniques to generate a wide range of diverse datasets for training the AI
model. Figure 6 illustrates the simulated environment, showcasing different workpiece



Appl. Sci. 2023, 13, 8779 11 of 15

quantities, postures, crate colors, lighting conditions, and postures. These variations are
achieved by applying the same randomization parameters described in Section 3.1, resulting
in diverse outcomes. This approach facilitates the collection of large and diverse datasets,
which can be subsequently used for automatic annotation, as demonstrated in Figure 7, to
further enhance the performance of the AI model.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 15 
 

 
Figure 5. Modeling results showing real workpiece geometry and surface texture. 

The proposed system incorporates a scanning apparatus to create a realistic model, 
which is then integrated into a simulator. This integration enables the utilization of do-
main randomization techniques to generate a wide range of diverse datasets for training 
the AI model. Figure 6 illustrates the simulated environment, showcasing different work-
piece quantities, postures, crate colors, lighting conditions, and postures. These variations 
are achieved by applying the same randomization parameters described in Section 3.1, 
resulting in diverse outcomes. This approach facilitates the collection of large and diverse 
datasets, which can be subsequently used for automatic annotation, as demonstrated in 
Figure 7, to further enhance the performance of the AI model. 

 
Figure 6. An example of domain randomization results using different parameters in the simulator. 

Real photo
(texture)

Virtual 
scene
with

realistic
texture

Figure 6. An example of domain randomization results using different parameters in the simulator.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 15 
 

 
Figure 7. Auto labeling results in circular-like workpieces in the crate. 

4.1.3. Motion Control and VR Modules 
With the highly realistic textures and object responses in simulators equipped with 

physics engines, vision detection systems can be effectively utilized and tested within 
these simulated environments. This allows for the detection of workpieces and the gener-
ation of motion paths for robots, all directly from the simulation, as illustrated in Figure 
8. To streamline this process, Figure 9 demonstrates the use of a VR device for efficient 
teaching and verification of these points. Through the VR device, the virtual world can be 
viewed via a virtual camera, and the controllers enable the operation of the virtual robot. 
Once the points and path are confirmed, the signal can be transmitted to the real-world 
robot, enabling it to perform the same movements, as demonstrated in the simulation, 
akin to a digital-twin system. 

  
Figure 8. Results of the vision guiding robot in the simulated virtual world, where the green lines 
in the left image indicate the motion path for the robot generated using the proposed simulator to 
follow the star-like path. 

 
Figure 9. The connection between the real world and the simulated virtual world using the VR de-
vice and TCP/IP for streamlining data transmission. 

Generated image

Auto labeling

The result of auto labeling

Workpieces
motor core

Robot arm

camera

Real world

Motion 
command

VR devices
Virtual Scene

Figure 7. Auto labeling results in circular-like workpieces in the crate.

4.1.3. Motion Control and VR Modules

With the highly realistic textures and object responses in simulators equipped with
physics engines, vision detection systems can be effectively utilized and tested within these
simulated environments. This allows for the detection of workpieces and the generation
of motion paths for robots, all directly from the simulation, as illustrated in Figure 8. To
streamline this process, Figure 9 demonstrates the use of a VR device for efficient teaching
and verification of these points. Through the VR device, the virtual world can be viewed
via a virtual camera, and the controllers enable the operation of the virtual robot. Once
the points and path are confirmed, the signal can be transmitted to the real-world robot,
enabling it to perform the same movements, as demonstrated in the simulation, akin to a
digital-twin system.
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4.2. FOVision System

In this experiment, we employed the synthetic dataset generated using the RoboTwin
system to train the AI model and then deployed the trained model into the counterpart
real system with the intent of detecting the real workpiece. Table 2 provides the detection
results using YOLO3 with the bounding box mean average precision (mAP) for a threshold
of 70%. Our results indicate that, with the synthetic dataset, a test accuracy of 71.3% can
be reached, suggesting that the bounding box is precise enough for robot picking systems.
Figure 10 shows the deployment results of this AI model on real-world workpieces. The
comparative numbers tabulated in Table 3 demonstrate the necessity of automating the
annotations. The manual part involved recruiting 20 students as participants to assess the
time and accuracy, with the number of objects in each image being random to account for
the inconsistency among personnel and provide a measure of validation accuracy. One can
observe that the number of annotations generated using the proposed system outperforms
human annotations by a factor of 80 for instance segmentation. As shown in Table 4, the
successful picking rate for the RoboTwin system and the AI model is above 80%.

Table 2. Performance of vision detection from the simulator to real.

Model Train Size Validation Size Using Auto Tool mAP70

YOLO3 2700 300 YES 0.713
YOLO3 2700 300 NO 0.423
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Figure 10. Photographs showing the deployment of the AI model trained on the synthetic dataset
and tested in the real world. The image on the left is a robot with a gripper and camera in which we
deployed the trained AI. The image on the right is the detection results using this AI model.

Table 3. Performance efficiency of auto annotation.

Item Annotation Type Annotation Speed

Manpower
Bounding box 60 img/hr

Instance segmentation 12 img/hr

RoboTwin System
Bounding box 2000 img/hr

Instance segmentation 1000 img/hr

Table 4. Picking the success rate of the robot using the RoboTwin system.

Workpiece Cycle Success Success Rate

Wrench 500 400 80%
Drive shaft 120 100 83%

5. Discussion

As shown in Figure 4, after the inclusion of the additional parameters into Equation (1),
the simulator can provide comparable outcomes to the real physical results measured.
By finetuning the additional parameters, the difference between the real world and the
simulation can be resolved. It is noted in Figures 5, 6 and 10 that using the real texture on
the workpiece’s 3D models can further enhance the realism of the annotated images used
in the training and deployment of the AI model. This can in turn improve the detection of
factual workpieces. The texture used in the simulation is crucial for the AI model because
the features present in the workpieces, such as imperfections, cannot be generated using
conventional computer-generated graphics. As indicated by Figure 6 and Table 1, it can be
observed that the domain randomization method utilized for the dataset generation not
only increases the number of images but also increases their diversity, which helps prevent
overfitting in the AI during the training. The auto-labeling carried out using the RoboTwin
system, as illustrated in Figure 7, demonstrates that the proposed system can be more stable
and precise than human labeling. As the demonstrations shown in Figures 8 and 9 suggest,
the proposed methods and system allow engineers and researchers to conduct experiments
in a virtual world while still being able to deploy the solution in the real world. Such
demonstrations showing the effectiveness of the proposed system and its contribution to
enhancing existing knowledge are evidenced in Table 2 and Figure 10, showing a successful
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transfer of the robot motion and vision detection from simulators with physics engines into
the real world.

There are several factors that can influence the success rate of a robot picking system,
including the accuracy of visual recognition, limitations of the robot’s motion capabilities,
and the design of the gripper. In this paper, we focused on verifying the effectiveness of
visual recognition by comparing the success rate from virtual to actual scenarios using the
same software functionality verification with the related robot and gripper available in our
lab. However, the specific impact of the gripper and other mechanical components on the
picking success rate will be a topic for future research and exploration.

6. Conclusions

This paper presents a solution for solving the challenges of using AI-based vision
systems for robotic picking tasks in real-world factories. We proposed the use of a highly
realistic metaverse scene for advanced tuning of the robot’s movement and gripper’s
reaction, as well as the use of real textures on virtual 3D models for automatically generating
a wide variety of annotated synthetic images to be used as a dataset for training the AI
model. Through calibrated experiments with the proposed RoboTwin system, promising
results were observed, showing an instance segmentation mean average precision of 70%,
a picking success rate of over 80%, and the ability to generate datasets 80 times faster than
manual annotation. The proposed methods and system can reduce the gap error between
simulation and real-world environments, and provide a rapid line changeover to meet
the demands of flexible manufacturing systems. The proposed RoboTwin system holds
significant implications not only in engineering applications within smart manufacturing
but also in advancing existing knowledge. It represents a notable step forward in the field
of robotic picking, particularly in real-world factory environments.
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