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Abstract: In the Knowledge Grounded Dialogue (KGD) generation, the explicit modeling of instance-
variety of knowledge specificity and its seamless fusion with the dialogue context remains challenging.
This paper presents an innovative approach, the Knowledge Interpolated conditional Variational auto-
encoder (KIV), to address these issues. In particular, KIV introduces a novel interpolation mechanism
to fuse two latent variables: independently encoding dialogue context and grounded knowledge.
This distinct fusion of context and knowledge in the semantic space enables the interpolated latent
variable to guide the decoder toward generating more contextually rich and engaging responses. We
further explore deterministic and probabilistic methodologies to ascertain the interpolation weight,
capturing the level of knowledge specificity. Comprehensive empirical analysis conducted on the
Wizard-of-Wikipedia and Holl-E datasets verifies that the responses generated by our model performs
better than strong baselines, with notable performance improvements observed in both automatic
metrics and manual evaluation.

Keywords: Knowledge Grounded Dialogue (KGD); Knowledge Interoplated conditional Variational
auto-encoder (KIV); interpolation of latent variables; Conditional Variational auto-encoder (CAVE)

1. Introduction

End-to-end neural conversation models have shown significant promise, demon-
strating remarkable advancements from both academia and industry perspectives [1–6].
Nonetheless, these conventional conversation models often grapple with generating in-
formative and engaging responses due to their limited capacity to retain and leverage
background knowledge [7,8]. To surmount this knowledge-absence issue prevalent in ex-
isting conversation models, Knowledge Grounded Dialogue (KGD) generation is recently
proposed for generating responses by simultaneously referring to both the background
knowledge and the dialogue context [7,9–17]. The objective is to enhance dialogue response
generation to facilitate engaging and in-depth conversations, while avoiding the inclusion
of non-factual information.

Existing methodologies in KGD can be broadly classified into extractive and genera-
tive models. Extractive models typically view KGD as a reading comprehension task [18]
or a document question-answering challenge [19], employing established models such
as BiDAF [20] to address this issue. Nevertheless, these models, primarily focusing on
extracting knowledge snippets, need to provide more engaging and natural responses
akin to human conversation. To mitigate these limitations, attention has turned towards
integrating external factoid knowledge into generative dialogue models [21–24]. Most of
these works focus on selecting appropriate knowledge and combining the chosen knowl-
edge during the response generation process via copy mechanisms [10,25] or memory
network [26]. However, it is crucial to note that responses exhibit varying degrees of
knowledge specificity. Some responses may rely heavily on external knowledge, while
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others may predominantly depend on the query due to differing dialogue contexts. Despite
this, existing generative models do not explicitly model the instance-variety of knowledge
specificity in KGD.

The Conditional Variational Auto-Encoder (CVAE) has emerged as an effective model
for integrating information from multiple sources within a latent space, showing promise
in the domain of response generation [27]. Previous research has utilized CVAE by in-
corporating a latent variable that is conditioned on the concatenation of dialogue context
and additional knowledge information such as dialog acts [28], persona sentences [29] or
even images [30]. However, existing CVAE models encounter the issue of representation
entanglement [31]. This issue arises due to the single latent variable in CVAE, making
it challenging for the model to learn informative and interpretable representations for
context and knowledge simultaneously. This issue can lead to inconsistent and unnatural
knowledge-grounded responses by the CVAE models.

In this work, we build upon the strengths of CVAE to address the challenges of KGD.
To enable the explicit capture of knowledge specificity by CVAE and to overcome its repre-
sentation entanglement problem, we present a novel Knowledge Interpolated conditional
Variational auto-encoder (KIV). This innovative approach introduces two separate latent
variables to model dialogue context and external knowledge independently. Unlike prior
models that concatenate multiple latent information sources, our approach uses linear
interpolation to seamlessly integrate the latent variables associated with context and knowl-
edge, where the interpolation weight corresponds to the level of knowledge specificity. In
addition to proposing a deterministic method for obtaining the interpolation weight, we
explore a probabilistic interpolation method. This approach views the interpolation weight
as a latent variable and models it using a Logistic-Normal distribution. Our proposed
probabilistic interpolation method empowers the model to robustly emulate the process of
adaptively leveraging background knowledge in response generation.

We evaluate the effectiveness of our proposed model on the Wizard-of-Wikipedia [7]
and Holl-E [10] datasets. Both evaluations confirm that our model significantly outperforms
the vanilla CVAE and other existing KGD models. Additionally, qualitative analyses demon-
strate that the interpolated latent variable successfully controls the knowledge specificity
of the generated responses, further offering human-interpretable meaning representations.

In summary, our contributions to the field are as follows:

• We introduce a novel Knowledge Interpolated conditional Variational auto-encoder
(KIV) for knowledge grounded dialogue generation. This approach utilizes two dis-
tinct latent variables for context and knowledge and fuses them by linear interpolation;

• We explore deterministic and probabilistic methodologies for obtaining the interpola-
tion weight that signifies the level of knowledge utilization;

• A series of extensive experiments are conducted to validate the effectiveness of our
proposed model. These experiments further illustrate the interpretability of our
interpolation methodologies.

2. Related Work
2.1. Knowledge Grounded Dialogue

Prior research on Knowledge Grounded Dialogue shows that extractive models of-
ten generate more suitable responses than their generative counterparts, as indicated
by [8,10]. Despite this, it has been noted that generative models can produce more
captivating responses that resemble natural human dialogue [21,32]. The primary fo-
cus of most KGD generative models is to learn external knowledge representations, of-
ten through neural memory networks [7,8] or intricate attention mechanisms [23,33–35].
Ghazvininejad et al. [9] took a unique approach, encoding the dialogue history and doc-
uments separately to imbue responses with facts from the external world. Other researchers,
including Yang et al. [16], Chen et al. [36], Wang et al. [37], Zhou et al. [38], Li et al. [39],
have integrated knowledge graph representation into the response generation process.
A few works concentrate on seamlessly integrating external knowledge with dialogue
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context. For instance, Li et al. [40] introduce a two-pass decoding strategy for docu-
ment grounded conversations. Wu et al. [41] defined knowledge identification as finding
relevant knowledge in an extensive document that aligns with a user’s current query
within the conversation context. In their work [15], introduce a KGD model for document-
grounded dialogue generation. The model leverages both structured and unstructured
knowledge sources to enhance its performance. It incorporates a comprehensive common-
sense knowledge network enriched with named entities, along with a domain-specific
factual knowledge base. These knowledge sources are utilized to improve the understand-
ing of utterances and generate more informed and contextually appropriate responses.
Overall, the proposed model effectively combines multi-source heterogeneous knowledge
to enhance document-grounded dialogue generation. Ye et al. [32] jointly employed a
CVAE model to represent context and knowledge within a unified latent variable.

Contrasting with previous research, our work enhances knowledge fusion methodolo-
gies in two distinct ways: (1) By employing interpolating latent variables, we facilitate a
fusion of knowledge and context that is both interpretable and controllable. (2) We innova-
tively manage the fusion ratio of instance-variety knowledge by using deterministic and
probabilistic interpolation weight schemes, allowing for dynamic control over the process.

2.2. Latent Space Interpolation

Latent-space interpolation is a widely adopted technique for evaluating generative
latent variable models, typically employed to verify the effective generalization of a gen-
erative model [42]. This latent space representation encapsulates all critical information
necessary to depict the original data’s features. The model learns the data features and
simplifies its representation to facilitate easier analysis. This process is integral to Repre-
sentation Learning [43], a collection of methods designed to enable a system to discern the
requisite representations for feature detection from raw data.

Interpolation has traditionally been used to bolster the robustness and effectiveness
of representation in supervised learning [44], and to improve semi-supervised learning
models [45]. Within text generation, interpolation is commonly employed to demonstrate
that generative models can effectively learn smooth latent representations [46,47]. Unlike
previous work, Gao et al. [48] incorporated interpolation into their model to promote
seamless transitions between two sub-modules. However, the interpolation weight in their
model was randomly chosen. In contrast, our model utilizes the interpolation weight as a
control variable for knowledge specificity, which needs to be estimated in our model.

3. CVAE for Knowledge-Grounded Dialogue

The task of knowledge-grounded dialogue generation can be framed as follows:
Given a dialogue context C = (C1, C2, . . . , C|c|) comprising |c| turns of conversation, and a
segment of knowledge text k = (k1, k2, . . . , k|k|) containing |k| words, the goal is to generate
a response y = (y1, y2, . . . , y|y|) that aligns with the provided context and is informed by
the knowledge text. This is achieved by maximizing the probability p(y|C, k). A practical
approach for solving this problem involves using the Conditional Variational Autoencoder
(CVAE) framework [27]. This framework approximates the distribution of the random
variable y (representing the response) conditioned on c (representing the context) and k
(representing the knowledge). This is accomplished by introducing a latent variable z.

The training objective of CVAE can be formulated as maximizing the Evidence Lower
Bound (ELBO), as detailed below:

LCVAE = −KL(qφ(z|y, c, k)||pθ(z|y, c, k))

+Ez∼qφ(z|c,k) log pθ(y|c, k, z) (1)

In the above formula, KL represents the Kullback–Leibler divergence. pθ(y|z, c, k) acts as
the decoder, reconstructing the response y using the latent variable z, as well as context
c and knowledge k; qφ(z|y, c, k) serves as the inference model, approximating the true
posterior; pθ(z|c, k) is the prior model, which samples the latent variable from the prior
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distribution. In these models, θ, φ are parameters that respectively pertain to the inference
and decoder models.

The CVAE model mentioned above employs a single latent variable to encode in-
formation from context and knowledge sources. A typical implementation of this CVAE
involves concatenating c and k as input to the encoder, subsequently sampling the latent
variable z ∼ qφ(z|[c, k]) [28,29], as illustrated in Figure 1a. However, it has been noted
that, in the absence of explicit supervision, the solitary latent variable generated by the
standard CVAE fails to learn disentangled representations that accurately reflect the dis-
tinct latent structures of different sources [31]. This limitation significantly impedes the
model’s performance enhancement and interpretability potential by exploiting variational
latent variables.

Figure 1. Comparison of graphical models: (a) the Vanilla CVAE; (b) KIVd, the KIV model with a
deterministic interpolation weight; (c) KIVp, the KIV model with a probabilistic weight, in which the
weight λ is a latent variable sampled from the Logistic-Normal distribution conditioned on c and k.

4. Knowledge Interpolated Conditional Variational Auto-Encoder (KIV)

To address the representation entangled issue of the standard CVAE, we introduce our
KIV model to explicitly disentangle the latent variable z by incorporating two new variables
zk and zc. Using two independent variational encoders, KIV initially encodes the given
context and knowledge separately. Upon acquiring the disentangled latent variables zk
and zc, we employ linear interpolation to blend zk and zc. This approach allows for smooth
transitions between latent variables in an interpretable and controllable way. Specifically,
the latent variables zk and zc in our model are linearly interpolated using a weight factor
λ ∈ (0, 1), thereby constructing a 1-simplex as follows:

z = λzk + (1− λ)zc. (2)

In this study, we denote the interpolation weight corresponding to knowledge as λ, and the
interpolation weight of context is given by 1− λ. The interpolation weight λ signifies the
knowledge specificity and relevance of the response, thus facilitating better interpretation
and connection of empirical findings. By incorporating the interpolated latent variable into
Equation (1) and applying the convex property of the KL-divergence, we can deduce a new
ELBO as the training objective:

LKIV = −λKL(qφ(zk|y, k)||pθ(zk|k))
−(1− λ)KL(qφ(zc|y, c)||pθ(zc|c))
+Ezc∼qc ,zk∼qk log pθ(y|c, k, z) (3)

A detailed derivation showing that LKIV still serves as a valid lower bound of log p(y|c, k)
is provided in Appendix A.



Appl. Sci. 2023, 13, 8707 5 of 18

As illustrated in Figure 2, the proposed KIV model is composed of context/knowledge
encoders and a response decoder, the specifics of which are expanded upon in the following
section. The interpolation methods will be introduced in the subsequent section.

Figure 2. The detailed architecture of our proposed Knowledge Interpolated Conditional Variational
Auto-Encoder. Two latent variables zk, zc, corresponding to context and knowledge, are smoothly
fused by (a) deterministic and (b) probabilistic interpolation methods.

4.1. Context and Knowledge Encoders

The context and knowledge latent variables zc, zk are derived from two variational
neural modules that share the same architecture but utilize different parameters. Taking the
knowledge latent variable zk as an example, its variational neural module, f k, is composed
of a posterior network f k

pst and a prior network f k
pri. The prior distribution is a factorized

normal distribution pθ(zk|k) ∼ N (µk
pri, σk

pri), which is parameterized by the prior network

f k
pri as follows:

[µk
pri, log σk

pri] = f k
pri(k). (4)

In the training phase of our model, k and y jointly define the posterior distribution qφ ∼
N (µk

pst, σk
pst) by

[µk
pst, log σk

pst] = f k
pst([k, y]), (5)

where f k
pst and f k

pri are multi-layer perceptrons with tanh activation function. The knowl-
edge representation k and response representation y are derived by extracting the final
hidden state from two bidirectional GRU encoders.

Likewise, we can obtain the parameterized prior distribution pθ(zc|c) and posterior
distribution qφ(zc|c, y) of the context latent variable zc via its variational neural module
f c. The context representation c is obtained by extracting the final hidden state from
a hierarchical GRU encoder [3]. This method uses a word-level GRU network for each
utterance and then feeds the outputs of the word-level GRU’s last hidden state into an
utterance-level GRU network.

4.2. Response Decoder

Upon obtaining zc and zk, an interpolation network produces the interpolated latent
variable z as described in Equation (2). The decoder, a GRU-based recurrent neural network
f dec, maintains a hidden state hdec

t at each step. The initial hidden state hdec
0 is configured

by the latent variable z through a MLP: hdec
0 = MLP(z). To fully harness the context c,

knowledge k, and latent information inherent in z, we introduce a mixture-of-decoders
mechanism to output the probability of a response. This mechanism draws inspiration from
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the Mixture-of-Softmaxes (MoS) trick proposed by [49]. The proposed method incorporates
three decoding modules corresponding to various settings of model outputs by

pθ(yt = x|y<t, c, k, z)= ∑
m∈{k,c,ck}

πm
t

exp om
t
ᵀwx

∑x′ exp om
t
ᵀwx′

(6)

where wx is the embedding vector of word wx, and om
t , m = {k, c, ck} represent three

output vectors corresponding to knowledge, context and a mixture of knowledge and
context information. The dimension of om

t aligns with the dimension of wx. The term πm
t

is the mixture weight of the m-th component, subject to the constraint ∑m πm
t = 1. In our

model, we define the output vector om
t as follows:

ok
t = Wk[h

dec
t , z, k], oc

t = Wc[hdec
t , z, c],

ock
t = Wck[h

dec
t , z, k, c],

(7)

where Wc,k,ck are weights that transform inputs into vectors with the same dimension as

the word embedding vector. The mixture weight πm
t is computed by πm

t =
exp(wᵀ

π,mom
t )

∑k′ exp(wᵀ
π,mom

t )
,

where wπ,m represents a trainable weight.

5. Interpolation of Latent Variables

We propose two methods to compute the interpolation weight λ. Initially, we treat
the interpolation weight λ as a deterministic variable and pre-compute it based on the
relatedness between the response and the knowledge during the training phase. During
the testing, we substitute λ with a value predicted by a neural network, as depicted in
Figure 1b. However, the same or similar input context and knowledge can yield suitable
responses at different levels of knowledge specificity for multiple λ values. To account for
the uncertainty and variability of interpolation weights, we propose a second approach
where we model the interpolation weight as following a distribution, which is jointly
trained and inferred with zk, zc, as illustrated in Figure1c.

5.1. Deterministic Interpolation Weight

One direct method to acquire the interpolation weight, λ, is to pre-compute it as a
relatedness measure between the response and knowledge. Specifically, λ indicates the
relative usage ratio of context and knowledge. We propose calculating λ by determining
the relative tf-idf similarity between the response and context/knowledge:

λ =
sim(r, k)

sim(r, k) + sim(r, c)
, (8)

where sim(·, ·) represents the tf-idf similarity between two text portions. During testing, the
ground truth response is unavailable; hence we employ an MLP network with the sigmoid
function to predict λ. To train this MLP, we construct training data with inputs as the con-
catenation of context and knowledge representations, represented as: λ̂ = σ(MLP([c, k])),
During the training phase, to bridge the discrepancy between the predicted weight and
the ground truth, we aim to minimize the Mean Squared Error (MSE) loss, denoted as
LMSE

λ , between λ̂ and λ computed using Equation (8). We refer to the KIV model that uses
deterministic interpolation weight as KIVd, and the objective for this model is:

Ld
KIV = LKIV −LMSE

λ . (9)

5.2. Probabilistic Interpolation Weight

In order to adaptively utilize background knowledge for response generation, em-
ulating human-like knowledge-grounded conversation behaviors, we assume that the
interpolation weight λ follows a Logistic Normal distribution. This distribution is known
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for its flexibility in approximating the Dirichlet distribution, and it can effectively capture
correlations between components of probability vectors [50]. Each response is generated by
sampling an interpolation weight from this Logistic-Normal distribution:

p(λ|µλ, σλ) ∼ LN (µλ, σλ)

=
1

σλ
√

2π

1
λ(1− λ)

exp

(
−
(
logit(λ)− µλ

)2

2(σλ)2

)
,

(10)

where µλ and σλ are parameters of the Logistic Normal distribution. To parameterize
p(λ|µλ, σλ), we obtain the posterior and priori latent variables by reparameterizing µλ, σλ

as follows: [
µλ

pst, σλ
pst

]
= f λ

pst([c, k, y]),[
µλ

pri, σλ
pri

]
= f λ

pri([c, k]),

p(λpst|zk, zc) ∼ LN (µλ
pst, σλ

pst),

p(λpri|zk, zc) ∼ LN (µλ
pri, σλ

pri).

(11)

The posterior and prior network f λ
pst, f λ

pst are MLP networks with tanh activation functions.
To obtain a sample from the reparameterized Logistic-Normal distribution, we first draw
a sample from the Normal distribution N (µλ, σλ) and then apply the logistic function to
transform the sample into the Logistic-Normal distribution space. The KL-divergence be-
tween the posterior and prior weight can be computed using the closed-form formula for the
Gaussian distribution [50]. By injecting the probabilistic interpolation weight λ, the posterior
distribution during training can be factorized as: qφ(z, λ|y, c, k) = qφ(z|y, c, k)qφ(λ|y, c, k).
The prior distribution pθ(z|c, k) can be decomposed in the same way. Injecting the factorized
distribution in Equation (3), the final objective can be rewritten as:

Lp
KIV = −KL(qφ(λ|c, k, y)||pθ(λ|c, k)) + LKIV. (12)

The KIV model with the above objective is denoted as KIVp, as shown in Figure 1c.

5.3. Model Training

In the scenario of deterministic interpolation weights, we use the loss function Ld
KIV

as defined in Equation (9) for training. On the other hand, when employing probabilistic
interpolation weights, the training objective is defined as in Equation (12). To mitigate the
issue of posterior collapse in response generation, we implement techniques such as the KL
annealing trick and the bag-of-word loss, as proposed in previous work [28,46].

6. Experiments and Analysis

This section is organized as follows: First, in Section 6.1, we discuss experimental
settings, covering aspects such as the dataset, baseline models, and metrics. Subsequently,
in Section 6.2, we delve into the implementation specifics of the proposed model. Finally,
we present and analyze our experimental results in sections ranging from Sections 6.3–6.5.

6.1. Experimental Settings

The programming environment is set up with Python version 3.7.16 and Cudatoolkit
version 11.7. It utilizes a Tesla V100 32 GB GPU for accelerated computations. The required
packages are installed using pip, including torch version 1.13.1 for deep learning tasks,
numpy for numerical computations, spacy with the en-core-web-trf model for natural
language processing, and pandas version 1.3.5 for data manipulation and analysis.
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6.1.1. Dataset

We evaluated our model on two commonly used public benchmark datasets for the
knowledge grounded dialog system, Wizard-of-Wikipedia (WoW) [7] and Holl-E [10].
WoW is an open-domain knowledge graph dataset created using Wikipedia passages as a
source of background knowledge. It has fine-grained annotations of selected knowledge.
The test set of the Wizard dataset is divided into two subsets: Test Seen and Test Unseen.
Test Seen contains 3619 conversation turns on topics overlapping with those in the train-
ing set. In contrast, Test Unseen includes 3689 turns on topics never encountered in the
training or validation sets. In total, there are 68,931/3686/7308 conversations used for
training/validation/testing. In each test set, we assess the proposed model and baselines
under two scenarios: (1) the ground-truth knowledge selected by the model is known;
(2) a separately trained knowledge selection model predicts the knowledge. To ensure a
fair comparison in the predicted knowledge setting, our proposed model and all baselines
utilize the knowledge determined by a pre-trained transformer memory network. This
is the same knowledge selection module employed in the two-state generative model [7].
Holl-E is a specialized language model that focuses on the movie domain. It has been
trained on a diverse range of data, including plots, comments, and movie reviews from
various websites. The model has two versions of the test set: Single reference test and Multi-
reference test. The Single reference test contains one annotated response per conversation,
while the Multi-reference test includes multiple human-annotated ground-truth knowledge
and corresponding responses for each instance. In total, there are 7228/930/913 dialogues
used for training/validation/testing.

6.1.2. Baselines

We compare our proposed models with the following four baselines:

• HRED [3]: A general knowledge-free model encodes the context at two hierarchical levels.
• CVAE [32]: This model can be considered a modified kg-CVAE model [28] as depicted

in Figure 1a.
• GTTP [51]: This model, based on HRED, incorporates grounded knowledge through a

copying mechanism, enabling it to copy phrases from the knowledge at the appropriate
decoding step.

• TMem [7]: Transformer Memory Network first concatenates the representations of
context and knowledge and employs a transformer-based framework to generate
knowledge grounded responses.

• SKT [25]: The sequential latent variable model is utilized to capture the knowledge
selection process in multi-turn dialogue generation.

• KIVc: This is a variant of our proposed model which directly concatenates the context
latent variable zc and the knowledge latent variable zk. This conditions the response
generation without any variable interpolation, i.e., Equation (2) is replaced with
z = [zk, zc] with the encoders and decoder remaining the same.

6.1.3. Metrics

We employ four types of automatic metrics to evaluate our proposed model and the
baseline models: Per PerpLexity (PPL), three embedding metrics (Embedding Average (AVE),
Embedding Extreme (EXT), and Greedy Matching (GRY)), Distinct1 (Dist1) and Distinct2 (Dist2),
and our calculated Bilingual Evaluation Understudy metrics ∆BLEUk.
PPL: It is the exponentiation of the word entropy, and describes how well the generative
model predicts the expected responses. It does not directly capture coherence, as a low
perplexity value indicates an accurate prediction, but can not guarantee a coherent text.
Coherence depends on factors like transitions, readability, consistent topics, and logical
structures. Diversity in text generation refers to variations and novelty, which perplexity
does not capture.
AVE, EXT, and GRY: Rather than using n-gram overlapping-based metrics like Bilingual
Evaluation Understudy (BLEU) or Recall-Oriented Understudy for Gisting Evaluation
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(ROUGE), we report word embedding-based similarity metrics [52] to capture the se-
mantic alignment between generated responses and ground truth. Specifically, we adopt
three embedding metrics: Embedding Average (AVE), Embedding Extreme (EXT), and Greedy
Matching (GRY).

AVE calculates the average similarity between consecutive sentence embeddings
in generated text, indirectly enhancing coherence/diversity. It incorporates contextual
information from previous words, aligning the generated text with the overall topic/theme
and improving coherence/diversity.

EXT involves selecting the most unique or extreme word embeddings to generate
text that deviates from typical language patterns. It aims to enhance diversity but may
result in inconsistencies and reduced coherence. A low embedding extreme score suggests
repetition or redundant sentences, while a high score indicates incoherence.

GRY is a method employed to identify the most pertinent sentences from a larger
body of text. Its purpose is to ensure consistency by selecting text segments that are
highly relevant to a given query. While emphasizing coherence, greedy matching tends to
prioritize closely associated sentences, potentially leading to a dearth of diversity in the
generated text.
(Dist1) and (Dist2) [53]: We use (Dist1) and (Dist2) to evaluate the diversity of responses,
which calculates the ratio of unique unigrams (or bigrams) to the total number of generated
words. It determines the ratio of unique n-grams to the total number of n-grams produced.
A higher distinct value suggests a greater range of content. However, in certain instances, a
higher distinctness can result in reduced coherence as it may introduce unrelated ideas that
disrupt the overall flow and cohesiveness of the text.
∆BLEUk: We use ∆BLEUk to measure the engagement of knowledge. To assess whether
the knowledge is articulated diversely and engagingly, we define a unique automatic
metric that measures the ratio of knowledge utilization in responses based on the word
overlap between responses and provided knowledge. We initially compute BLEUk(ŷ) as
the average BLEU score, considering the generated response ŷ as the hypothesis and given
knowledge as the reference. An exceptionally high BLEUk(ŷ) signifies an excessive copy of
external knowledge and makes the response less engaging. We further consider BLEUk(y)
of the gold standard response created by human y as the ground truth and compute
the average absolute difference between BLEUk(ŷ) and BLEUk(y), namely ∆BLEUk, to
measure the engagement of knowledge:

∆BLEUk =
1
N ∑

y,ŷ
|BLEUk(y)− BLEUk(ŷ)|, (13)

where N is the number of samples in the test set, y and ŷ are gold and generated responses
from the same context and knowledge. A lower ∆BLEUk indicates a closer knowledge copy
ratio of generated responses to ground truths, showing better knowledge engagement.

6.2. Implementation Details

The vocabulary size in our model is limited to 20,000, encompassing 95.75% of words
in the dataset. The embedding size that has been shared with both the encoder and decoder
is 22.89 MB. We use the pre-trained GloVe 300-dimensional word embeddings for both the
encoder and the decoder. The encoder size is 42.69 MB, and the decoder size is 58.24 MB.
Single-layer bi-directional RNNs with GRU [54] are used for knowledge/response encoders
and word-level networks in context encoders. A single-layer uni-directional GRU is em-
ployed for the utterance-level network in the context encoder. Another single-layer GRU is
used for the decoder. The dimension of all hidden states in the GRU network is set to 512.
The size of the latent variables is set to 128. The inference and prior networks consist of a
single-layer feed-forward network with a tanh activation function.

We apply Layer Normalization when training the decoder. All weights are initialized
by the Xavier method [55]. The model is trained end-to-end by Adam optimizer [56], with
the learning rate set to 10−4 and gradient clipped applied at 1. During text generation, we
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use a greedy strategy along with the KL-annealing strategy, in which the temperature is
increased by 10−5 after each batch update iteration, varying from 0 to 1.

6.3. Metric-Based Evaluation

As shown in Table 1, test seen refers to evaluating a model’s performance on familiar
data it has encountered or been trained on, while test unseen assesses the model’s ability
to generalize to new, unseen data. Test seen measures the model’s recall and application
of learned patterns, while test unseen evaluates its adaptability and accuracy in novel
scenarios. Gold knowledge refers to the reference or target information used for evaluation
or training. It represents correct answers and serves as a benchmark for measuring model
performance. Predicted knowledge refers to the knowledge generated by the model during
response generation. Our experiment aims to evaluate how well the model utilizes the gold
knowledge in its responses. The averaged BLEUk score is used as a metric to measure the
quality of incorporating the gold knowledge into the generated responses.

Table 1. Automatic evaluation results on WoW Dataset for Test Seen and Test Unseen setting. ∆Bk in
table denotes ∆BLEUk.

Test Seen Gold Knowledge Predicted Knowledge

Method PPL AVE EXT GRY Dist1 Dist2 ∆Bk PPL AVE EXT GRY Dist1 Dist2 ∆Bk

HRED 25.1 88.6 53.7 83.9 3.7 22.3 9.3 36.5 88.1 53.6 84.9 3.5 21.6 11.1
CVAE 27.6 87.0 51.2 82.1 5.2 30.2 9.2 42.1 87.4 52.1 83.6 5.4 31.7 8.0
GTTP 20.5 89.9 54.5 85.2 4.8 26.3 11.4 38.8 88.9 53.2 84.2 4.2 25.1 10.7
TMem 23.1 87.4 52.9 83.4 4.1 23.9 10.9 40.5 88.2 53.7 84.6 3.5 26.6 11.7

SKT 53.3 85.5 90.1 64.8 8.4 30.0 2.17 59.2 86.3 88.2 66.3 7.8 29.1 2.21

KIVc 20.8 91.5 54.7 84.3 6.2 32.8 10.4 29.7 90.2 53.9 83.3 5.3 31.7 12.0
KIVd 15.6 92.8 56.4 85.8 7.1 33.7 3.5 25.3 90.4 55.3 86.6 6.5 34.1 4.5
KIVp 19.3 91.6 55.8 86.9 8.4 37.2 2.8 31.5 89.9 54.0 86.4 7.6 35.8 2.7

Test Unseen Gold Knowledge Predicted Knowledge

Method PPL AVE EXT GRY Dist1 Dist2 ∆Bk PPL AVE EXT GRY Dist1 Dist2 ∆Bk

HRED 56.2 88.3 52.5 84.0 2.4 19.4 8.9 88.5 87.2 51.4 82.0 2.2 18.9 11.8
CVAE 68.7 85.2 50.5 81.9 3.0 24.9 10.3 75.3 84.6 50.3 81.8 2.8 22.6 9.2
GTTP 49.1 86.9 51.8 83.8 2.8 26.7 13.0 81.9 85.9 52.3 83.5 2.5 22.4 11.0
TMem 47.3 86.3 52.2 81.5 2.6 21.2 9.8 70.6 87.1 52.9 82.4 2.5 20.4 10.9

SKT 83.0 84.5 89.3 62.8 5.76 19.3 2.74 92.1 82.5 87.6 63.5 5.21 17.3 3.16

KIVc 49.6 89.1 52.7 84.3 2.8 22.6 9.6 65.4 88.7 52.5 83.9 2.7 21.8 9.2
KIVd 44.2 90.2 53.6 84.5 3.5 23.8 4.2 57.2 89.3 52.8 83.7 3.3 24.6 4.7
KIVp 38.7 89.7 55.9 82.8 4.8 30.2 3.1 50.9 90.2 53.6 82.4 4.0 29.5 3.5

The numbers in Bold represent the best results for the corresponding measure.

Automatic evaluations in the Test Seen setting reveal that the responses generated by
KIVd and KIVp are considerably more coherent and relevant than those produced by all
baseline models, as indicated by the PPL and word embedding-based similarity metrics.
Regarding diversity metrics, KIVp outperforms all others, except one: Dist1,2 has the same
or slightly lower result compared with SKT on Gold and Predicted Knowledge. The EXT
score on SKT is higher than our model, which confirms the Dist1 measure that the diversity
generated by SKT seems slightly better than ours. However, an emphasizs on higher EXT
score may bring incoherence since the model may produce more unique word embeddings.
Having such a result from SKT, we think their model put a great emphasis on dealing
with the diversity in the knowledge selection of conversations. Regarding the ∆BLEUk
indicator, SKT adopted a copy mechanism to maximize the effect of knowledge for response
generation, showing a slight improvement in knowledge engagement.

In the scenario of Test Unseen, KIVd and KIVp demonstrate a similar pattern as Test
Seen in terms of relevance and diversity metrics. These results substantiate our assertion
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that interpolating two latent variables, conditioned on knowledge and context, aids in gen-
erating more appropriate and informative responses. A comparison between interpolation
fusion methods (KIVd,p) and non-interpolation fusion (KIVc) reveals that interpolation
significantly enhances the quality of responses. This indicates that interpolation is more
appropriate for fusing knowledge and context in knowledge grounded conversations.

Our analysis of knowledge engagement metric ∆BLEUk shows that KIVp achieves
the lowest score, except that it is slightly higher than SKT. This indicates that interpolating
latent variables using probabilistic weights can adaptively learn the joint representation of
context and knowledge, leading to the generation of more engaging responses with respect
to the incorporated knowledge.

Similar results were also observed on Holl-E in Table 2. The Dist1,2 in KIVp is lower
than KIVc,d, suggesting that KIVp use more copied knowledge, while KIVc,d generate a
greater range of content that may not be from the knowledge base. The KIVc,d AVG score
is higher than KIVp suggesting that the former generates consecutive sentences that are
more similar to each other. Higher score in EXT by KIVc,d indicate generated works may be
incoherent since they may produce more unique or extreme word embeddings. SKT model
has highest EXT score in our experiments. A higher GRY in KIVc,d identifies the most
pertinent sentences chosen from the knowledge base, therefore showing more emphasized
coherence. However, a lower score by KIVp may produce more diversity in the generated
sentences. The PPL scores in KIVp is much higher than KIVc,d, indicating more accurate in
the text prediction, and BLEUk sores are lower in KIVp than KIVc,d suggesting the model is
better at engagement of the knowledge, i.e., a closer knowledge copy. Our experiments
show a similar result in Multiple Reference. We have not calculated the SKT’s ∆BLEUk
score, since our KIVp ∆BLEUk score has almost achieved a perfect score. In addition,
following previous work [10], we calculate the scores for the multi-reference dataset by
taking the maximum score over multiple reference responses. Since the Dist1,2 score is
calculated according to the repeated n-gram of generated responses instead of the multiple
reference responses, we exclude Dist1,2.

Table 2. Automatic evaluation results on HOLL-E Dataset. ∆Bk in table denotes ∆BLEUk.

Test Seen
Single Reference Multiple References

PPL AVE EXT GRY Dist1 Dist2 ∆Bk PPL AVE EXT GRY ∆Bk

SKT 46.3 88.1 90.7 70.6 6.76 28.5 - 52.1 94.5 96.1 77.2 -

KIVc 9.251 84.9 42.0 77.3 0.4 2.4 3.6 7.204 87.5 41.4 68.1 10.3
KIVd 3.141 97.0 88.1 96.1 6.5 34.8 3.5 0.502 98.3 94.0 97.3 8.0
KIVp 2.665 97.0 88.7 96.2 6.6 34.8 0.04 0.415 98.9 94.2 97.5 3.2

The numbers in Bold represent the best results for the corresponding measure.

6.4. Human Evaluation

In addition to the automated evaluation, we also carried out a human evaluation on
the WoW dataset to gauge the quality of responses produced by our model and the baseline
models. We hired three professional annotators to assess the generated responses based
on four criteria, which fall into two categories: (1) Coherence (C)/Fluency (F): This assesses
whether the response is coherent with the dialogue context and fluent to read. (2) Knowledge
Correctness (KC)/Knowledge Diversity (KD): This assesses whether the response is consistent
with the provided knowledge and presents relevant knowledge diversely and engagingly.
For both the Test Seen and Test Unseen settings, each annotator rated 100 randomly sampled
responses generated by each model using a five-point scale (1–5).

Human evaluation results are listed in Table 3. We observe that GTTP is a robust
baseline method, except for the metric Knowledge Diversity(KD), since GTTP tends to
copy the whole sentence of the given knowledge. The proposed KIVd,p achieve the best
performance in terms of most metrics, in which KIVp performs slightly lower on Knowledge
Diversity than SKT, but outperforms by a substantial margin compared with the rest of the
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baselines. This result verifies that the proposed interpolation-based models, especially KIVp,
can present relevant knowledge excitingly and engagingly while keeping the response
coherent with the context.

Table 3. Human Evaluation results on WoW Dataset with respect to Coherence (C), Fluency (F),
Knowledge Correctness (KC)/Diversity (KD). The numbers in Bold represent the best results for the
corresponding measure.

Models

Test Seen Test Unseen

Gold Knowledge Predicted Knowledge Gold Knowledge Predicted Knowledge
C F KC KD C F KC KD C F KC KD C F KC KD

Gold 4.08 4.12 3.60 3.05 4.08 4.12 3.60 3.05 4.19 4.26 3.73 3.02 4.19 4.26 3.73 3.02

HRED 3.39 3.52 2.14 2.45 3.15 3.17 1.71 2.26 3.17 3.29 1.92 2.38 3.09 2.95 1.69 1.84
CVAE 3.14 3.08 2.62 2.58 3.00 2.87 2.06 2.47 3.08 2.99 2.51 2.31 3.07 2.82 2.63 2.19
GTTP 3.31 3.47 3.26 1.94 3.28 3.28 3.19 1.88 3.09 3.30 3.15 2.01 3.05 3.29 3.03 1.97
TMem 3.32 3.37 3.01 2.46 3.18 3.22 2.86 2.29 2.91 3.04 2.76 2.24 2.75 2.83 2.65 2.10

SKT 3.12 3.09 3.21 2.89 3.10 3.02 2.61 2.13 2.12 3.13 3.24 3.15 2.23 2.31 3.10 2.45

KIVc 3.39 3.14 3.19 2.52 3.15 3.22 2.96 2.46 2.94 2.82 2.79 2.35 2.87 2.72 2.58 2.22
KIVd 3.53 3.67 3.21 2.58 3.36 3.18 3.16 2.37 3.19 3.43 3.16 2.36 3.18 3.14 3.08 2.27
KIVp 3.49 3.62 3.31 2.87 3.35 3.27 3.14 2.59 3.13 3.31 3.21 2.48 3.19 3.09 3.16 2.39

The numbers in Bold represent the best results for the corresponding measure.

6.5. Qualitive Analysis
6.5.1. Impact of Interpolation Weight

We first investigate the relationship between the interpolation weight λ employed in
our model and the ratio of knowledge utilization in the generated responses. We group
the test samples into separate bins according to their λ value and calculate the averaged
knowledge BLEU score, BLEUK, for responses within each bin. The relationship between λ
and the averaged BLEUK is illustrated in the line plot in Figure 3. The x-axis represents
the values of λ, ranging from 0 to 1, while the y-axis represents the averaged BLEU score
(BLEUK). Each data point on the line plot represents the average BLEUK for responses
falling within a specific range of λ values. When λ = 0, the output is determined solely
by the context variable zc, with no knowledge-specific influence; this can be interpreted
as a response that relies solely on the immediate context and does not make use of any
external knowledge. When λ = 1, the output is determined solely by the knowledge
specific variable zk, without any contribution from the context variable zc. This means
that the response will be generated solely based on the acquired knowledge, disregarding
the context provided. Intermediate values of λ (between 0 and 1) blend both variables,
enabling smooth transitions and combinations of knowledge and context.

The line plot in Figure 3 shows the relationship between λ and the averaged BLEUK
(knowledge BLEU score) for different experimental settings. It indicates that as the interpo-
lation weight λ increases, the BLEUK also tends to increase, implying a positive correlation
between knowledge utilization (represented by λ) and the quality of responses (measured
by BLEUK). This suggests that the learned interpolation weight can effectively represent
the knowledge utilization ratio, as higher values of λ indicate a stronger influence of
knowledge in generating responses.

The line plot helps visualize the trend that increasing the emphasis on knowledge
(higher λ) leads to improved knowledge utilization and better quality responses. It provides
evidence that the interpolation weight λ plays a crucial role in controlling the balance
between knowledge and context in the model’s responses. It demonstrates that, as the
model assigns higher weights to the knowledge variable, it generates responses with better
utilization of knowledge, leading to improved BLEUK scores.
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Figure 3. BLEUk against interpolation weight λ on WoW dataset.

6.5.2. Case Study

Figure 4a presents an example of responses generated by different models given the
same context and knowledge. As can be observed, our proposed model tends to generate
more reasonable and engaging responses by considering both the context and the provided
knowledge. We also notice that KIVc leans towards addressing the query by delivering
relevant knowledge, whereas KIVp is more inclined to create more diverse and indirect
responses, utilizing the knowledge as a conversation guide. Figure 4b,c displays responses
sampled with different interpolation weights λ’s in KIVd and KIVp. The learned latent
variable in our model facilitates a smooth transition from solely relying on the query to
parroting the external knowledge verbatim, demonstrating that the model can integrate
knowledge and context at a semantic level within the latent space.

Knowledge:
country music often consists of ballads and dance tunes with
generally simple forms, folk lyric and harmonies accompanied
by mostly string instruments.

QUERY: sometimes music from different bands sound the same.

RESPONSES:
HRED: i am sure country music is a lot of music.
CVAE: country music done by mostly string instruments.
GTTP: country music often consists of ballads and dance tunes.
TMem: it is fascinating country music often consists of ballads.
KIVc : do you like country music of ballads and dance

tunes with generally simple forms.
KIVd : the main reason is most country music are with simple

forms, lyric and harmonies.
KIVp: i think country music are very popular . it consists of

dance tunes of simple forms, lyric

( a) compariation with baselines.

KIVd RESPONSES with same Knowledge and Query, but
different weights:

( b) KIVd with different λ .

λ=0.0 i like the sound of a lot of music music but i like the sound
of a lot of music music but i like it too much more than the
other day music and the music is great ! do

λ=0.2 i love the music too ! the music consists of <UNK> and
jazz songs

λ =0.4 i agree. i like to listen to the music that is a song called
"<UNK>" and it's my favorite song.

λ=0.6 same here. i like the music, it 's a ballads and dance tunes.
λ=0.8 i love it! i love to listen to music and listen to it. it's a great

music format. it 's usually ballads and dance tunes.
λ=1.0 i love country music! it consists of ballads and dance tunes

with generally simple forms, folk lyric and harmonies.

KIVp RESPONSES with same Knowledge and Query, but
different weights:

( c) KIVp with different λ .

λ=0.0 i love it! it's a great way to sing in the us! it's so nice to hear
about the song "rolling"! it's a bit different from the same
country as

λ =0.2 i agree! i love the way the sound of a melody sound isn't
always so good at it though. do you like it?

λ=0.4 i agree! i love that it 's so many different genres for it to be
honest, and the best part is to sing in the shower! it 's so
convenient that it 's music usually

λ=0.6 i love it too. it's a classic. it's a classic song, it's usually
ballads and dance tunes.

λ=0.8 i love it too! it 's usually made of ballads and dance tunes with
generally simple forms.

λ=1.0 i agree. i like that it is ballads and dance tunes with generally
simple forms, folk lyric and harmonies

Figure 4. Generated examples of our model and baselines on WoW dataset. The red color shows the
copy parts of knowledge indicating a higher propensity to provide knowledge, the blue color indicates
the generated pieces corresponding to the replies to queries. (a) Responses generated by KIV and
baseline models. (b,c) Responses generated by KIVd and KIVp with different interpolation weights.

6.5.3. More Generated Examples

In this section, we present additional examples of responses generated by our model
and baseline models. In Figure 5, we have included three new topics: heavy metal music,
Chevrolet corvette, and coffee. As can be seen, both KIVd and KIVp exhibit the ability to
generate responses that are not only more relevant but also more engaging.
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In Figure 6, we have included a multi-turn dialogue generated by our model KIVp.
During the multi-turn dialogue initiated by the wizard, the topic of “Science Fiction” was
introduced, leading to an exploration of various aspects of the genre. As the conversation
progressed into its second round, the model smoothly transitioned the focus towards politi-
cal and philosophical issues within science fiction. At this point, the human participant
engaged by discussing time travel and mentioning the Harry Potter movies. Recogniz-
ing the significance of Harry Potter as a book that has had a transformative impact, the
model suggested it as further reading on the topic, which the human enthusiastically ac-
cepted. This seamless exchange of multiple turns created a highly engaging and enjoyable
conversational experience.

(a) Topic: country music. (b) Topic : cheverolet corvette.
Knowledge:
dave grohl was the longest serving drummer for the grunge band
nirvana and the frontman and founder of the rock band foo fighters,
of which he is the lead vocalist, rhythm and lead guitarist, and
primary songwriter.

QUERY: that s awesome. who is your favorite metal musician?

RESPONSES:
HRED: do you know i like you .

CVAE: lead vocalist , rhythm and lead vocalist is my favor

GTTP: it 's dave grohl was the longest serving .... foo fighters

TMem: i really like dave groh bob ross.

KIVc : do you like grohl of rock band foo foo fighter

KIVd : dave grohl who played in grunge rock bands nirvana and
foo fighter

KIVp: well, dave grohl is often a drummer of grunge band. It
was pioneers with the heavy metal music.

Knowledge:
coffee plants are now cultivated in over 70 countries, primarily in the
equatorial regions of the americas, southeast asia, india, and africa.

QUERY: i really like coffee from kenya.

RESPONSES:
HRED: i like kenya coffee too.

CVAE: coffee is bit cultivated in over coutries in americas,

GTTP: i love coffee plants! coffee plants are cultivated in over 70
countries!

TMem: over 70 countries , primarily in the equatorial regions of the
americas, southeast asia, india, and africa.

KIVc : coffee plants are now cultivated in over 70 countries
with the equatorial regions like the us.

KIVd : i love coffee in over 70 countries including kenya, do you
prefer coffer of the equatorial

KIVp: regions of the americas, southeast asia, india, and africa.

(c) Topic: heavy metal music. (d) Topic: coffee.

Knowledge:
country music often consists of ballads and dance tunes with
generally simple forms, folk lyric and harmonies accompanied by
mostly string instruments.

QUERY: sometimes music from different bands sound the same.

RESPONSES:
HRED: i am sure country music is a lot of music.
CVAE: country music done by mostly string instruments.
GTTP: country music often consists of ballads and dance tunes
TMem: it is fascinating country music often consists of ballads.
KIVc : do you like country music of ballads and dance tunes

with generally simple forms.
KIVd : the main reason is most country music are with simple

forms, lyric and harmonies.
KIVp: i think country music are very popular. it consists of

dance tunes of simple forms, lyric

Knowledge:
the chevrolet corvette, known colloquially as the vette, is a sports
car manufactured by chevrolet.

QUERY: what do you know about the chevrolet corvette?

RESPONSES:
HRED: i not sure chevrolet corvette is a car car.
CVAE: i 've been a chevrolet corvette , so much sports
GTTP: the vette, is a sports car manufactured by chevrolet.
TMem: the vette or chevy corvette , is a sports car.
KIVc : chevrolet corvette is known sports car.
KIVd: i love the sports car manufactured by chevrolet and like

car which is made by chevrolet.
KIVp: when i was a kid, i know it ' s cool sports car and enjoy

the classic corvette . do you like corvette?

Figure 5. More generated examples of our model and baseline models on WoW dataset.

Model: KIVP

Topic: Science Fiction

Human: science fiction
Model: i love science fiction, i love the idea of futuristic

science and technology.

Human: i'm a huge fan of science fiction myself!

Model: you're right! i love how they focus on political issues
and philosophical issues

Human: i agree. one of my favorite forms of science fiction is
anything related to time travel! i find it fascinating.

Model: me too! i love how many different genres of changing
things are changing. i think the story is really
interesting.

Human: and that's difficult to do when dealing with time travel. i
actually haven't seen the latest harry potter movies.
guess it 's time to check them out!

Model: you should definitely check out the science fiction
fiction, it's fascinating how the book has changed
many things .

Human: thank you for the suggestion, i will definitely check it
out!

Model: it's been a very successful film, but i don't think i'd
have to be a writer .

Figure 6. More generated examples of our model on multi-turn dialogue on WoW dataset.
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7. Conclusions

This paper introduces KIV, a novel interpolation-based CVAE designed to generate
knowledge-grounded responses. This approach incorporates two distinct latent variables
for modeling context and knowledge. These latent variables are seamlessly integrated via
linear interpolation, where the interpolation weight is tied to the degree of knowledge
specificity. Specifically, we propose two interpolation strategies: deterministic interpolation,
which uses semantic similarity as interpolation weight, and probabilistic interpolation,
which treats the interpolation weight as a probabilistic variable sampled from a Logistic
Normal distribution. Based on both automatic and human evaluations, our experimental
results demonstrate that both interpolation strategies outperform in relevance and fluency.
Moreover, probabilistic interpolation significantly enhances knowledge engagement and
diversity. Future research will concentrate on exploring more sophisticated methods for
interpolation weight optimization and handling multimodal data such as images or sound.
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Appendix A. Derivation of Lower Bound

In this section we will show LKIV is a lower bound estimation of log p(y|c, k). The
loss function of CVAE [27] can be formulated as maximizing by the Evidence Lower Bound
(ELBO) of logarithm likelihood log p(y|c, k) as follows:

LCVAE = −KL(qφ(z|y, c, k)||pθ(z|y, c, k))

+Ez∼qφ(z|c,k) log pθ(y|c, k, z)

≤ log pθ(y|c, k). (A1)

By injecting the interpolated latent variable, the loss function of our model LKIV now is:

LKIV = −λKL(qφ(zk|y, k)||pθ(zk|k))
−(1− λ)KL(qφ(zc|y, c)||pθ(zc|c))
+Ezc∼qc ,zk∼qk log pθ(y|c, k, z). (A2)

To verify the loss function LKIV still remains the lower bound of log p(y|c, k), we only need
to show that

LKIV ≤ LCVAE. (A3)

To verify Inequality (A3) holds, we notice that the reconstruction loss function in
Equations (A1) and (A2) is the same term. We only need to verify the sum of first two
negative KL-divergence terms in Equation (A2) is a lower bound of negative KL-divergence
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term in Equation (A1). We leverage the convex property of KL-divergence [57] to derive it,
i.e., if (p1, q1) and (p2, q2) are two pairs of probability mass functions, then

KL(λp1 + (1− λ)p2 ‖ λq1 + (1− λ)q2)

≤ λKL(p1 ‖ q1) + (1− λ)KL(p2 ‖ q2),
(A4)

for any λ ∈ [0, 1]. By replacing z = λzk + (1− λ)zc in the negative KL-divergence term in
LCVAE. We can easily verify that:

−KL(qφ(z|y, c, k)||pθ(z|y, c, k)) ≤
−λKL(qφ(zk|y, k)||pθ(zk|k)) +
−(1− λ)KL(qφ(zc|y, c)||pθ(zc|c)). (A5)

Therefore LKIV is the lower bound estimation of logarithm likelihood log p(y|c, k).
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