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Abstract: Obtaining accurate road conditions is crucial for traffic management, dynamic route
planning, and intelligent guidance services. The complex spatial correlation and nonlinear temporal
dependence pose great challenges to obtaining accurate road conditions. Existing graph-based
methods use a static adjacency matrix or a dynamic adjacency matrix to aggregate spatial information
between nodes, which cannot fully represent the topological information. In this paper, we propose a
Hybrid Graph Model (HGM) for accurate traffic prediction. The HGM constructs a static graph and a
dynamic graph to represent the topological information of the traffic network, which is beneficial
for mining potential and obvious spatial correlations. The proposed method combines a graph
neural network, convolutional neural network, and attention mechanism to jointly extract complex
spatial–temporal features. The HGM consists of two different sub-modules, called spatial–temporal
attention module and dynamic graph convolutional network, to fuse complex spatial–temporal
information. Furthermore, the proposed method designs a novel gated function to adaptively fuse
the results from spatial–temporal attention and dynamic graph convolutional network to improve
prediction performance. Extensive experiments on two real datasets show that the HGM outperforms
comparable state-of-the-art methods.

Keywords: traffic prediction; graph neural network; attention

1. Introduction

Traffic prediction is of great significance for optimizing urban traffic systems, improv-
ing traffic efficiency, reducing congestion, and improving environmental quality. Recently,
many countries have been committed to developing intelligent transportation systems. As
an indispensable part of traffic prediction, obtaining real-time traffic conditions can help
people better arrange travel plans and share resources [1–6].

Traffic prediction aims to estimate future road conditions from the historical state
recorded by the traffic system [7–10]. A real-time and accurate grasp of road conditions
plays an important role in traffic management and resource allocation. However, the
complex spatial correlation and nonlinear temporal dependence of the traffic network
pose great challenges to obtaining accurate traffic prediction. Although many works
have achieved excellent predictive performance, accurate traffic prediction still faces the
following challenges, as shown in Figure 1:

Figure 1. Complex spatial–temporal correlations.

Appl. Sci. 2023, 13, 8673. https://doi.org/10.3390/app13158673 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13158673
https://doi.org/10.3390/app13158673
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6564-2376
https://doi.org/10.3390/app13158673
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13158673?type=check_update&version=1


Appl. Sci. 2023, 13, 8673 2 of 17

(1) Complex spatial correlation. Node O received different impacts from adjacent
nodes (such as A, B, C, D) at different time steps. Capturing the dynamic relationship
between nodes is crucial to improving predictive performance.

(2) Nonlinear temporal dependence. Node B is influenced by its own node and
adjacent nodes at the previous state and the influence weight βi changes dynamically
over time.

Traditional traffic prediction methods such as the autoregressive integral moving
average algorithm (ARIMA) [11] or Kalman filter extract time series information of the
traffic network based on time stationary assumption. Traditional methods have achieved
great success in traffic prediction. However, the flexibility of these methods is limited
due to the complex spatial correlations and nonlinear temporal dependencies of the traffic
network.

Due to the powerful feature representation ability of deep learning, deep learning-
based methods have made breakthroughs in computer vision, natural language processing,
and traffic prediction. Deep learning-based methods automatically learn the rich spatial–
temporal information of traffic data through deep neural networks. The temporal signal
of a traffic network can be regarded as a sequence-to-sequence model, and the temporal
interactivity of nodes can be extracted by the 1D convolution operations in traffic prediction.
Compared with 1D convolutional neural networks, recurrent neural networks (RNNs)
have attracted extensive attention because these methods can model long-range temporal
information [12]. However, RNNs learning-based methods are prone to the vanishing
gradient, which makes the backbone network unable to effectively train and learn deep
semantic information.

In the spatial dimension, convolutional neural networks (CNNs) have excellent feature
extraction capabilities on the Euclidean data structure. However, the spatial distribution of
the traffic network nodes can be regarded as a non-Euclidean data structure, which leads to
the fact that CNNs learning-based methods have not been widely used in traffic prediction.
In recent years, graph neural networks (GNNs) have received extensive attention due
to their excellent results on non-Euclidean structures [13–16]. The GNNs, which can
roughly be divided into the spectral domain and spatial domain, update the state of the
current node by aggregating the information of adjacent nodes. However, the adjacency
matrix generated based on distance or similarity has several limitations.These methods
are subjective and incomplete and cannot represent the potential correlation of the traffic
network. For example, as shown in Figure 1, node O represents a commercial area and
node D is a residential area. Although node O and node D are far apart in space, they have
a strong correlation.

In this paper, we propose a novel Hybrid Graph Model (HGM) to extract rich spatial–
temporal information about the traffic network. To make full use of spatial information, the
proposed method represents the topological information of the traffic network through a
general graph structure. The HGM combines a graph neural network, convolutional neural
network, and attention mechanism to jointly extract complex spatial–temporal information
through different branches. The proposed method constructs the spatial information of
distance-based nodesthrough a large amount of traffic data recorded by sensors, which
we call static graph. Then, the HGM aggregates the spatial information of nodes using
a graph convolutional neural network and combines attention to simultaneously extract
temporal information. In order to mine the potential topological structure of the traffic
network, the HGM updates the topological information during the model training process,
which is called a dynamic graph, and then uses a 1D convolutional neural network to
mine the temporal dependencies between nodes. Furthermore, we design a novel gated
function to fuse the results from different branches. The gated function dynamically
calculates weights for both components according to the branch results to improve the
prediction performance. Experiments on two real-world traffic datasets demonstrate that
the HGM achieves state-of-the-art performances. The main contributions of this research
are summarized as follows:
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(1) The proposed method constructs topological information of the network from
different visions to fully represent the topological information. The HGM represents road
information through a static graph and a dynamic graph, which is conducive to highlighting
the information of adjacent nodes and mining the potential correlation between nodes.

(2) The proposed method uses different components to perform feature extraction
on bigraph topology, which can fully capture the dynamic road information, and a gated
function is designed for the adaptive fusion of results from different branches.

(3) We evaluate the HGM on two real-world traffic datasets and have demonstrated
prediction performance over comparable state-of-the-art methods in both long-term and
short-term predictions.

The remainder of this paper is organized as follows: Section 2 reviews the related work.
The problem statement of traffic prediction is presented in Section 3. Section 4 details the
proposed approach. Section 5 reports the experimental settings, followed by the discussion
of experimental results in Section 6. Section 7 briefly concludes this work.

2. Related Work

An intelligent and smart traffic management system is essential for managing the
increasing volume of vehicles and the human population in smart cities. Traffic prediction
aims to predict the future road state through the historical information recorded by the
traffic system. The complex spatial correlation and nonlinear temporal dependence of
the traffic network pose great challenges to accurately obtaining future road conditions.
Many works have been proposed and have achieved excellent classification performance
in traffic prediction.

2.1. Traditional Method

Classic statistical and machine learning-based methods are two major representative
works in traffic prediction [17,18]. Compared with statistics-based methods, machine
learning-based methods such as support vector machines and autoregressive integral mov-
ing averages take into account the complex spatial–temporal information of the traffic
network, and these methods achieve better predictive performance than linear models.
These methods can effectively alleviate the complex spatial correlation and nonlinear tem-
poral dependence of the traffic network. However, these methods rely on manual feature
extraction and cannot effectively extract deep semantic information, and the predictive
performance of these methods is limited.

2.2. Deep Learning Method

Since deep learning methods can extract deep semantic information and have powerful
feature learning capabilities, deep learning-based methods have made breakthroughs in
computer vision, natural language processing, and traffic prediction [19,20]. Convolutional
neural networks use convolution operations to aggregate features of adjacent nodes to
extract rich spatial–temporal information. Yao et al. [21] and Yu et al. [22] divided the traffic
network according to geographic location and then fused the domain information through a
convolutional neural network. However, the performance of CNN learning-based methods
will drop sharply on non-Euclidean data structures. Due to the irregular distribution
of sensors in the traffic network, the nodes of the traffic network are more suitable to
be regarded as a non-Euclidean structure. Since the graph-based method can effectively
represent the topological information between nodes, it has gradually become an alternative
method and has received extensive attention. Zhao et al. [23] and Zhang et al. [24] used
a graph to represent road spatial information and demonstrated the effectiveness of the
proposed method. Yin et al. [25] proposed to set up different hops and consider the
information of long-range adjacent nodes to provide rich spatial information. As shown
in Figure 1b, although the distance between node O and node D is large, they have a
strong correlation. Previous methods construct the topological information of the network
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distance-based or similarity-based between nodes, which cannot discover the potential
interactivity.

Many works have started to reflect other factors apart from distance information [26,27].
Li et al. [26] modified the distance map by adding additional information, such as in-
flow/outflow and reachability. Lv et al. [28] considered multi-graph convolutions to
provide rich spatial–temporal information for traffic prediction. In order to achieve better
prediction performance, Wu et al. [29] proposed to dynamically generate the topology
structure between nodes during the model training process to mine the potential informa-
tion between nodes. However, these methods do not utilize static and dynamic topology
information at the same time, which can also lead to information loss. In the temporal
dimension, the information of adjacent moments is extracted by means of 1D CNNs or
RNNs in the early stage. Guo et al. [30] and Yu et al. [31] adopted CNNs to construct
nonlinear temporal dependencies for different time steps. Recurrent neural networks such
as long short-term memory or gated recurrent units have been successfully applied to
traffic prediction due to their ability to model long-range temporal information. However,
recurrent neural networks for sequence learning require iterative training, which may
introduce error accumulation and cause a vanishing gradient.

2.3. Attention

The attention mechanism uses limited resources to quickly select high-value informa-
tion from a large amount of information [32]. Attention-based methods have been widely
used and achieved great successes in various tasks, such as natural language process-
ing [33,34], computer vision [35], and speech recognition [36]. To characterize the spatial
correlations and temporal dependencies, several works apply attention mechanisms to
model spatial–temporal information. Chen et al. [37] applied attention to aggregate spatial
information of different scales. Yao et al. [21] used LSTM and attention mechanism to
extract temporal information. Zheng et al. [38] and Guo et al. [30] employed attention to
capture the relationships between intersequence and intrasequence nodes. Inspired by the
above research methods, in order to capture the topology and complex spatial–temporal
patterns of the traffic network, the proposed method uses graph convolution and attention
mechanisms to model the network structure.

3. Preliminaries
3.1. Traffic Prediction on Road Graphs

In this paper, we define the traffic network as a directed graph G = (V, E, A),
where V is a set with |V| = N nodes, E is a set of edges representing the connectiv-
ity between the nodes, and A ∈ RN×N denotes the adjacent matrix of the graph rep-
resenting the proximity between nodes. The intelligent transportation system records
the road conditions X = {X0, X1, . . . , Xt, . . .} of all nodes in the traffic network, where
Xt = {x1,t, x2,t, . . . , xN,t} ∈ RN×1 represents the road information at time t. The goal of
traffic prediction is to predict the future state based on the observed historical state. In this
paper, we formulate the traffic prediction problem as finding a function F to predict the
next Q time steps based on historical P steps of historical data:

Ŷ = {Xt+1, Xt+2,...,Xt+Q} = Fθ(Xt, Xt−1, . . . , Xt−P+1) (1)

where θ denotes learnable parameters.

3.2. Graph Neural Network

As shown in Figure 2a, previous studies [21,22] have demonstrated that the CNN
learning-based method exhibits excellent performance in grid-structured data (e.g., images,
videos). The convolutional neural network is usually used as an effective method for
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feature extraction in image processing. Given image X ∈ RM×N and filter W ∈ RU×V , the
output of convolution operation at position (i, j) can be defined as:

yi,j =
U

∑
u=1

V

∑
v=1

wu,vxi−u+1,j−v+1 (2)

As the number of hidden layers of the convolutional neural network increases, the
computing resources required by the model also increase sharply. Due to the irregular
distribution of sensors, the Euclidean data structure cannot truly reflect road informa-
tion. Graph neural networks can be roughly divided into spectral-based methods and
spatial-based methods. Spectral-based methods define graph convolution operations by
introducing filters from the perspective of graph signal processing [39], which are inter-
preted as removing noise from graph signals. Spatial-based methods [16,40,41] formulate
the graph convolution operation as aggregating the information of adjacent nodes, which
can roughly be seen as a type of CNN. Spatial-based methods have developed rapidly due
to their attractive efficiency, flexibility, and generality.

Figure 2. Convolutional neural network and graph neural network. The black node represents the
central node and the light blue node is the adjacent node of the black node.

Thomas et al. [42] introduced a simple yet flexible model f (X, A) for information
propagation on graphs and considered GCNs on a graph with a symmetric adjacency
matrix A, which can be defined as:

Hl = f (X, A) = AHl−1W (3)

where X ∈ RN×H denotes the input signals and W ∈ RH×D represents learnable parameters.

4. Methodology

Figure 3 is the framework of the proposed HGM. The proposed method aggregates
traffic network information from different visions, which is beneficial for strengthening the
shallow information and can dynamically mine potential correlations between nodes. The
HGM captures complex spatial correlations and nonlinear temporal dependencies through
the spatial–temporal attention (STA) module and the dynamic graph convolution network
(DGCN). Specifically, the HGM constructs a distance-based static adjacency matrix to
represent topology information and combine spatial–temporal attention to synchronously
extract spatial–temporal information in the STA module. In addition, in order to character-
ize the potential dependencies between nodes, the proposed method randomly generates a
dynamic adjacency matrix, which can better represent the topology of the network in the
DGCN. The DGCN extracts complex spatial information and nonlinear temporal dependen-
cies at the same time through spatial domain-based graph convolutional neural network
and convolutional neural network, respectively. Finally, the HGM uses a gated function to
adaptively fuse the results of both branches to improve the prediction performance. Next,
we introduce the main components STA module and DGCN in detail.
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Figure 3. Model framework.

4.1. STA Module

In this paper, we follow the idea of [38] to design a spatial–temporal attention module,
which mainly includes temporal attention and spatial attention, to extract features of
historical traffic conditions. In the spatial–temporal attention, the HGM obtains spatial
embedding ES

vi
∈ RD and temporal embedding ET

t ∈ R7+q by using word2vec and one-hot
encoding methods, respectively. To obtain both temporal and spatial information, the
method obtains the spatial–temporal embedding STEvi ,t = (ET

t + ES
vi
) ∈ R(TP+TQ)×N×D

through linear projection and concatenation operations, where vi ∈ V, T ∈ (t − P +
1, . . . , t, t + 1, . . . , t + Q) and D represents the output dimensions of the model. Then, the
proposed method uses a multi-head attention to simultaneously extract spatial correlations
hA

S and temporal dependencies hA
T , and the extracted information is dynamically fused

through a novel gated function.

4.1.1. Temporal Attention and Spatial Attention

In recent years, attention mechanisms have been widely used in various tasks and have
achieved excellent performance. The goal of the attention mechanism is to select valuable
information for the current task from all inputs. As shown in Figure 1b, historical traffic
conditions can also have an impact on future road conditions, and it presents a nonlinear
relationship. As shown in Figure 4, in the STA module, the proposed method employs
temporal attention and spatial attention to extract nonlinear temporal dependencies and
complex spatial correlations, respectively. Instead of the idea of extracting spatial–temporal
information in stages, spatial–temporal attention simultaneously extracts road information
to improve accuracy.

Figure 4. Spatial–temporal attention module.
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In the temporal dimension, the HGM uses a novel attention mechanism, which can
dynamically capture long-range temporal information. The proposed method uses a
multi-head attention mechanism to stabilize the training process of the proposed method.
Multi-head attention can focus on information in different subspaces, which is beneficial
for extracting rich spatial–temporal information.

As shown in Figure 5, the kth attention score of node between t and tj time steps can
be defined as:

ωk
t,tj

=
< hl−1

vi ,t ||STEvi ,t, hl−1
vi ,tj
||STEvi ,tj >√

dk

βk
t,tj

=
exp(ωk

t,tj
)

∑th
tj=t1

exp(ωk
t,tj
)

where || represents the vector concatenation operation, hl−1
vi ,t is the hidden layer state of the

node vi at time t, < ·, · > denotes the inner product operator, and dk =
D
K means the output

dimension of the kth attention head. Therefore, the dynamic information extracted by the
node vi at the lth layer through temporal attention at time t can be defined as:

htl
vi ,t = ||

K
k=1{

TP

∑
tj=t1

βk
t,tj
· hl−1

vi ,tj
}

It can be seen from Figure 1 that the influence relationship between nodes is changing
dynamically at different time steps. Similar to temporal attention, the HGM also takes
multi-head attention to extract spatial information. Spatial attention assigns different
weights at different times according to the correlation between nodes. The proposed
method comprehensively considers the dynamic spatial and temporal correlation, which is
beneficial to improving the prediction performance.

Figure 5. Temporal attention.

4.1.2. Gated Function

To fuse the results from different branches, the proposed method designs a novel gated
function as shown in Figure 6. Instead of assigning fixed weights, the gated function aims
to calculate a dynamic weight based on the result from branches A and B, which can be
defined as:

C = z× A + (1− z)× B

z = σ(ε1 A + ε2B + b)
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where A, B indicate different components ,ε1, ε2 ∈ RN×N and b ∈ RD represent the trainable
parameters, and σ(·) is the sigmoid activation function. The gated function effectively
combines the results from different branches. In this paper, the proposed method mainly
uses the gated function to fuse the results from the spatial attention and temporal attention
and to fuse the results from the STA module branch and DGCN branch.

Figure 6. Gated function.

4.2. DGCN Block

As shown in Figure 7, the HGM uses a graph convolutional network to mine potential
topological information. The HGM dynamically updates the adjacency matrix during
model training to construct topological information of the traffic network. Meanwhile,
the DGCN adopts the 1D convolution to extract nonlinear temporal dependencies. The
previous GNN-based methods mainly construct the topology information of the traffic
network through distance or similarity between nodes. The adjacency matrix is consid-
ered prior knowledge and is fixed during the model training process. These methods are
subjective and incomplete and may cause a huge impact on the predictive performance.
Veličković et al. [43] combined attention with a graph to reflect the dynamic information of
the network, but it still relies on prior knowledge to a certain extent. However, the con-
structed distance-based adjacency matrix cannot fully represent the topological information
of the traffic network.

Figure 7. Dynamic graph convolution network.

The HGM proposes a novel way of generating network topology information. Specifi-
cally, as shown in Figure 8, the proposed method randomly initializes two node embed-
dings E1, E2 ∈ RN×Dd with learnable parameters, which can be updated during the model
training process and can be defined as:

Aadp = so f tmax(RELU(E1ET
2 ))
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The proposed method multiplies E1 and E2 to calculate the adaptive adjacency matrix,
removes the weak correlation of the adaptive adjacency matrix by the ReLU activation
function, and normalizes the adjacency matrix through the softmax function. From a
spatial-based perspective, the graph convolutional neural network updates the signal of
the current node by aggregating and transforming the information of adjacent nodes. After
obtaining the dynamic adjacency matrix, the graph convolutional neural network in the
proposed method can be defined as:

hl = Aadphl−1W

where Aadp represents the proposed dynamic adjacency matrix, hl−1 and hl denote the
input and output of the hidden layer, and W indicates trainable weights.

Figure 8. Dynamic adjacency matrix.

In the temporal dimension, instead of building a complex neural network, a 1D
convolutional neural network is used to extract nonlinear temporal dependencies after
aggregating spatial signals through a dynamic adjacency matrix. Specifically, the proposed
method sets the size of the 1D convolution kernel to size = 3, and the sliding step size to
s = 1 to extract temporal features, and then the size of the time dimension is converted into
Q through linear projection operations to obtain the future road conditions.

As mentioned above, we detail the core principles of the STA module and the DGCN.
As shown in Figure 3, in order to extract deep features, the proposed method adopts a
residual network to stack L layers of STA module and DGCN. The extraction of static
and dynamic information is achieved through different branches. In addition, the HGM
dynamically calculates weights according to branch results to improve the predictive
performance of the model.

5. Experiments
5.1. Settings

The proposed method evaluates the prediction performance of the HGM on two public
traffic datasets, METR-LA and PEMS-BAY. The proposed method uses mean absolute error
(MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE) to
evaluate the performance of the HGM [1,2]. MAPE is the average value of the absolute
value of the relative percentage error, which can be used to evaluate the prediction results.
The calculation formula can be defined as follows:

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷ− y
y

∣∣∣∣
where ŷ represents the predicte value, y is the real data, and n denotes the total number of
samples. MAE is the average absolute error, and the calculation method can be expressed:

MAE =
1
n

n

∑
i=1

∣∣∣∣ ŷ− y
y

∣∣∣∣
RMSE is used to measure the deviation between ground truth and predict value,

which can be defined as:
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RMSE =

√
1
n

n

∑
i=1
|ŷ− y|2

5.2. Parameter Settings

The HGM predicts the road conditions at Q future time steps based on the historical
traffic conditions at P = 12 time steps. The proposed method uses the Adam optimizer
to update network parameters. The HGM sets the learning rate, the number of iterations,
and output dimension as lr = 0.001, epoch = 150, and D = 64. The proposed method
stacks L = 3 layers of the STA module and DGCN to extract spatial–temporal information
from different components, respectively. Furthermore, to avoid unnecessary overhead, the
proposed method uses an early stopping strategy during the model training process. In
other words, if the validation loss does not decrease within 15 epochs, we consider the
proposed method to have converged. In addition, all experiments run on the computer
with Nvidia_V100 GPU, 16 G RAM, and Intel I9700 CPU.

5.3. Compared Methods

In order to further verify the effectiveness of the proposed method, we compare the
predicted results of the proposed method with the following compared methods:

• HA: HA uses the average of historical data to predict future road conditions.
• ARIMA [11]: ARIMA employs autoregressive and moving average methods for traffic

prediction.
• SVR [44]: SVR uses support vector machine to extract spatial–temporal features of the

traffic network.
• FC-LSTM [45]: FC-LSTM uses LSTM to analyze spatial–temporal dependencies.
• DCRNN [26]: DCRNN extracts spatial–temporal correlations with diffusion convolu-

tion and recurrent neural network.
• STGCN [31]: STGCN combines graph convolution and 1D convolution operations to

extract spatial–temporal dependencies.
• GraphWaveNet [29]: GraphWaveNet proposes a hybrid model of graph convolution

and dilated convolution to dynamically extract features.
• ASTGCN [30]: ASTGCN extracts spatial and temporal correlations through a convolu-

tional neural network and attention mechanism.
• MTGNN [46]: MTGNN is a GNN-based and CNN-based model which employs

adaptive graph, mix–hop propagation layers, and dilated inception layers to capture
spatial–temporal correlations.

• GMAN [38]: GMAN captures spatial–temporal information using a spatial–temporal
attention mechanism.

• MRA-DGCN [27]: MRA-DGCN captures complex dependencies among nodes using
a dynamic adjacency matrix.

6. Experimental Results
6.1. Predictive Performance

Table 1 shows the performance comparison of the proposed method and compared
methods on the METR-LA and PeMS datasets. On the PeMS-BAY and METR-LA datasets,
the proposed method achieves the best prediction results at different time steps. In order to
mine the potential correlation between nodes, the HGM uses a dynamic adjacency matrix
to represent the spatial information of the traffic network and uses a convolutional neural
network to extract nonlinear temporal dependencies, which is beneficial for achieving
better predictive performance. For example, on the METR-LA dataset, the error of the
proposed method drops to 6.60%, 8.19%, and 9.65% at 3, 6, and 12 future time steps on
MAPE, respectively, which shows that the proposed method achieves the best predictive
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performance for both short-range and long-range. From the experimental results in Table 1,
the following results can be drawn.

Table 1. Performance comparison of different methods on METR-LA and PeMS datasets.

Data Method 15 min 30 min 60 min
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

PeMS

HA 2.88 5.59 6.80% 2.88 5.59 6.80% 2.88 5.59 6.80%
ARIMA 1.62 3.30 3.50% 2.33 4.76 5.40% 3.38 6.50 8.30%

SVR 1.85 3.59 3.82% 2.48 5.18 5.50% 3.28 7.08 8.00%
FC-LSTM 2.05 4.19 4.80% 2.20 4.55 5.20% 2.37 4.96 5.70%
DCRNN 1.38 2.95 2.90% 1.74 3.97 3.90% 2.07 4.74 4.90%
STGCN 1.36 2.96 2.90% 1.81 4.27 4.17% 2.49 5.69 5.79%

Graph WaveNet 1.30 2.74 2.73% 1.63 3.70 3.67% 1.95 4.52 4.63%
ASTGCN 1.53 3.13 3.22% 2.01 4.27 4.48% 2.61 5.42 6.00%
MTGCN 1.32 2.79 2.77% 1.65 3.74 3.69% 1.94 4.49 4.53%
GMAN 1.34 2.82 2.81% 1.62 3.72 3.63% 1.86 4.32 4.31%

MRA-DGCN 1.28 2.75 2.68% 1.59 3.62 3.60% 1.87 4.33 4.42%
HGM (Ours) 1.25 2.66 2.64% 1.54 3.57 3.47% 1.85 4.31 4.29%

Data Method 15 min 30 min 60 min
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

METR-LA

HA 4.16 7.80 13.00% 4.16 7.80 13.00% 4.16 7.80 13.00%
ARIMA 3.99 8.21 9.60% 5.15 10.45 12.70% 6.90 13.23 17.40%

SVR 3.99 8.45 9.30% 5.05 10.87 12.10% 6.72 13.76 16.70%
FC-LSTM 3.44 6.30 9.60% 3.77 7.23 10.90% 4.37 8.69 13.20%
DCRNN 2.77 5.38 7.30% 3.15 6.45 8.80% 3.60 7.60 10.50%
STGCN 2.88 5.74 7.62% 3.47 7.24 9.57% 4.59 9.40 12.70%

Graph WaveNet 2.69 5.15 6.90% 3.07 6.22 8.37% 3.53 7.37 10.01%
ASTGCN 4.86 9.27 9.21% 5.43 10.61 10.13% 6.51 12.52 11.64%
MTGCN 2.69 5.18 6.86% 3.05 6.17 8.19% 3.49 7.23 9.87%
GMAN 2.80 5.55 7.41% 3.12 6.49 8.73% 3.44 7.35 10.07%

MRA-DGCN 2.62 5.14 6.68% 3.01 6.13 8.05% 3.38 7.22 9.98%
HGM (Ours) 2.58 5.06 6.60% 3.04 6.10 8.19% 3.35 7.03 9.65%

First, since traditional time series prediction methods such as HA and ARIMA focus on
historical records and ignore the spatial characteristics of the traffic network, these methods
cannot compete with the proposed method. Compared with HA and ARIMA, SVR further
considers the spatial correlation and achieves better performance. Due to the complex
spatial–temporal correlation of road conditions and high-dimensional feature information,
the performance of traditional time series prediction methods is limited. The proposed
method adopts a deep learning-based approach to build models, which is beneficial for
extracting complex spatial–temporal information.

Second, deep learning-based methods (such as FC-LSTM, STGCN, DCRNN, MTGCN,
ASTGCN, etc.) alleviate the shortcomings of traditional methods. These methods utilize
deep neural networks to automatically mine the complex spatial–temporal features of the
traffic network for better predictive performance. However, LSTM considers temporal
features while ignoring spatial features, which leads to poor predictive performance. Other
methods represent spatial information through a static adjacency matrix, which cannot
effectively model the global correlation. The proposed method devises a dynamic adjacency
matrix to represent the topology of the transportation network. The HGM dynamically
updates the correlation between nodes during the model training process, which is con-
ducive to mining potential correlations, and has achieved the best performance in MAE,
RMSE, and MAPE. For example, on the PeMS-BAY dataset, the proposed method achieves
a reduction of 0.61% and 1.71% on MAPE over 12 future time steps compared to DCRNN
and ASTGCN, respectively.

Finally, the proposed method constructs the topology information from different
visions, and the STA module and DGCN are designed to perform information extraction
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on different graph structures. Compared to Graph WaveNet and GMAN, the proposed
method simultaneously considers shallow and potential relationships between nodes
through a dynamic and static adjacency matrix. The importance of adjacent nodes can be
highlighted through different network topology information and the hidden relationship
between nodes can be captured in the proposed method. On the METR-LA dataset, the
HGM reduces the RMSE metric by 0.36 and 0.42 over 12 future time steps compared to
Graph WaveNet and GMAN, respectively.

6.2. Ablation Studies

Some experiments are performed to analyze the impact of different modules in the
proposed method on the predictive performance. In the ablation analysis, we mainly
explore the impact of STA module and DGCN. In addition, in order to analyze the impact
of the gated function of the information fusion of different components, we also performed
related experiments.

6.2.1. Impact of STA Module

The proposed method uses the STA module which mainly includes spatial attention
and temporal attention to extract complex spatial–temporal features. Some experiments are
conducted to evaluate the impact of the STA module on the proposed method. We analyze
the impact of different variants on the predictive performance based on the proposed
method. The HGM-V1 uses 1D convolutions instead of temporal attention to extract
temporal information. The HGM-V2 indicates that the spatial–temporal attention module
consists of static graph convolution and 1D convolution operations. HGM-V3 performs
graph convolution operations on static adjacency matrices. The HGM-V4 represents the
extraction of spatial–temporal information of traffic networks in stages. In other words,
the features extracted by spatial attention are used as the input information of temporal
attention. The HGM-V5 indicates that the model only considers dynamically generated
topology. Table 2 records the predictive performance of different methods on the two
datasets. According to the experimental results, it can be concluded that the proposed
method achieves the best prediction performance.

Table 2. Prediction results of different variants of STA module. The HGM-V1 stands for using 1D
convolution instead of temporal attention. The HGM-V2 means that the spatial–temporal attention
module is composed of static graph convolution and 1D convolution operation. The HGM-V3
performs a static graph convolution operation on static graph. The HGM-V4 means extracting
spatial–temporal information in stages. The HGM-V5 means using dynamic graphs instead of static
graphs.

Data Method 15 min 30 min 60 min
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

PeMS

HGM-V1 1.33 2.76 2.74% 1.66 3.71 3.68% 1.95 4.47 4.57%
HGM-V2 1.50 3.15 3.10% 2.02 4.54 4.52% 2.66 5.93 6.59%
HGM-V3 1.32 2.78 2.75% 1.70 3.95 3.80% 1.93 4.45 4.58%
HGM-V4 1.32 2.79 2.73% 1.64 3.71 3.64% 1.97 4.52 4.60%
HGM-V5 1.30 2.74 2.67% 1.62 3.69 3.60% 1.90 4.41 4.48%

HGM 1.25 2.66 2.64% 1.54 3.57 3.47% 1.85 4.31 4.29%

Data Method 15 min 30 min 60 min
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

METR-LA

HGM-V1 2.66 5.11 6.86% 3.03 6.15 8.35% 3.45 7.20 10.14%
HGM-V2 3.19 6.09 8.41% 3.83 7.60 10.74% 4.69 9.20 14.55%
HGM-V3 2.65 5.08 6.77% 3.04 6.15 8.42% 3.50 7.34 10.36%
HGM-V4 2.70 5.25 6.97% 3.12 6.42 8.64% 3.55 7.47 10.21%
HGM-V5 2.67 5.17 6.84% 3.10 6.30 8.57% 3.57 7.49 10.54%

HGM 2.58 5.06 6.60% 3.04 6.10 8.19% 3.35 7.03 9.65%
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Compared with the HGM-V1, the proposed method uses temporal attention to extract
temporal information. On the PeMS-BAY and METR-LA datasets, MAPE decreases by
0.28% and 0.49% over the next 12 time steps, respectively. The HGM-V2 combines 1D convo-
lution and static graph convolution operations to extract nonlinear temporal dependencies
and complex spatial correlations. Compared with the HGM-V2, the proposed method
shows a significant drop in both long-range and short-range predictive performance. On
the PeMS-BAY and METR-LA datasets, the proposed method outperforms the HGM-V2
by 0.81 and 1.34 in MAE over the next 12 time steps. The HGM-V3 performs graph con-
volution operations in a static adjacency matrix to aggregate topological information of
the traffic network, which cannot represent the potential topological information and has
limited predictive performance. In the HGM-V4 model, we try to extract spatial–temporal
information in stages. According to the experimental results in Table 2, the HGM-V4 did
not achieve excellent prediction performance. On the METR-LA dataset, MAE, RMSE, and
MAPE increase by 0.2, 0.44, and 0.56% over the next 12 time steps, respectively, compared
to our proposed method. The HGM-V5 ignores the spatial information contained in the
static adjacency matrix, but we all know that the nodes directly adjacent to the current
node have a great influence on the current one. From the experimental results in Table 2,
we can see that our proposed method achieves the best prediction performance. By com-
bining dynamic and static adjacency matrices, the HGM model can not only strengthen the
relationship between nodes but also mine the underlying topology information.

6.2.2. Impact of DGCN

In order to verify the importance of DGCN, some experiments were conducted to
analyze the impact of different variants of DGCN on predictive performance. The HGM-V6
uses temporal attention to model temporal information in DGCN and the HGM-V7 removes
the entire DGCN branch. The experimental results are recorded in Table 3. Compared
with the HGM, the HGM-V6 uses temporal attention to extract information. Since the
proposed method continuously updates the dynamic adjacency matrix during the model
training process, the dynamic adjacency matrix cannot effectively represent the topological
information of the network at the initial stage, so temporal attention does not perform
well on the dynamic adjacency matrix. Furthermore, if the proposed method removes
the DGCN branch, the predictive performance can also drop. On the METR-LA dataset,
MAE, RMSE, and MAPE decreased by 0.22, 0.46, and 0.89% over the next 12 time steps,
respectively.

Table 3. Prediction results of different variants of DGCN. The HGM-V6 uses temporal attention to
model temporal information in DGCN and the HGM-V7 removes the DGCN module.

Data Method 15 min 30 min 60 min
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

PeMS
HGM-V6 1.30 2.73 2.68% 1.62 3.68 3.62% 1.93 4.49 4.60%
HGM-V7 1.30 2.74 2.67% 1.62 3.69 3.60% 1.90 4.41 4.48%

HGM 1.25 2.66 2.64% 1.54 3.57 3.47% 1.85 4.31 4.29%

Data Method 15 min 30 min 60 min
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

METR-LA
HGM-V6 2.68 5.18 6.87% 3.06 6.21 8.42% 3.53 7.44 10.43%
HGM-V7 2.67 5.17 6.84% 3.10 6.30 8.57% 3.57 7.49 10.54%

HGM 2.58 5.06 6.60% 3.04 6.10 8.19% 3.35 7.03 9.65%

6.2.3. Impact of Gated Function

In order to verify the effectiveness of the proposed method to dynamically fuse in-
formation from different branches, we conducted experiments on the PeMS-BAY and
METR-LA datasets. Figure 9 records the experimental results under different weights.
From the experimental results, it can be seen that assigning different weights to different
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branches affects the prediction performance, which verifies the effectiveness of the pro-
posed gated function. It is not easy to obtain the optimal performance of the model by
artificially specifying fixed weights. Therefore, in the HGM model, the method calculates
the corresponding weights according to the branch results to realize the dynamic fusion of
different components in the experiment.

(a) 3 min (b) 6 min (c) 12 min

(d) 3 min (e) 6 min (f) 12 min

Figure 9. Effect of different branch weights on prediction performance. λ represents the weight ratio.
For example, λ = 9 indicates that the proposed method sets the weights of STA branch and DGCN
branch to 0.9 and 0.1, respectively.

6.3. Time Cost

Some experiments are conducted to explore the training time and inference time of
the proposed method and compared methods. The experiments run on the computer
with Nvidia_V100 GPU, 16 G RAM, Intel I9700 CPU. Table 4 records the experimental
results of different methods in the next 60 min on the METR-LA dataset. According to the
experimental results in Table 4, traditional statistics-based methods and machine learning-
based methods require less training time. Since FC-LSTM, DCRNN, STGCN, and Graph
WaveNet use a single topology to predict road conditions, the training time is less than
the proposed method. The proposed method uses a graph neural network, convolutional
neural network, and attention mechanism to capture complex spatial–temporal information
of the traffic network, and designs a learnable adjacency matrix to represent the potential
topology of the network. Although the proposed method requires more training time than
most of the compared methods, it achieves the best prediction performance due to the
superiority of the proposed method.

Table 4. Time cost (s) of the proposed method and compared methods.

Dataset Methods HA ARIMA SVR FC-LSTM DCRNN STGCN Graph WaveNet ASTGCN MTGCN GMAN MRA-DGCN HGM

METR-LA
Training time 0.00 64.21 84.37 463.49 4598.65 6021.55 5967.32 6218.35 7463.74 6458.56 8165.25 7489.54

Inference 0.11 0.74 0.42 1.21 0.98 1.31 0.98 1.56 1.01 1.32 1.79 1.01

7. Conclusions

Traffic prediction is of great significance for travel arrangement and resource planning.
In this paper, we propose a graph-based approach to extract complex spatial–temporal
information about traffic networks, which achieves excellent predictive performance. The
proposed method constructed diverse topology information of traffic network and used
different branches to extract complex spatial–temporal dependencies. A dynamic adjacency



Appl. Sci. 2023, 13, 8673 15 of 17

matrix is used to represent the underlying topology of the traffic network to provide richer
information. Furthermore, the gated function improves the fusion results from different
branches. In the future, we will try to design a more lightweight network to capture
the spatial–temporal information of the traffic network to further reduce the number of
network parameters.
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