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Abstract: A student’s engagement in a real classroom environment usually varies with respect to time.
Moreover, both genders may also engage differently during lecture procession. Previous research
measures students’ engagement either from the assessment outcome or by observing their gestures
in online or real but controlled classroom environments with limited students. However, most works
either manually assess the engagement level in online class environments or use limited features
for automatic computation. Moreover, the demographic impact on students’ engagement in the real
classroom environment is limited and needs further exploration. This work is intended to compute
student engagement in a real but least controlled classroom environment with 45 students. More
precisely, the main contributions of this work are twofold. First, we proposed an efficient transfer-
learning-based VGG16 model with extended layer, and fine-tuned hyperparameters to compute the
students’ engagement level in a real classroom environment. Overall, 90% accuracy and 0.5 N seconds
computational time were achieved in terms of computation for engaged and non-engaged students.
Subsequently, we incorporated inferential statistics to measure the impact of time while performing
14 experiments. We performed six experiments for gender impact on students’ engagement. Overall,
inferential analysis reveals the positive impact of time and gender on students’ engagement levels in
a real classroom environment. The comparisons were also performed by various transfer learning
algorithms. The proposed work may help to improve the quality of educational content delivery and
decision making for educational institutions.

Keywords: student engagement; smart decision making; affective state; computer vision; deep
learning; transfer learning; VGG16; class environment; demographic analysis

1. Introduction

Student engagement (SE) is an imperative state of learning that has been discussed
since the late 1980s. Researchers compute SE while considering diverse features. SE is
an integral part of the education system. SE refers to the focused interaction between
educational stakeholders (precisely, instructors and students) with a goal of knowledge
delivery [1]. Academic outcomes including grades may be improved if students remain
engaged during the learning phase [2]. SE is also considered as an indicator to check
whether active learning sessions are taking place during lecture deliverance. Researchers
have the consensus that SE could be an imperative factor for achieving better outcomes,
especially in higher education [3]. Around 44 studies categorize three types of engage-
ment for learning including (1) emotional engagement, (2) behavioral engagement, and
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(3) cognitive engagement. Emotional engagement is assessed through emotional reactions
such as anger, disgust, fear, sadness, enjoyment, and surprise and the components for
estimating behavioral engagement include effort, persistence, and attention. Cognitive
engagement identifies how learners set their plans and goals and make efforts to organize
their studies [1]. To estimate the automatic engagement, all the listed components are
obtained through different modalities. To improve the learning experience, researchers
attempt to propose effective estimation methods for SE [4].

The widespread tools to measure SE are divided into three categories: (1) self-reports,
(2) observational checklists, and (3) automated measurements. Self-reports are question-
naires that report the level of activeness, excitement, or boredom of the students during
learning sessions, but they can be costly or biased tools to detect SE [5–7]. The observational
checklist measures SE while relying on the questionnaires filled in by external instructors or
observers. Considering some parameters, the observers rate the students’ attention in live
sessions or examine pre-recorded lecture videos of students but this is not a useful tool for
a larger number of students [2]. Automated measurement is the recent focus of researchers
that have been studying the real-time computation of SE, starting from an automated
engagement tracing method that is presented for estimating SE while considering the
timing and accuracy of students’ responses [8]. Another automated engagement method
measures students’ level of arousal or alertness by using physiological and neurological
sensors including EEG, blood pressure, heart rate, or galvanic skin response [8–10]. These
proposals used the components of cognitive engagement for detecting SE but due to high
cost and scalability issues for the real classroom environment, these methods are not useful.

Currently, researchers work only on behavioral and emotional engagement through
deep learning and computer vision techniques [11]. Computer vision techniques are used to
detect student engagement through their physical (apparent) or emotional behavior during
lecture procession [12]. Several computer vision studies have been conducted to examine
students’ engagement in the e-learning (online) environment [13–15]. In such studies,
behavioral indicators including the number of questions asked by the lecturer, the number
of logins to the portal, the number of lectures taken, and the number of times participated
in online discussions are incorporated as features to measure SE [16]. In another study,
student engagement (affective state) is computed using voice recognition or physiological
pressure sensors and heart rate; however, speech recognition is not recommended for
affective state computation [17–19]. In the latest research, end-to-end approaches are used
to detect the level of engagement of students in an online class environment through
their head movement or eye gaze by using a webcam [20–22]. In subsequent work, a
hybrid convolutional architecture is proposed to detect students’ affective states using cues
such as hand gestures, facial emotions, and body postures from an asynchronous learning
environment. In this work, not only emotional but behavioral patterns are also analyzed
but the trained model only provides the aggregate result of all student’s states in each frame.
Effective SE necessitates being computed at the individual level which may subsequently
be aggregated depending upon the requirements. However, this research is conducted in
a constrained environment in which students are aware of the experiment [23]. To date,
there is no such method proposed that can detect SE in the offline classroom without a
constrained environment, and if available, it only considered limited key features.

1.1. Background

Parameters such as timestamp, gender, and other demographic features may also
impact the SE in the real classroom environment. It has been observed that learning
during different sessions such as morning or evening may also impact SE [22]. More
precisely, it is found that studying in the morning positively impacts and studying in the
evening negatively impacts the student’s academic performance; however, these results
were reported while considering only questionnaires or surveys but not the visual features
and actions of students [24–26]. Therefore, the real-time objective assessment for such
findings in a classroom environment still requires the attention of the researchers. To
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identify the impact of these parameters, firstly we need to detect SE in the classroom during
lecture procession; then, we can perform such analysis based on engagement [23,27,28].
There are several methods for measuring active state, but all these methods have constraints
as mentioned above. Detecting timestamp/gender influence on students’ affective state
may help improve the learning experience for students in the future. So, it is important
to analyze the affective states in the real classroom environment. Furthermore, objective
assessment and analysis (using visual features and action space) may also provide strong
evidence as compared to subjective tools (e.g., surveys or questionnaires). Therefore, in this
paper, at first we collected the data of the students during lecture processions in a classroom
environment using high-definition cameras during different timestamps (morning and
evening). Later, we extracted the relevant student data from the recordings into frames
and further annotated it into two categories: (1) engaged and (2) non-engaged based on
their emotional and behavioral patterns to train the model. Using the transfer-learning-
assisted trained model, the affective states of students were computed, and subsequently,
we computed the overall student affective score for engagement and non-engagement
during the different sessions (morning and evening). Moreover, we also computed the
student affective state score gender-wise and timestamp-wise. In the end, we compared
their affective score in different timestamps and evaluated the results using inferential
statistics. Thus, the primary objective is to compute the students’ affective states in the real
classroom environment and subsequently to analyze students’ engagement gender-wise as
well as in distinct timestamps. This work aims to respond to research questions including:
How to compute the affective state of many students in the offline classroom environment?
How can transfer learning assist to compute a model for the extraction of students’ affective
state? Whether male or female students remain more engaged during lecture procession?
Which time of day is better for scheduling classes having more male and female students?
What are the takeaways of the underlying research in terms of policy recommendations?

1.2. Major Contributions

Precisely, the major contributions of this research are listed as follows:

1. We collected a dataset of 45 students in a total of 32 videos from an offline and least
controlled classroom setting. The extracted frames from these videos were classified
into engaged and non-engaged frames based on features extracted from literature and
student survey.

2. A transfer-learning-assisted model is presented to compute the affective state in an
offline classroom environment while attaining surpassing correctness.

3. The explicit contribution is the subsequent analysis in which 14 different experiments
are performed with respect to timestamps and six different experiments are performed
to evaluate the impact of gender while incorporating Poisson and Negative Binomial
Regression models.

4. The policy recommendations are suggested regarding lecture schedules of male and
female students and variation in contents of the course considering findings of the
underlying research.

1.3. Paper Organization

The remaining contents of this work are structured as follows. Section 2 provides
a briefing about related literature while highlighting the gaps and presenting solutions.
Materials and methods are presented in Section 3. Section 4 elaborates on the results, while
the conclusion, limitations, and future suggestions are discussed in Section 5.

2. Literature Review

Traditionally, exams or written tests are used to assess students’ academic progress. [28].
Research studies have shown that conventional methods of assessing students may neg-
atively affect the learning process [29]. Furthermore, alternative evaluation techniques
may favor learning and understanding instead of memorization [30]. Students’ assessment
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outcomes may also be predicted while measuring the SE in a classroom environment. Their
SE level indicates how they feel while they learn, and its effective computation may assist
in enhancing learning. After correctly identifying their engagement level in the lecture
procession, the instructor may be able to change the way of teaching or the contents of the
course for the future [31]. The engagement theorist identifies two ways through which the
engagement level of a student can be determined: one way is to consider internal factors
which inform analysis of the cognitive behavior, and the other is to examine external factors
which include facial features, speech, actions, and postures [32]. To identify SE while
employing external features, computer vision-based approaches may perform effectively,
since these approaches may track facial expressions, eye movement, and body postures [33].
Even though computer-vision-based methods follow objective criteria, they have long been
not practiced for the assessment process due to complex algorithms and constrained com-
putational machines. These methods work similarly to the teacher’s observation during
the lecture without interrupting students’ activities. To detect learner engagement using
computer vision methods, visual sensors are now available in cell phones, computers, and
even automobiles that can be utilized for monitoring purposes [34].

A variety of automatic engagement detection methods are presented by numerous
research articles in e-learning environments that incorporate computer vision
techniques [2,33]. Due to the direct relationship between facial emotions and perceived
attention, SE can be determined from students’ facial gestures [35]. Facial expression
detection through visual sensors provides a continuous way of capturing face images
during learning. Numerous automated techniques are now available to recognize and
examine facial emotions and expressions [36]. An automated method for recognizing facial
expressions was presented in 2018 to measure emotions and used in e-learning applications.
Such SE detection methods may also assist teachers in modifying their instruction methods
for students while monitoring their level of participation [37]. In a study employing a
Support Vector Machine (SVM), facial emotions were recognized from video to monitor
the interactivity of the lectures [38]. A method was also proposed for detecting students’
emotions in the classroom using a deep convolutional neural network [39]. A teacher’s
automatic evaluation may also be done from video by detecting facial expressions in the
classroom [40]. In 2015, in a virtual laboratory environment, the emotional rate of anger,
surprise, happiness, and sadness was examined [38]. In this study, an intelligent system
based on the web was proposed that helps students improve their learning process. A
single face emotion detection system was proposed in 6D space, in which the teacher
and student computer agent communicate with each other through an emotion detection
system, and the teacher modifies their teaching style according to the student response [37].
In a similar work, video emotion recognition was proposed by combining hybrid and
multi-model elements that include open EAR, LBP-TOP, and CNN features [38].

A deep learning model was introduced in another work that classifies engaged and
non-engaged students [36]. This model was trained on 4627 engaged and non-engaged
samples. It was the first model for engagement computation using a histogram and
SVM [39]. In a similar study, the SE level was assessed by human observers, who then
divided the results into four categories. This study utilized two-time timescales; one was
a 10 s video and the other was a 60 s video, and the study verified (Pearson r = 0.85) that
a 10 s video clip was enough to detect the students’ engagement level [2]. It is argued
that facial expressions are not enough to observe the student’s behavioral and emotional
patterns during learning. The alternative way is to recognize facial expressions along with
physical facial and body actions.

In 2020, a hybrid convolutional neural network architecture was proposed that de-
tected the affective state of the student in a classroom environment. Two models were
used in the proposed architecture; one model was for detecting the SE of a single student,
and the other was for detecting the SE of multiple students in a single frame. This model
incorporated the facial emotions, body postures, and hand gestures of students to analyze
students’ affective states. Inception V3 was used to train the hybrid model. However, this
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model provides the aggregated score of all the states that are detected in each frame, but the
training and testing dataset was generated through the controlled environment in an offline
classroom environment [23]. Later, another research work was conducted that detected
the engagement level of students using ResNet, temporal convolutional network, and
neural Turing machine. These tools used already available datasets such as DAiSEE and
EmotiW for the training as well as for the testing. However, up to 65% accuracy is achieved
due to the constrained training dataset [20–22]. Advanced machine learning techniques
have been introduced such as recurrent neural networks, RCNN, Encoder-Decoders, and
long short-term memory (LSTM)-based attention networks are used for relation extraction
time-series classification and Hybridizing LSTM contributing to the best level in some of
the latest research, such as efficient federated distillation learning system (EFDLS) [41–43].
These advanced techniques could help in the future to improve the accuracy of the current
study.

Table 1. Comparison of affective states-related work.

Year Affective States Classifier/Method Key Features Dataset No. of
Students Results Offline

2014
[35]

not engaged,
nominally engaged,

engaged, very
engaged

Linear regression,
multinomial logistic

regression

Only head
pose and eyes

features
Self-generated

34
(9 male,

25 female)
F-score: 0.369 ×

2015
[44]

low, medium, and
high attention levels SVM

Head
movement

patterns
Self-generated 35% female &

65% male ACC: 0.89
√

2017
[45]

engaged and
distracted

SVM, logistic
regression

Head pose and
eye gaze Self-generated 10 (3 male,

7 female) ACC: 90% ×

2019
[12]

not engaged,
normally engaged,

and highly-engaged
CNN Facial Action

Unit

DAiSEE
Dataset

[46]

112 (32 females
and 80 males) ACC: 89% ×

2020
[23]

engaged,
non-engaged, neutral Inception v3

Facial
expressions,

hand gestures,
and body
postures

Self-generated 50 ACC: 86% ×

2021
[21]

low level,
high-level

engagement

LSTM and TCN,
fully-connected
neural network,

SVM, and RF

Eye movement,
gaze direction,
and head pose

DAiSEE
[46] and

EmotiW [47]

112 (32 females
and 80 males) ACC: 63% ×

2021
[22]

completely
disengaged, barely
engaged, engaged,

and highly engaged

Neural Turing
Machine

Eye-gaze
features, FAU,
head pose, and

body pose

DAiSEE
[46]

112 (32 females
and 80 males) ACC: 61% ×

Besides the work to compute and monitor SE levels for improving learning, post-
analysis is also required. For instance, the timestamp of the day in which students usually
remain more focused on learning, the impact of gender on SE, etc. The timestamp at
which the students feel comfortable learning depends on their chronotype. The morning
chronotype person usually sleeps and wakes up early, while the evening chronotype person
usually sleeps late and therefore wakes up late in the morning. Several studies have been
conducted on chronotype students for different purposes [39–41]. One of the types of
research was conducted on high school students’ entrance tests while considering their
chronotype gathered through a questionnaire. The results concluded that the morning
chronotype students performed better than the evening chronotype students [48]. In an-
other similar work, the relationship between gender and student engagement was studied
but at different university levels. These studies presented mixed results and concluded
that results were related but varied from university to university [49]. Several other studies
were conducted to check whether the chronotype impacts academic achievements or not.
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These studies concluded that it does not directly impact but rather indirectly affects
learning approaches [50]. Hence, we may say that SE is impacted by chronotype, but
it has not been detected through emotional and behavioral patterns in real classroom
environments. The inadequate student affective state computation may lead to constrained
insights. This may be misleading for the demographic analysis. Hence, it may become a
hindrance to decision making regarding student learning. The effective computation of SE
in a large offline classroom environment requires the attention of the research community.
Moreover, the impact of timestamps and gender on students’ affective states is yet to be
explored. Hence, this work aims to assist decision making regarding student learning in
educational institutions. In addition to these matters, some students need a particular
environment to study which can also have an impact on their engagement, but different
methodologies can be used to enhance their learning process [51,52], but our proposed
work considers all ordinary students. Although the proposals are nuanced, the presented
work overcomes several limitations discussed in the aforementioned section of objective
computation of SE and subsequent gender-wise and timestamp analysis.

3. Materials and Methods

For computing SE and subsequently analyzing the impact of session and gender on
student affective state, we recorded 32 videos in the offline classroom environment and
subsequently extracted individual students’ frames from the recorded videos. The extracted
frames are annotated into two categories. The students in engaged states are separated
as engaged frames and the students in non-engaged states are annotated as non-engaged
frames. During the training, the annotated frames are trained through transfer learning
using the VGG16 model by extending 4 layers. After training, testing is performed on
unseen data. After modelling, the affective states of each student are computed from
videos collected from the offline classroom environment. Finally, regression analysis is
applied to check the impact of timestamps and gender on the students’ affective states. The
methodology is presented in Figure 1.
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3.1. Data Acquisition

The dataset during the lecture procession in an offline classroom environment was
required for both training and testing since there is no benchmark dataset available for
underlying settings. For this purpose, we collected a dataset from two classes. To explore
the impact of timestamps, these classes were scheduled in the morning and evening sessions.
Both genders participated voluntarily to conduct the underlying research. The subject
being taught was the same for both classes from the same teacher. We captured the videos
of students in an offline classroom environment using two high-definition visual sensors
of quality 1080p with a rate of 30 frames per second. Two visual sensors were used to
monitor student engagement in two rows within a single classroom. On average, each
recorded video comprised approximately 40 min. After more than one month, in the end,
we collected a total of 32 videos from both classes. Due to the constraints of computational
resources, two random clips from each video lecture were extracted to train and test the
model. For this purpose, we processed each video and collected two random clips of
60 s from each video. In the end, we collected 64 video clips on which we performed our
analysis. We divided these videos into four groups; one group contained the morning
dataset and the other contained the evening dataset. Moreover, one group contained the
female dataset and the other contained the male dataset. Figure 2 shows the experiment
setup in the offline classroom environment.
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3.2. Model Training

To train our model, we extracted individual students’ frames from the collected
videos. More precisely, we used open-cv and face-recognition libraries of Python to extract
the frame of each student in one second. We collected 3000 frames of all students and
subsequently annotated these frames as engaged and non-engaged.

3.3. Data Annotations

The extracted frames for training were divided into two groups. One group was com-
posed of engaged students and the other one included non-engaged students’ frames. We
annotated approximately 3000 frames after removing repeated frames for both categories
for training data. To annotate the data into engaged and non-engaged categories, we took
the features from the literature [24]. Moreover, we also surveyed different classes while
asking the students about their gestures when they were engaged or non-engaged. We
listed the most salient features to annotate the data. Figure 3 shows a sample of annotated
data from engaged and non-engaged features.
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Figure 3. Extracted frames of engaged students are presented on the left side, and extracted frames
of non-engaged students are depicted on the right side.

The incorporated features for engaged and non-engaged are briefed as follows:

1. Engaged Frames: The frames in which the student is looking towards the teacher or
board, taking notes, or discussing with a teacher are labelled as engaged.

2. Non-Engaged Frames: The frames in which the student seems not interested in
the lecture, is looking away from the teacher, barely opening or closing their eyes,
yawning, leaning on the desk, using a mobile phone, or talking with fellows are
labelled as non-engaged.

3.4. Proposed Transfer Learning Model

The objective of deep learning algorithms is to build a model for the underlying task.
The details of the steps are described in Algorithm 1. However, building and training
a model from scratch is not an easy task, since many hyperparameters are to be tuned.
Moreover, a large dataset is required for building the model. In such cases, transfer learning
may help, where we can employ the learning of a standard model trained on some standard
dataset for some relevant problem. Deep learning models extract relevant features from the
given data and attain state-of-the-art correctness that sometimes even surpasses human
performance [53]. In our research, we incorporated a variant of Convolutional Neural
Network (CNN) to build our model for the underlying task. The CNN variants are the
most popular DL architectures, and their popularity is increasing day by day due to
their practical effectiveness [54]. CNNs have many pre-trained learning models including
Inception, ResNet and VGG [55], and others [56]. We trained inceptionv3 and VGG16
models on our collected dataset but VGG16 gives back better results by adding extended
dense layers on the tested dataset. Therefore, we incorporated the VGG16 model for
classifying whether a particular student in the video is engaged or non-engaged. Originally,
the VGG16 was trained for object detection and classification from the image. It is a multi-
classification network, but we used this model for binary classification. VGG16 employs
16 layers. The three fully connected layers follow a stack of convolutional layers that have
different depths in different architectures and the final layer is the classification layer. First,
convolutional layers are designed to extract a maximum number of features from the given
image. Images are usually fed to this network with a dimension of (224 × 224) pixels.

In fact, we did not use specific hand-crafted features in this article as presented in
Table 1. We used a straightforward VGG16 model with extended and dense layers to extract
maximum visual features from human faces. Those features are already trained by using
a pretrained VGG16 model based on engaged and non-engaged classes. Compared to
state-of-the-art studies, it is very difficult to extract meaningful and manual features for
classification tasks.

Extended Layers: To build our model, we used the settings of VGG16 and trained the
last two layers of the pre-trained model. Additionally, four more layers were added for
modifying the VGG16 model for our classification task. The settings of the four new layers
include a Flatten layer, a Dense (128) layer, a Dense (64) layer, and a Dense (1) layer. Flatten
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layer was added to get the results from the pre-trained layers of the model for further
processing. Dense (128) represents a hidden layer with 128 neurons, Dense (64) represents
another hidden layer with 64 neurons and the final layer is Dense (1) which represents the
output layer. The training status of the remaining layers was set to False.

Activation Function: To scale out the results, we used the ‘sigmoid’ activation function
as sigmoid performs better in binary classification problems. Figure 4 shows the overview
of the modified VGG16 architecture.
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Algorithm 1: That proposed VGG16 with dense layers and fine-tuning of the model and hyperparameters

Step 1: Input: Video frames with annotations (engaged or non-engaged) and—Timestamps and gender information for
each student.
Step 2: Output: Affective states of each student (engaged or non-engaged) based on the video frames and Regression
analysis results (impact of timestamps and gender on affective states).
Step 3: Data Collection: Let ‘X’ be the set of video frames with annotations and Let ‘Y’ be the corresponding labels for
each frame (1 for engaged, 0 for non-engaged).
Step 4: Data Preprocessing: Resize and preprocess the frames in ‘X’ to a standardized size and split the data into
training and testing sets: ‘X_train’, ‘Y_train’, ‘X_test’, ‘Y_test’.
Step 5: Transfer Learning with VGG16 and Fine-tuning:

(a) Load the pre-trained VGG16 model with weights learned on a large image dataset (StudentEng-NonEng).
(b) Add or replace the final layers to match the number of classes (engaged and non-engaged).
(c) Add dense layers
(d) Optionally, unfreeze some of the later layers to fine-tune the model on the new task.

Step 6: Repeat for layer in VGG16.layers[:-4]: Layer.trainable = False
Step 7: Define the loss function: Loss(Y_true, Y_pred), e.g., categorical cross-entropy, and define the optimization
algorithm: Optimization Algorithm with appropriate hyperparameters (e.g., learning rate, momentum).
Step 8: Compile the model: Train the model on the training data with a batch size and number of epochs, Evaluate the
fine-tuned model on the testing data, Apply the fine-tuned model to predict the affective states of each student.
Step 9: Combine affective state predictions with metadata (timestamps and gender) for each student.

3.5. Fine-Tuned Model and Hyperparameters

Transfer learning is the process of applying the acquired knowledge of a previously
trained model to a new problem. Transfer learning is a popular technique in deep learning
because the model has been previously trained on a large dataset, necessitating significantly
fewer computational resources. Typically, the technique is implemented by transferring the
learned characteristics of pre-trained models to tasks that follow. Fine-tuning is required to
ensure that the pre-trained model effectively adapts to the subsequent duties. During the
process of fine-tuning, the entire model or a portion of the model is defrosted. The number
of dense layers and classifier layers to be added to the network depends on the difficulty of
the tasks that will be performed subsequently.

In this study, a previously trained VGG-16 model [55] was refined. The VGG-16 model
is an enhanced variant of the AlexNet [3] model, consisting of more convolutional layers
and employing the tiniest kernel size. The VGG-16 model was trained with 15 million
images from the ImageNet dataset. The VGG-16 model consists of thirteen convolutional
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layers, five max-pooling layers, and three fully connected layers, with the convolutional
and max-pooling layers segmented into five sets. Following two convolutional layers in the
first two sets is a max-pooling layer. The next three sets are composed of three convolutional
layers and a max-pooling layer. The network-wide use of a kernel size of 3 × 3 with stride
1 and buffering 1 distinguishes this model from other pre-trained models. Utilizing the
tiniest kernel size drastically reduces the quantity of parameters. In addition, the use of
the minimum kernel size prevented the network from becoming overfitted. Max pooling
was conducted on a 2 × 2-pixel window with a stride of 2. By doing so, the original size
of the feature maps is reduced by half. All convolutional layers were activated with the
rectified linear unit (ReLU) activation function because it is computationally economical
and reduces the vanishing gradient problem. The pre-trained VGG-16 model was selected
because it is simple to implement. Additionally, fewer parameters are involved in the
model, resulting in a faster-learning network.

Tuning of hyperparameters is essential for optimizing the efficacy of TL learning
models. In this study, the hyperparameters were optimized by employing a grid search
technique on the selected dataset. Four hyperparameters are involved in the refining
process: batch size, dropout value, learning rate, and optimizer. The grid search is con-
ducted by varying the value of a single hyperparameter at a time, while the values of the
remaining three hyperparameters remain constant. Table 2 displays the evaluated and
optimal hyperparameter values for the proposed method. The optimal value for each
hyperparameter is determined by maximizing accuracy while minimizing computation
time. Hyperparameters batch size of tested values (16, 32, 64, 128), optimized value (16),
dropout Value tested values (0.2, 0.3, 0.40) optimized value (0.3), learning Rate test values
(0.0001, 0.001, 0.01) optimize value (0.001), and Optimizer tested techniques (SGD, Adam)
selected Adam.

Table 2. Optimal hyperparameters for the proposed VGG16 model.

Hyperparameter Optimal Value

Learning Rate 0.001
Batch Size 16

Epochs 50
Weight Decay 0.0005
Dropout Rate 0.3

Activation Function ReLU
Optimizer Adam

4. Results and Discussions
4.1. Environmental Setup

For a compilation of the VGG16 model, we used ‘binary_crossentropy’ as a loss
function because of the binary classification. We used Stochastic Gradient Descent as an
optimization function with a learning rate of 0.001 and accuracy is used as the correctness
measure. In the first step of training, we trained the model on different batch sizes (16, 32)
and epochs (50, 100, 150, 200). However, during validation, we analyzed that training on
the 16-batch size and 100 epochs performed better than the other settings. The dataset
comprised 3000 images in total out of which 20% of data were used for testing and the
remaining 80% were used for training and validation. In the literature, we observed that
the performance of models was mostly tested through accuracy [24]. We used correctness
measures including Accuracy, Precision, Recall, and F-Measure for the testing of our
model. Our proposed model predicts the engaged and non-engaged frames with 90%
accuracy and classified 93% of frames into positive class (recall); 93% of frames were
correctly classified into both positive and negative classes (precision). Table 3 presents
some important correctness measures for the computation of the affective states of students
in a real classroom environment.
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Table 3. Time and accuracy obtained for the proposed method.

Training Platform Training Time (h) Testing Accuracy (%) Testing Time

Google-Colab-Pro
(16 GB GPU, 25 GB

memory, 147 GB
storage)

1

Accuracy 0.90
Precision 0.93

Recall 0.93
F-measure 0.93

6 s/frame

4.2. Computations of Engagement State

We input each clip from the recorded lectures and applied the trained model to it. We
took one frame from every two subsequent seconds to avoid the repetition of the frames
since repetitive frames output the same value of the state. We applied the bounding box
on the faces in each frame of students through the face recognition library. Thus, as an
output, we obtained 60 computed affective states against each student. We analyzed each
frame and then collected the data of engaged and non-engaged students with unique
student IDs. We applied the same process to all the recorded videos and in the end, we
collected 283 observations of 45 students including males and females. The total analysis
was performed on 13,510 individual frames for both engaged and non-engaged students.
We compare the accuracy of our proposed model with the existing methods in Table 4.

Table 4. Comparison of accuracy with existing methods.

Year Classifier/Method Affective States Accuracy Offline Classroom
Environment

2014
[35]

Linear regression,
multinomial logistic

regression

not engaged, nominally engaged,
engaged, very engaged Not Reported ×

2015
[44] SVM low, medium, and high attention

levels 62%
√

2017
[45] SVM, logistic regression engaged and distracted 90% ×

2019
[12] CNN not engaged, normally engaged,

and highly engaged 89% ×

2020
[23] Inception v3 engaged, non-engaged, neutral 86% ×

2021
[21]

LSTM and TCN, fully
connected neural network,

SVM, and RF

low-level, high-level
engagement 63% ×

2021
[22] Neural Turing Machine

completely disengaged, barely
engaged, engaged, and highly

engaged
61% ×

Proposed method VGG16
(Extended layers) engaged, non-engaged 90%

√

4.3. Methods for Post Analysis

After computing SE, data were analyzed using inferential statistical methods including
Poisson Regression (PR) and Negative Binomial Regression (NBR). Regression modelling
techniques were used to analyze the association between multiple variables with count
outcome data. Linear regression is not suitable for counting data. PR applies to the
count or rate data. The count data are quantified with a count variable that is taken from
discrete non-negative number values in a fixed interval. As a Cobb-Douglass production
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function [55], the output is a function of inputs. In our case, we consider engagement and
non-engagement as a function of session and gender by this production function.

Eng = f(Session, Gender) (1)

In the generalized linear models, the response variable is a binary variable such as in
the form of yes or no, 0 or 1, or A or B. Hence, the relationship between the dependent and
independent variables may not be linear.

yi = α+ βiX + eii = 1, 2, . . . n (2)

In Equation (2), y is the dependent variable, α is the constant other than factors that
affect the dependent variable, β is the coefficient, and X is the independent variable. For
the analysis of our problem, we formulated the following four equations: Equations (3)–(6).
More precisely, Equations (3) and (4) are modelled for an engaged variable concerning
the independent variables of session and gender, respectively. Equations (5) and (6) are
formulated for the non-engaged variable concerning the independent variable session and
gender, respectively.

Eng = Const. + β1Session + εt (3)

Eng = Const. + β1Gender + εt (4)

Non_Eng = Const. + β2Session + εt (5)

Non_Eng = Const. + β2Gender + εt (6)

Although PR modelling is widely used for the analysis of count data, it does not handle
over-dispersed data. PR assumes that the outcome variable follows Poisson distribution,
which means that the mean and variance are equal. However, over-dispersed data implies
that the mean and variance are not equal. This condition is handled through NBR because
it also considers the over-dispersion of data.

4.4. Results Analysis

The results are obtained after applying the learned model to the recorded lecture clips.
The students not interested in lectures displayed some dominant features such as using a
mobile phone, sleeping, laughing with other fellows, closing their eyes, and yawning, as
shown in Figure 5. Attentive students taking great interest in the lecture are detected using
the employed features since such students are found to be writing notes, communicating
with the teacher, and looking at the board. Figure 6 depicts engaged examples detected
through the proposed model. Figure 7 depicts the results of the trained model on an unseen
frame during the lecture procession. Model results depict almost all the clear faces and label
them with an accurate engaged or non-engaged tag according to their detected features.

The collected data for 8 days were organized gender and timestamp-wise. We refer to
males with 1 and females with 0. Similarly, we denote the morning session with 1 and the
evening with 0. A total of 60 frames were collected from each clip and a total of 60 values
against each student were categorized as either engaged or non-engaged. In some frames,
some students were not detected because their faces were partially or completely hidden
behind other students. In some cases, the students were absent, so we also ignored those
values. The following graphs in Figure 8 show that the engaged data are positively skewed,
and the non-engaged data are negatively skewed. More precisely, the x-axis shows the
60 bins representing 60 frames from each video, while the y-axis represents the engaged
and non-engaged frames distribution of students. For instance, it may be observed from
the left distribution that the highest number of engaged counts is around 35, which means
that it appears 47 times that students remain engaged in 35 extracted frames out of a total of
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60 frames. Similarly, the right distribution depicts that the highest number of non-engaged
count is around 10, meaning that it appears 38 times that students remain non-engaged in
10 frames out of a total of 60 frames.
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4.5. Timestep Analysis

The session is the independent variable that is analyzed through both PR and NBR to
test whether there is any impact of the timestamp on SE or not. We performed multiple
experiments regarding timestamps to analyze the impact of a session on SE or lack thereof.
The results of the experiments are listed in Table 5.

Table 5. List of all experiments with respect to timestamp.

Experiments Independent Variable Dependent Variable Results

1
Class A: MorningMale (1) vs.

EveningMale (0) students with
engagement

Session Engagement No significant impact

2
Class A: MorningMale (1) vs.

EveningMale (0) students with
non-engagement

Session Non-Engagement
Male students decrease
non-engagement in the

morning session

3 Class B: MorningMale (1) EveningMale
(0) students with engagement Session Engagement

Male students increase
engagement in the
morning session

4 Class B: MorningMale (1) EveningMale
(0) students with non-engagement Session Non-Engagement

Male students decrease
non-engagement in the

morning session

5
Class A: MorningFemale (1) vs.

EveningFemale (0) students with
engagement

Session Engagement No significant impact

6
Class A: MorningFemale (1) vs.

EveningFemale (0) students with
non-engagement

Session Non-Engagement No significant impact
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Table 5. Cont.

Experiments Independent Variable Dependent Variable Results

7
Class B: MorningFemale (1) vs.

EveningFemale (0) students with
engagement

Session Engagement No significant impact

8
Class B: MorningFemale (1) vs.

EveningFemale (0) students with
non-engagement

Session Non-Engagement No significant impact

9 All MorningMale (1) vs. EveningMale
(0) students with engagement Session Engagement

Male students increase
engagement in the
morning session

10 All MorningMale (1) vs. EveningMale
(0) students with non-engagement Session Non-Engagement

Male students decrease
non-engagement in the

morning session

11 All MorningFemale (1) vs. EveningFemale
(0) students with engagement Session Engagement No significant impact

12 All MorningFemale (1) vs. EveningFemale
(0) students with non-engagement Session Non-Engagement No significant impact

13 All Morning (1) vs. all Evening
(0) students with engagement Session Engagement Engagement increases

in the morning

14 All Morning(1) vs. all Evening(0) students
with non-engagement Session Non-Engagement

Non-engagement
decreases in the

morning

The details of experiments that had a significant impact on engagement or non-
engagement are explained below.

Case 1: The first experiment is performed in which all the students of the morning
session are compared with all students of the evening session with respect to engagement.

Null Hypothesis: The session does not have any impact on engagement.

In this analysis, we took session as an independent variable and engagement as the
dependent variable. By analyzing the Z-value (2.42), we concluded that there was a positive
impact of the session on the engagement of students with 95% acceptance. Thus, the null
hypothesis was rejected because it fell in the acceptance region. So, there is a significant
impact such that morning students increase their engagement as compared to evening
students, as shown in Table 6. NBR also verified the results of PR. Furthermore, the
diagnostic test also confirms that our model fits the collected data.

Eng = 3.447 + 0.1011 Session (7)

Table 6. All morning (1) vs. all evening (0) students with engagement.

Independent Variable Dependent Variable Const. Coefficient Std. Err Z Value Prob Test

Session Non-engaged
2.782804 −0.1842965 0.0639207 −2.88 0.004 PR

2.782804 −0.1842965 0.0677216 −2.72 0.007 NBR

Case 2: The second experiment is performed in which all the students of the morn-
ing session are compared with all students of the evening session with respect to non-
engagement.

Null Hypothesis: The session does not have any impact on non-engagement.
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We took the session as an independent variable and non-engagement as the dependent
variable. By analyzing the Z-value (−2.88), we concluded that there was a negative impact
of a session on the engagement of students with 99% acceptance. Thus, the null hypothesis
was rejected because it fell in the acceptance region. There is a significant impact such that
morning students have a decrement in non-engagement as compared to evening students.
Furthermore, the diagnostic test also confirms that our model fits the collected data, as
shown in Table 7.

Table 7. All morning (1) vs. all evening (0) students with non-engagement.

Experiments Independent Variable Dependent Variable Results

1
All MorningMale (1) vs. all

MorningFemale (0) students with
engagement

Gender Engagement No significant impact

2 All Morning(1) vs. all Evening(0) students
with non-engagement Gender Non-Engagement No significant impact

3
All EveningMale (1) vs. all

EveningFemale (0) students with
engagement

Gender Engagement
Male students decrease

engagement as
compared to female

4
All EveningMale (1) vs. all

EveningFemale (0) students with
non-engagement

Gender Non-Engagement No significant impact

5 All Males (1) vs. All Females (0) with
engagement Gender Engagement

Male students decrease
engagement as

compared to female

6 All Males (1) vs. All Females (0) with
non-engagement Gender Non-Engagement No significant impact

4.6. Gender-Wise Analysis

In this section, gender is taken as the independent variable to analyze against SE
using both PR and NBR models to check whether there is an impact of gender on SE or
not. Multiple experiments were performed regarding timestamps to analyze the impact
between gender and engagement/non-engagement. The results of the experiments are
listed in Table 8.

Table 8. List of experiments with respect to gender.

Independent Variable Dependent Variable Const. Coefficient Std. Err Z Value Prob Test

Session Engaged 3.447717 0.1011712 0.0417288 2.42 0.015 PR
3.447717 0.1011712 0.0473721 2.14 0.033 NBR

The details of experiments that have a significant impact on engagement or non-
engagement are explained below.

Case 1: All male students are compared with all the female students with respect to
engagement.

Null Hypothesis: Gender does not impact engagement.

For this analysis, gender is taken as an independent variable, and engagement is the
dependent variable. It may be observed that the Z-value of both the PR and NBR lies under
the acceptance region and rejected the null hypothesis as shown in Table 9. Therefore, it is
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concluded that there is an impact of gender on engagement but the negative relationship
means that male students decrease their engagement as compared to female students.

Eng = 3.568− 0.0985 Gender (8)

Table 9. All males (1) vs. All females (0) with engagement.

Model Epochs ACC

VGG16 40 79
AlexNet 40 81.3

InceptionV3 40 82.7
GoogleNet 40 83.5
Xception 40 82.4

MobileNet 40 84.3
SqueezeNet 40 87.6

Proposed VGG-16 40 90.01

Case 2: All male students are also compared with all the female students with respect
to non-engagement.

Null Hypothesis: Gender does not impact non-engagement.

In this case, gender is taken as an independent variable, and non-engagement is the
dependent variable. The results reveal that there is an insignificant impact of gender on
non-engagement because the z-value does lie in the acceptance region as shown in Table 10.
Therefore, the null hypothesis is accepted.

Table 10. All males (1) vs. all Females (0) with non-engagement.

Independent Variable Dependent Variable Const. Coefficient Std. Err Z Value Prob Test

Session engaged 3.568845 −0.0985885 0.0417993 −2.36 0.018 PR
3.568845 −0.0985885 0.0520437 −1.89 0.058 NBR

The generalizability of the proposed model is validated using an independent experi-
ment. For this purpose, some clips of male and female students in the offline classroom
environment were recorded and tested using the proposed model. These students were
not incorporated for training or even for the testing phase of model building. Figure 9
presents one frame from the testing video through which we may observe that all students
are detected, and the proposed model labeled them according to their engagement and
non-engagement states. The attained average accuracy for this independent experiment on
unseen data is found to be 83%, which is close to the 90% of model accuracy, so the absolute
error is 7% which can be ignored. Hence, the generalizability of the proposed model is
validated. Our proposed model can be embedded with a hardware system to be deployed
in a real-time classroom environment to detect the engagement and non-engagement state
of the students.

We compared various TL algorithms and models, including VGG16, AlexNet, In-
ceptionV3, GoogleNet, Xception, MobileNet, SqueezeNet, and the proposed model. The
classification results of the pretrained DL models for batch size 16 was calculated and
presented in Table 10. The efficacy of the developed VGG16 extended with fine-tuned
model achieved reasonable accuracy. However, group size had an influence on the num-
ber of parameters and computational time. However, the classification results for other
pre-trained TL algorithms remain unchanged.
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In addition, Table 11 and Figure 10 demonstrate that the extended model of VGG16
is outperformed compared to other TL models in detecting multiple objects from live
video camera scenes. Here are a few reasons why VGG16 may be outperformed by these
architectures for object detection in videos:

1. Spatial information vs. temporal information: VGG16 focuses on capturing spa-
tial information within individual frames, but it does not explicitly model temporal
dependencies between frames. In contrast, architectures such as InceptionV3 and
GoogLeNet incorporate components such as temporal convolutional layers or recur-
rent neural networks (RNNs) that can capture temporal information and dependencies
in video sequences. This can be beneficial for object detection in videos, where the
motion and temporal context of objects play an important role.

2. Computational efficiency: VGG16 has a relatively high number of parameters and
computational complexity due to its deeper architecture, which can make it com-
putationally expensive for real-time object detection in videos. InceptionV3 and
GoogLeNet, on the other hand, have been designed with computational efficiency in
mind. They utilize techniques like 1 × 1 convolutions and factorized convolutions,
which reduce the number of parameters and computational cost while maintaining or
even improving performance. This efficiency is particularly advantageous for video
processing tasks that require real-time or near-real-time performance.

3. Architectural innovations: InceptionV3 and GoogLeNet incorporate architectural
innovations that aim to address specific challenges in object detection, such as the
problem of vanishing/exploding gradients or the efficient use of network capacity.
These innovations, such as the use of inception modules, auxiliary classifiers, and
reduction layers, can enhance the model’s ability to detect objects accurately in videos.

Table 11. Results of the proposed system model’s classification using 16 batches of data.

Independent Variable Dependent Variable Const. Coefficient Std. Err Z Value Prob Test

Gender Non-engaged 2.720974 −0.0379002 0.0682888 −0.55 0.579 PR
2.720974 −0.0379002 0.0753602 −0.50 0.615 NBR

4.7. Generalizability Analysis

The generalizability of the proposed model is validated using an independent experi-
ment. For this purpose, some clips of male and female students in the offline classroom
environment were recorded and tested using the proposed model. These students were
not incorporated for training or even for the testing phase of model building. Figure 9
presents one frame from the testing video through which we may observe that all students
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are detected, and the proposed model labeled them according to their engagement and
non-engagement states. The attained average accuracy for this independent experiment on
unseen data is found to be 83%, which is close to 90% of model accuracy, so the absolute
error is 7%, which can be ignored. Hence, the generalizability of the proposed model is
validated. Our proposed model can be embedded with a hardware system to be deployed
in a real-time classroom environment to detect the engagement and non-engagement state
of the students.
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A comparison in Table 12 shows the key characteristics of various machine learning
algorithms such as SVM (Support Vector Machines), Random Forest, Neural Networks,
CNN (Convolutional Neural Networks), LSTM (Long Short-Term Memory), InceptionV3,
and VGG16 for object recognition in video scene analysis. This table shows the advantages
of the proposed VGG16 model with extended layers compared to state-of-the-art machine
learning algorithms. A random video clip is also visually represented in Figure 11 to show
the detect human faces with engage and non-engage states of students.

Table 12. A comparison table outlining the key characteristics of various machine learning algorithms
such as SVM (Support Vector Machines), Random Forest, Neural Networks, CNN (Convolutional
Neural Networks), LSTM (Long Short-Term Memory), InceptionV3, and VGG16.

Model Disadvantages

SVM -Limited ability to capture complex relationships in data
-Requires feature engineering
-May struggle with large-scale datasets

Random Forest -Can be computationally expensive
-May require tuning of hyperparameters
-Prone to overfitting with noisy or imbalanced datasets

Neural Networks -Requires large amounts of labeled training data
-Computationally intensive, especially for deep architectures
-Prone to overfitting without proper regularization

CNN -Requires large amounts of labeled training data
(Convolutional -Computationally intensive, especially for deep architectures

Neural Networks) -Prone to overfitting without proper regularization
LSTM -Requires longer training times

-Can be more complex to implement compared to other models
-Prone to vanishing/exploding gradient problems

InceptionV3 -May not perform as well with limited training data
-Can be computationally expensive for real-time applications
-Limited ability to model long-term temporal dependencies

Compare to original VGG16, we have provided the following benefits of the proproposed
VGG16-dense architecture as follows:

VGG16-Dense -Deep architecture for capturing intricate image features
-Transfer learning capabilities
-Suitable for image-based tasksAppl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 25 
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4.8. Computational Analysis

To determine the computational complexity of our proposed VGG16 deep learning
model, we need to consider the number of operations required to process each frame. Here
is an estimation of the computational complexity based on the information provided:

1. Frame Down sampling: We process one frame after two seconds.
2. Image Size: Each image is converted to a size of 224× 224 pixels before being passed to

the model. This means each frame consists of 224× 224× 0.5 (RGB channels) = 25,088
input values.

3. Model Inference: The computational complexity of these layers can be estimated based
on the number of operations required for each layer type. However, the exact number
of operations can vary depending on the specific architecture and implementation
details.

As a rough estimate, let us consider a simple CNN architecture with a few convolu-
tional layers and fully connected layers. Assuming a total of N operations are required for
the model inference per input frame, the computational complexity for each second of the
camera stream (0.5 frames) would be approximately 0.5N operations.

5. Conclusions and Future Works

This bifold research presented a transfer-learning-assisted model for measuring stu-
dents’ affective states. For this purpose, we trained the model using prescribed engaged and
non-engaged features of the students. The overall average accuracy of the model is found
to be 90%. We also performed an independent experiment for proving the generalizability
of the proposed model on unseen video and achieved 83% accuracy. Finally, the inferential
statistic was employed to check the impact of both timestamps and gender on students’
engagement. The findings show that gender and timestamp have a substantial impact on
students’ participation in an offline classroom environment. In contrast to the evening
sessions, the morning sessions show higher levels of student engagement. According to the
gender analysis, females are more likely to stay engaged than males. The research findings
informed the following recommendations:

• A class having more male students is better to be scheduled in the morning.
• A class having more female students may also be scheduled in the evening.

5.1. Limitations

The impact of timestamps and gender is analyzed on a relatively small dataset. The
presented model can take only one video at a time to compute students’ engagement. We
only considered their facial actions and hand gestures for the underlying experiment.

5.2. Future Work

The dataset may be enhanced while considering more students in an offline classroom
environment. To analyze the affective states, more features may be added to categorize
them into engaged and non-engaged states; in addition, other states such as neutral states
may also be considered. Facial emotions and body postures may also make a difference.
Audio speech cannot be detected through a webcam although we can use visual speech to
detect the engagement of students. Moreover, more transfer learning models and self-built
architectures may be explored for the computation of effective states.
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