
Citation: Ye, X.; Liu, Y.; Zhang, D.;

Hu, X.; He, Z.; Chen, Y. Rapid and

Accurate Crayfish Sorting by Size

and Maturity Based on Improved

YOLOv5. Appl. Sci. 2023, 13, 8619.

https://doi.org/10.3390/

app13158619

Academic Editor: Seokwon Yeom

Received: 23 May 2023

Revised: 13 July 2023

Accepted: 25 July 2023

Published: 26 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Rapid and Accurate Crayfish Sorting by Size and Maturity
Based on Improved YOLOv5
Xuhui Ye 1,†, Yuxiang Liu 1,†, Daode Zhang 1,*, Xinyu Hu 1, Zhuang He 1 and Yan Chen 2

1 School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China;
yxh89@hbut.edu.cn (X.Y.); 102110154@hbut.edu.cn (Y.L.); 19991012@hbut.edu.cn (X.H.);
102110170@hbut.edu.cn (Z.H.)

2 School of Mechanical and Electric Engineering, Wuhan Donghu University, Wuhan 430212, China;
chenyandhxy@139.com

* Correspondence: 19951044@hbut.edu.cn
† These authors contributed equally to this work.

Abstract: In response to the issues of high-intensity labor, low efficiency, and potential damage
to crayfish associated with traditional manual sorting methods, an automated and non-contact
sorting approach based on an improved YOLOv5 algorithm is proposed for the rapid sorting of
crayfish maturity and size. To address the difficulty in focusing on small crayfish, the Backbone is
augmented with Coordinate Attention to boost its capability to extract features. Additionally, to
address the difficulty in achieving high overall algorithm efficiency and reducing feature redundancy,
the Bottleneck Transformer is integrated into both the Backbone and Neck, which improves the
accuracy, generalization performance, and the model’s computational proficiency. The dataset of
3464 images of crayfish collected from a crayfish breeding farm is used for the experiments. The
dataset is partitioned randomly, with 80% of the data used for training and the remaining 20% used
for testing. The results indicate that the proposed algorithm achieves an mAP of 98.8%. Finally, the
model is deployed using TensorRT, and the processing time for an image is reduced to just 2 ms,
which greatly improves the processing speed of the model. In conclusion, this approach provides an
accurate, efficient, fast, and automated solution for crayfish sorting.

Keywords: crayfish sorting; Yolov5; attention mechanism; maturity; size; TensorRT

1. Introduction

The crayfish is a freshwater crustacean mainly found in southern China and the
southern United States. Given its unique sensory, textural, and flavor characteristics,
cray-fish has emerged as a highly coveted and prized delicacy in the culinary world.
As a longstanding culinary tradition in China, crayfish has also gained popularity and
recognition in international gastronomy. With the continuous expansion of the crayfish
market, this species has become a significant representative of Chinese food culture and has
stimulated the growth of crayfish farming as a major industry. In 2021, crayfish farming
in China encompassed a total area of 26 million mu, yielding a production volume of
2.6336 million tons, thereby solidifying its position as the sixth largest freshwater aquatic
product in the country, ranking only behind major freshwater fish [1].

Conventional crayfish classification methods have typically relied on manual sorting,
which is associated with high labor costs and significant resource requirements. Moreover,
these methods often result in damage to the crayfish, which further limits their utility
for businesses that prioritize production efficiency and product quality. As a result, auto-
mated and non-contact sorting techniques have become an indispensable component of the
crayfish production process. Over the past few years, computer vision has made significant
strides [2–4]. As an advanced technology, computer vision not only enhances production
efficiency and product quality, but also reduces labor costs [5]. In contrast to conventional

Appl. Sci. 2023, 13, 8619. https://doi.org/10.3390/app13158619 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13158619
https://doi.org/10.3390/app13158619
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app13158619
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13158619?type=check_update&version=1

Appl. Sci. 2023, 13, 8619 2 of 20

methods, computer vision technology offers unparalleled advantages in measuring non-
linear relationships, perimeters, areas, quantities, colors, and chemical compositions of
the target object [6–9]. Ma [10] utilized the K-means clustering algorithm to segment color
images containing groupers. Through segmentation experiments on 100 artificial seawater
images of groupers in RGB format, they achieved a high accuracy of 98 blue components.
However, this approach is only feasible in underwater settings and not well suited for
intricate backgrounds. Kesvarakul [11] put forward a method for shrimp larva counting
using image detection for spot information, which can reduce errors by 6.9% compared to
traditional manual counting. However, this method requires comparison of the transparent
parts of the shrimp larvae with the surrounding water environment, and the accuracy
of counting may be interfered with by water impurities and changes in appearance, and
parameters need to be adjusted as the aquaculture environment changes. JM [12] proposed
an embedded system that is easy to operate, low cost, and has a high precision for counting
fish schools, which utilizes the connected component relationship of the fish body area and
perimeter in images. However, this method may be affected by mutual occlusion when
fish density is high. Zhu [13] applied a stacked denoising autoencoder (SdA) to extract
effective features from the sensor responses of a machine olfaction system. They further
performed qualitative classification using a support vector machine (SVM). The study
analyzed the total volatile basic nitrogen and total viable count of crabs over the course
of their preservation. The experimental results demonstrate that the recognition rate can
reach 96.67%.

As mentioned above, traditional machine learning algorithms have become difficult
to meet the real-time requirements. The past few years have witnessed a surge in the
use of deep learning technology in aquatic animal research [14,15]. On the one hand,
the powerful neural network structure of deep learning can process large-scale animal
images and data [16], and extract effective features from them. On the other hand, with the
continuous improvement of computer performance and hardware devices, deep learning
technology has become more efficient, accurate, and has strong generalization ability [17].
These fac-tors have made deep learning an important tool in the fields of aquaculture
and aquatic product detection. Li [18] used binocular stereo vision technology to obtain
three-dimensional information and performed fish detection and fine segmentation using
the Mask-RCNN network. Finally, three-dimensional point cloud data of the fish sur-
face were generated, and the external dimensions of multiple fish under free movement
were calculated. Sun [19] addressed the issue of limited generalization ability in existing
multi-object fish detection methods that mostly focus on controlled environments. They
proposed a transfer learning approach based on DRN for feature extraction from raw
images, combined with RPN to generate candidate detection boxes. Using Faster-RCNN,
they created a fish detection model capable of detecting multiple objects in complex back-
grounds. By testing in complex backgrounds, the model was found to achieve an average
detection accuracy of 89.5% for goldfish. To tackle challenges posed by blurriness and
the multi-degree-of-freedom motion of objects in water, Xu [20] proposed a YOLO-V3
algorithm-based model for object recognition. The model successfully tracked objects with
a multi-degree-of-freedom motion in water, achieving an average accuracy of 75.1% when
the confidence level was set at 0.5. Wageeh [21] proposed a cost-effective and easy-to-
operate monitoring method based on YOLO for effectively detecting and counting fish in
water using image enhancement and object detection algorithms, and extracting trajectory
features to enhance the tracking and detection capabilities of fish ponds in aquaculture. For
the specific features of sea urchin spines, Hu [22] developed a feature-enhanced sea urchin
detection algorithm that used a multi-directional edge detection algorithm for feature
enhancement, utilized ResNet 50 as the basic framework, and employed a feature-level
fusion technique to improve feature extraction capability and semantic representation.
Experimental results showed that the proposed algorithm achieved a 7.6% improvement in
AP value over the SSD algorithm and improved the confidence score for small targets. To
address the problems of underwater image blur and difficulty in capturing small targets,

Appl. Sci. 2023, 13, 8619 3 of 20

Hu [23] proposed an approach that utilizes an optimized YOLO-V4 to detect uneaten feed
particles in aquaculture. The proposed method enhanced the network performance and
model accuracy by modifying the way the feature pyramid network and path aggrega-
tion network are connected, as well as the residual connection mode. The experiments
showed an average precision improvement of 27.21%. To track crayfish from capture
to consumers, Vo [24] proposed an image-based individual recognition solution using
convolutional neural networks. This approach employed a combination of the Siamese
model and a contrastive loss function to distinguish individual crayfish by analyzing their
exoskeleton images, providing a more secure and reliable approach for crayfish recognition
and tracking.

The convolutional neural network-based methods mentioned above usually incorpo-
rate attention mechanisms or increase the network depth to enhance detection accuracy.
However, the model’s parameters increase with this approach, leading to slower processing
speeds that fail to satisfy the requirement for detecting in real time. This method faces
challenges such as difficulty in live crayfish sorting, insufficient accuracy, and low efficiency.
Therefore, a balance between improving accuracy and maintaining high-speed processing
is necessary. The proposed method, which utilizes an improved YOLOv5, was evaluated
on a crayfish dataset through experiments, for the fast sorting of crayfish maturity and size.

Therefore, to achieve automated, contactless, fast, and accurate sorting of live crayfish,
we propose the following methods to address this objective:

1. Achieve lightweight and improved accuracy and generalization performance by
introducing the Bottleneck transformer structure and decreasing the number of
Backbone modules.

2. The Bottleneck transformer structure is introduced in the Neck’s head to better ad-
dress the scale problem of feature maps, fuse more feature information, and address
the problem of small inter-class differences.

3. The incorporation of the Coordinate Attention module into the Backbone enhances
both the channel and position awareness of the network, resulting in improved ex-
traction of features.

4. To enhance the improved model, we deploy it using TensorRT, enabling extremely
fast inference and prediction sorting while ensuring accuracy.

2. Materials

In this study, the research was approximately 10 kg of crayfish purchased from a
crayfish farm. The images were captured on a conveyor belt at the crayfish farm, as shown
in Figure 1, using a Hikvision industrial camera (MV-CS016-10GC) and a Hikvision robot
FA lens (MVL-MF0828M-8MP). The camera was fixed in a position perpendicular to the
conveyor belt and directly above the crayfish, with a distance of 51 cm and a field of view
of 23 cm by 31.68 cm. Two LED strip lights (BRD24030) were placed above the conveyor
belt on both sides of the crayfish for stable illumination during image capture.

Crayfish can be divided into green and red based on their maturity. The crayfish
shells are composed of several layers of different tissues, including the outer horny layer,
the middle pigment layer, and the inner transparent membrane-like layer. These layers
not only provide protection and support for the crayfish but also reflect or absorb light
of different wavelengths, resulting in different colors. Red crayfish typically contain a
higher concentration of red pigments in the pigment layer, which can absorb blue and
green light and reflect red and yellow light, resulting in a vivid red color. Therefore, when
light passes through the red crayfish’s shells and goes through the pigment layer, red and
yellow light will be reflected while blue and green light will be absorbed, making the red
crayfish’s shells typically opaque. The shells of green crayfish are usually not completely
transparent but contain tiny crystal structures in the membrane-like layer that can scatter
and reflect light. These small structures can make light appear in different colors, including
blue and green, so the shells of green crayfish usually appear deep green or blue–green.
When light passes through the green crayfish’s shells and goes through these tiny crystal

Appl. Sci. 2023, 13, 8619 4 of 20

structures, the light is scattered and reflected, making the shells of green crayfish typically
more transparent than the shells of red crayfish.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 20

and green, so the shells of green crayfish usually appear deep green or blue–green. When
light passes through the green crayfish’s shells and goes through these tiny crystal struc-
tures, the light is scattered and reflected, making the shells of green crayfish typically more
transparent than the shells of red crayfish.

51cm

Figure 1. Graphical representation of the process for obtaining images of crayfish.

Table 1 presents the relevant information regarding the crayfish dataset. The sizes are
divided into four levels: small (<20 g), medium (20~30 g), large (30~40 g), and extra large
(>40 g). In order to facilitate the labeling process, the actual labels are 01, 02, 03, and 04,
where 01, 02, 03, and 04 correspond to small, medium, large, and extra large, respectively.
In this study, a total of 3464 test images were obtained, with a resolution of 720 pixels
(horizontal) × 540 pixels (vertical), and were classified into 8 categories, including 477 im-
ages classified as red_small, 450 images classified as red_medium, 456 images classified
as red_large, 265 images classified as red_extralarge, 721 images classified as green_small,
496 images classified as green_medium, 457 images classified as green_large, and 142 im-
ages classified as green_extralarge. The crayfish were manually labeled using LabelImg to
generate xml and txt files. Figure 2 shows the annotation results of the crayfish dataset.
Among the 3464 test images, 2725 images (80% of the dataset) were used as the training
set, and 734 images (20% of the dataset) were used as the testing set to test and validate
the detection method.

Figure 1. Graphical representation of the process for obtaining images of crayfish.

Table 1 presents the relevant information regarding the crayfish dataset. The sizes
are divided into four levels: small (<20 g), medium (20~30 g), large (30~40 g), and extra
large (>40 g). In order to facilitate the labeling process, the actual labels are 01, 02, 03,
and 04, where 01, 02, 03, and 04 correspond to small, medium, large, and extra large,
respectively. In this study, a total of 3464 test images were obtained, with a resolution of
720 pixels (horizontal) × 540 pixels (vertical), and were classified into 8 categories, includ-
ing 477 images classified as red_small, 450 images classified as red_medium, 456 images
classified as red_large, 265 images classified as red_extralarge, 721 images classified as
green_small, 496 images classified as green_medium, 457 images classified as green_large,
and 142 images classified as green_extralarge. The crayfish were manually labeled using
LabelImg to generate xml and txt files. Figure 2 shows the annotation results of the crayfish
dataset. Among the 3464 test images, 2725 images (80% of the dataset) were used as the
training set, and 734 images (20% of the dataset) were used as the testing set to test and
validate the detection method.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 20

and green, so the shells of green crayfish usually appear deep green or blue–green. When
light passes through the green crayfish’s shells and goes through these tiny crystal struc-
tures, the light is scattered and reflected, making the shells of green crayfish typically more
transparent than the shells of red crayfish.

51cm

Figure 1. Graphical representation of the process for obtaining images of crayfish.

Table 1 presents the relevant information regarding the crayfish dataset. The sizes are
divided into four levels: small (<20 g), medium (20~30 g), large (30~40 g), and extra large
(>40 g). In order to facilitate the labeling process, the actual labels are 01, 02, 03, and 04,
where 01, 02, 03, and 04 correspond to small, medium, large, and extra large, respectively.
In this study, a total of 3464 test images were obtained, with a resolution of 720 pixels
(horizontal) × 540 pixels (vertical), and were classified into 8 categories, including 477 im-
ages classified as red_small, 450 images classified as red_medium, 456 images classified
as red_large, 265 images classified as red_extralarge, 721 images classified as green_small,
496 images classified as green_medium, 457 images classified as green_large, and 142 im-
ages classified as green_extralarge. The crayfish were manually labeled using LabelImg to
generate xml and txt files. Figure 2 shows the annotation results of the crayfish dataset.
Among the 3464 test images, 2725 images (80% of the dataset) were used as the training
set, and 734 images (20% of the dataset) were used as the testing set to test and validate
the detection method.

Figure 2. Cont.

Appl. Sci. 2023, 13, 8619 5 of 20Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 20

Figure 2. (a–h) Images represent the annotation results for green, small crayfish; green, medium
crayfish; green, large crayfish; green, extra-large crayfish; red, small crayfish; red, medium crayfish;
red, large crayfish; and red, extra-large crayfish; (i) represents the ID and coordinate information of
the annotation of red, large crayfish in (c); the category corresponding to the ID is the sixth category,
that is, the red, medium crayfish, coordinate information refers to the normalized coordinates of the
bounding box.

Table 1. Crayfish dataset.

Crayfish Dataset
(3464 Images) 720 (Pixels) × 540 (Pixels)

Train Set
(2725 images)

Red crayfish
(1296 images)

Small
(363 images)

Medium
(357 images)

Large
(365 images)

Extra large
(211 images)

Green crayfish
(1433 images)

Small
(584 images)

Medium
(373 images)

Large
(364 images)

Extra large
(112 images)

Test Set
(734 images)

Red crayfish
(352 images)

Small
(114 images)

Medium
(93 images)

Large
(91 images)

Extra large
(54 images)

Green crayfish
(383 images)

Small
(137 images)

Medium
(123 images)

Large
(93 images)

Extra large
(30 images)

3. Method
3.1. YOLOv5

Developed by Ultralytics LLC, YOLOv5 [25] is an object detection algorithm that uti-
lizes deep learning. The lightweight network architecture of YOLOv5 is composed of three
main components: feature extraction, fusion, and detection. Specifically, the feature ex-
traction component serves as the Backbone network, the fusion component integrates
multi-level features, and the detection component produces bounding boxes and class
probabilities. Figure 3 depicts the structure of YOLOv5. The YOLOv5 Backbone architec-
ture primarily consists of Convolution (Conv), Cross-Stage Partial Network (CSP) [26],
and Spatial Pyramid Pooling Fast (SPPF). Within Conv, Conv2d, Batch Normalization,
and Swish activation function are the primary components. As a critical feature extraction
module in YOLOv5, the CSP module ensures the consistency of input and output, reduces
the amount of calculation while improving the detection speed, and maintains good de-
tection performance. The SPPF module replaces the single large pooling kernel used in
the SPP module with multiple small kernels cascaded in a pyramid structure, which pre-
serves the feature fusion capability and enhances the feature representation ability while
further improving the processing speed.

Figure 2. (a–h) Images represent the annotation results for green, small crayfish; green, medium
crayfish; green, large crayfish; green, extra-large crayfish; red, small crayfish; red, medium crayfish;
red, large crayfish; and red, extra-large crayfish; (i) represents the ID and coordinate information of
the annotation of red, large crayfish in (c); the category corresponding to the ID is the sixth category,
that is, the red, medium crayfish, coordinate information refers to the normalized coordinates of the
bounding box.

Table 1. Crayfish dataset.

Crayfish Dataset
(3464 Images) 720 (Pixels) × 540 (Pixels)

Train Set
(2725 images)

Red crayfish
(1296 images)

Small
(363 images)

Medium
(357 images)

Large
(365 images)

Extra large
(211 images)

Green crayfish
(1433 images)

Small
(584 images)

Medium
(373 images)

Large
(364 images)

Extra large
(112 images)

Test Set
(734 images)

Red crayfish
(352 images)

Small
(114 images)

Medium
(93 images)

Large
(91 images)

Extra large
(54 images)

Green crayfish
(383 images)

Small
(137 images)

Medium
(123 images)

Large
(93 images)

Extra large
(30 images)

3. Method
3.1. YOLOv5

Developed by Ultralytics LLC, YOLOv5 [25] is an object detection algorithm that
utilizes deep learning. The lightweight network architecture of YOLOv5 is composed of
three main components: feature extraction, fusion, and detection. Specifically, the feature
extraction component serves as the Backbone network, the fusion component integrates
multi-level features, and the detection component produces bounding boxes and class
probabilities. Figure 3 depicts the structure of YOLOv5. The YOLOv5 Backbone architecture
primarily consists of Convolution (Conv), Cross-Stage Partial Network (CSP) [26], and
Spatial Pyramid Pooling Fast (SPPF). Within Conv, Conv2d, Batch Normalization, and
Swish activation function are the primary components. As a critical feature extraction
module in YOLOv5, the CSP module ensures the consistency of input and output, reduces
the amount of calculation while improving the detection speed, and maintains good
detection performance. The SPPF module replaces the single large pooling kernel used
in the SPP module with multiple small kernels cascaded in a pyramid structure, which
preserves the feature fusion capability and enhances the feature representation ability while
further improving the processing speed.

Appl. Sci. 2023, 13, 8619 6 of 20

The Neck part of YOLOv5’s feature fusion refers to the Feature Pyramid Network
(FPN) [27] and the Path Aggregation Network (PANet) [28]. The Feature Pyramid Network
(FPN) proposes an effective solution, which is to propagate the semantic information from
deep features to shallow ones and improve the expression of multi-scale features’ semantics.
PANet is a multi-scale feature fusion method. Based on FPN, PANet introduces a bottom-up
pathway that enables both top-down and bottom-up feature fusion with lateral connections.
This enhances the representation of position and semantic information at various output
levels, thereby optimizing the model’s feature extraction capability.

The Head section of YOLOv5 serves as the output layer of the object detection model,
responsible for predicting the class and location of objects. For each feature map, the
Head section expands the channel number and uses 1 × 1 convolution to expand the
channel number to (number of classes + 5) × (number of anchors per detection layer),
where 5 corresponds to the predicted bounding box’s center coordinates, width, height,
and confidence score. The final predicted boxes are obtained by applying non-maximum
suppression (NMS) [29] to eliminate redundant detection boxes.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 20

The Neck part of YOLOv5’s feature fusion refers to the Feature Pyramid Network
(FPN) [27] and the Path Aggregation Network (PANet) [28]. The Feature Pyramid Net-
work (FPN) proposes an effective solution, which is to propagate the semantic infor-
mation from deep features to shallow ones and improve the expression of multi-scale fea-
tures’ semantics. PANet is a multi-scale feature fusion method. Based on FPN, PANet in-
troduces a bottom-up pathway that enables both top-down and bottom-up feature fusion
with lateral connections. This enhances the representation of position and semantic infor-
mation at various output levels, thereby optimizing the model’s feature extraction capa-
bility.

The Head section of YOLOv5 serves as the output layer of the object detection model,
responsible for predicting the class and location of objects. For each feature map, the Head
section expands the channel number and uses 1 × 1 convolution to expand the channel
number to (number of classes + 5) × (number of anchors per detection layer), where 5
corresponds to the predicted bounding box’s center coordinates, width, height, and con-
fidence score. The final predicted boxes are obtained by applying non-maximum suppres-
sion (NMS) [29] to eliminate redundant detection boxes.

CBS CBS C3_1 CBS SPFF CBS Unsampling

C3_1_F

Conv

CBS Unsampling

C3_1_F

CBS

Conv

C3_1_F

CBS

Conv

C3_1_F

CBS C3_1CBS C3_3C3_2

Con
cat

Con
cat

Con
cat

CBS = Conv SiLUBN

Bottlenck = CBS*2

Bottlenck_F = CBS*2

=C3_x CBS

CBS

Bottlenck*x Concat CBS

=C3_x_F CBS

CBS

Concat CBSBottlenck_F*x

Input
640×640×3 Backbone Neck

= CBSSPFF MaxPool MaxPool MaxPool Con
cat CBS

Output
80×80×255

Output
40×40×255

Output
20×20×255

Con
cat

Detect

Figure 3. The structure of YOLOv5: Backbone, Neck, and Head components.

3.2. Improved YOLOv5
During the transportation of crayfish on a conveyor belt, it is difficult to pay attention

to their size and maturity. Moreover, the inter-class variation [30] between crayfish is not
significant. The YOLOv5 model is improved in this paper to propose a fast and accurate
method to object detection. The specific method of this paper is as follows. Firstly, we
reduce the number of modules in the Backbone and introduce the Bottleneck transformer
structure, which not only makes the algorithm more lightweight, but also improves its
accuracy and generalization performance. Secondly, we introduce the Bottleneck trans-
former structure into the head of the Neck to better handle the scale of feature maps, fuse
more feature information, and solve the problem of small inter-class variation. Thirdly,
we embed a Coordinate Attention (CA) mechanism within the Backbone structure to en-
hance channel and position information, and improve the feature extraction capability of
Backbone. Figure 4 illustrates the improved YOLOv5 network.

Figure 3. The structure of YOLOv5: Backbone, Neck, and Head components.

3.2. Improved YOLOv5

During the transportation of crayfish on a conveyor belt, it is difficult to pay attention
to their size and maturity. Moreover, the inter-class variation [30] between crayfish is not
significant. The YOLOv5 model is improved in this paper to propose a fast and accurate
method to object detection. The specific method of this paper is as follows. Firstly, we
reduce the number of modules in the Backbone and introduce the Bottleneck transformer
structure, which not only makes the algorithm more lightweight, but also improves its
accuracy and generalization performance. Secondly, we introduce the Bottleneck trans-
former structure into the head of the Neck to better handle the scale of feature maps, fuse
more feature information, and solve the problem of small inter-class variation. Thirdly,
we embed a Coordinate Attention (CA) mechanism within the Backbone structure to en-
hance channel and position information, and improve the feature extraction capability of
Backbone. Figure 4 illustrates the improved YOLOv5 network.

Appl. Sci. 2023, 13, 8619 7 of 20Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 20

CBS

CBS

CBS

Unsampling

C3_1_F

C3Bot_3

Con
cat

C3_1

CA

CA

CBS

C3_2

CBS

C3_3

CA

CBS

SPFF

CBS

C3Bot_1

Unsampling

Con
cat C3_1_F Conv

CBS

Con
cat

C3_1_F

CBS

Con
cat

C3_1_F Conv

Conv

80×80×255

40×40×255

20×20×255

Input

Backbone Neck Detect

Figure 4. The improved YOLOv5: Lightweight Backbone, Enhanced Neck with Bottleneck Trans-
former, and Coordinate Attention.

3.2.1. Bottleneck Transformers
The Bottleneck Transformers Network (BoTNet) [31] is a hybrid model combining

convolutional and self-attention mechanisms (CNN + Self-Attention). CNN has transla-
tional invariance and locality, while Transformer has a global receptive field. By integrat-
ing CNN and Transformer, the CNN + Transformer architecture leverages the strengths
of both to improve object detection performance. BoTNet utilizes this advantage by re-
placing the 3 × 3 convolutions in the bottleneck of ResNet50 with Multi-Head Self-Atten-
tion (MHSA), as shown in Figure 5.

1×1 Conv 3×3 Conv 1×1 Conv

(a)

1×1 Conv 1×1 Conv

(b)

MHSAInput

Input Output

Output

Figure 5. (a) ResNet Bottleneck; (b) Bottleneck Transformer.

Figure 4. The improved YOLOv5: Lightweight Backbone, Enhanced Neck with Bottleneck Trans-
former, and Coordinate Attention.

3.2.1. Bottleneck Transformers

The Bottleneck Transformers Network (BoTNet) [31] is a hybrid model combining con-
volutional and self-attention mechanisms (CNN + Self-Attention). CNN has translational
invariance and locality, while Transformer has a global receptive field. By integrating CNN
and Transformer, the CNN + Transformer architecture leverages the strengths of both to
improve object detection performance. BoTNet utilizes this advantage by replacing the 3 ×
3 convolutions in the bottleneck of ResNet50 with Multi-Head Self-Attention (MHSA), as
shown in Figure 5.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 20

CBS

CBS

CBS

Unsampling

C3_1_F

C3Bot_3

Con
cat

C3_1

CA

CA

CBS

C3_2

CBS

C3_3

CA

CBS

SPFF

CBS

C3Bot_1

Unsampling

Con
cat C3_1_F Conv

CBS

Con
cat

C3_1_F

CBS

Con
cat

C3_1_F Conv

Conv

80×80×255

40×40×255

20×20×255

Input

Backbone Neck Detect

Figure 4. The improved YOLOv5: Lightweight Backbone, Enhanced Neck with Bottleneck Trans-
former, and Coordinate Attention.

3.2.1. Bottleneck Transformers
The Bottleneck Transformers Network (BoTNet) [31] is a hybrid model combining

convolutional and self-attention mechanisms (CNN + Self-Attention). CNN has transla-
tional invariance and locality, while Transformer has a global receptive field. By integrat-
ing CNN and Transformer, the CNN + Transformer architecture leverages the strengths
of both to improve object detection performance. BoTNet utilizes this advantage by re-
placing the 3 × 3 convolutions in the bottleneck of ResNet50 with Multi-Head Self-Atten-
tion (MHSA), as shown in Figure 5.

1×1 Conv 3×3 Conv 1×1 Conv

(a)

1×1 Conv 1×1 Conv

(b)

MHSAInput

Input Output

Output

Figure 5. (a) ResNet Bottleneck; (b) Bottleneck Transformer. Figure 5. (a) ResNet Bottleneck; (b) Bottleneck Transformer.

Appl. Sci. 2023, 13, 8619 8 of 20

The Multi-Head Self-Attention (MHSA) is a key attention mechanism in BoTNet, as
shown in Figure 6. MHSA takes an input feature matrix of dimensions H × W × d, where
H and W denote the height and width, and d represents a single token’s dimension. The
attention score is qkT + qrT and incorporates the query (q), key (k), and positional encoding
(r) (using relative distance encoding). These vectors are broadcasted to all positions in the
feature map, and then the two d-dimensional vectors corresponding to positions (i, j) are
added element wise to obtain a single (H + W) × d-dimensional vector. This concatenated
vector is then used for element-wise summation and matrix multiplication, followed by
matrix multiplication with query matrix to generate the attention, which is finally obtained
by using SoftMax over the sum of query and key vectors. The BoTNet is embedded into the
Backbone of the object detection model by replacing the last C3 structure in the Backbone
with the BoTNet structure, which improves the baseline and enhances the performance
while keeping the model lightweight.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 20

The Multi-Head Self-Attention (MHSA) is a key attention mechanism in BoTNet, as
shown in Figure 6. MHSA takes an input feature matrix of dimensions H × W × d, where
H and W denote the height and width, and d represents a single token’s dimension. The
attention score is qkT + qrT and incorporates the query (q), key (k), and positional encod-
ing (r) (using relative distance encoding). These vectors are broadcasted to all positions in
the feature map, and then the two d-dimensional vectors corresponding to positions (i, j)
are added element wise to obtain a single (H + W) × d-dimensional vector. This concate-
nated vector is then used for element-wise summation and matrix multiplication, fol-
lowed by matrix multiplication with query matrix to generate the attention, which is fi-
nally obtained by using SoftMax over the sum of query and key vectors. The BoTNet is
embedded into the Backbone of the object detection model by replacing the last C3 struc-
ture in the Backbone with the BoTNet structure, which improves the baseline and en-
hances the performance while keeping the model lightweight.

Rh Rw

Wq:1×1 Wk:1×1 Wv:1×1

Softmax

r q k

qrT qkT

H×1×d 1×W×d

H×W×d

H×W×H×W H×W×H×W

H×W×H×W H×W×d

H×W×d H×W×d

H×W×d

X

Z
H×W×d

Self-Attention Layer

v

Figure 6. MHSA layer utilized in BoT module.

3.2.2. Coordinate Attention
Channel attention has become popular in object detection [32], as seen in SE [33] and

CBAM [34]. While SE attention focuses only on the inter-dependencies between channels,
neglecting the importance of spatial information, and CBAM attention considers local po-
sition information through reducing the input tensor’s channel dimensionality and using
convolution to obtain local information, it falls short in capturing long-range dependen-
cies present in the feature map. Therefore, this paper introduces the Coordinate Attention
(CA) [35], which optimizes the structure of the attention mechanism by incorporating po-
sition information while attending to channel information, directional sensitivity, and po-
sition information. This mechanism not only achieves fast and accurate localization of the
target object but also reduces the model’s complexity. Figure 7 shows the Coordinate At-
tention structure.

In Coordinate Attention, global average pooling is divided into two parallel 1D fea-
ture encodings, which are aggregated horizontally and vertically. This process produces
two independent feature maps that incorporate positional information and capture long-
range dependencies in a direction-sensitive manner. The Coordinate Attention module
comprises two steps. First, embedding coordinates preserves the spatial position infor-
mation while effectively encoding channel relationships and capturing long-term depend-
encies. Then, generating Coordinate Attention captures long-range dependencies and
channel relationships by incorporating the embedded positional information. To achieve

Figure 6. MHSA layer utilized in BoT module.

3.2.2. Coordinate Attention

Channel attention has become popular in object detection [32], as seen in SE [33] and
CBAM [34]. While SE attention focuses only on the inter-dependencies between channels,
neglecting the importance of spatial information, and CBAM attention considers local
position information through reducing the input tensor’s channel dimensionality and using
convolution to obtain local information, it falls short in capturing long-range dependencies
present in the feature map. Therefore, this paper introduces the Coordinate Attention
(CA) [35], which optimizes the structure of the attention mechanism by incorporating
position information while attending to channel information, directional sensitivity, and
position information. This mechanism not only achieves fast and accurate localization of
the target object but also reduces the model’s complexity. Figure 7 shows the Coordinate
Attention structure.

In Coordinate Attention, global average pooling is divided into two parallel 1D feature
encodings, which are aggregated horizontally and vertically. This process produces two
independent feature maps that incorporate positional information and capture long-range
dependencies in a direction-sensitive manner. The Coordinate Attention module comprises
two steps. First, embedding coordinates preserves the spatial position information while
effectively encoding channel relationships and capturing long-term dependencies. Then,
generating Coordinate Attention captures long-range dependencies and channel relation-
ships by incorporating the embedded positional information. To achieve precise positional
information for remote spatial interaction within the attention module, a pair of 1D feature

Appl. Sci. 2023, 13, 8619 9 of 20

encodings are employed. To encode each channel’s information along the horizontal and
vertical coordinates, an (H, 1) or (1, W) pooling kernel is utilized on the given input xc, as
shown in Equation (1). The c-th channel generates an output that possesses a height of h
and a width of ω, which is given by Equations (2) and (3). By aggregating features along
both spatial directions and retaining spatial position information, the Coordinate Attention
module achieves remote spatial interaction and improves the model’s accuracy in locating
objects of interest.

Yc =
1

H × W ∑H
m=1 ∑W

n=1 xc(m, n) (1)

Yh =
1

W ∑
0≤m<W

xc(h, m) (2)

Yw =
1
H ∑

0≤n<H
xc(n, w) (3)

Combining the structure illustrated in Figure 7, in the above equation, the input xc
is obtained directly from a convolutional layer, which employs a fixed kernel size. In the
current attention module, h and ω signify the dimensions of the input feature map, the
size of the pooling kernel is denoted by H and W. Yc, Yh, and Yw correspond to the outputs
related to the c-th channel, where Yh represents the output corresponding to height h and
Yw represents the output corresponding to width ω.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 20

precise positional information for remote spatial interaction within the attention module,
a pair of 1D feature encodings are employed. To encode each channel’s information along
the horizontal and vertical coordinates, an (H, 1) or (1, W) pooling kernel is utilized on the
given input cx , as shown in Equation (1). The c-th channel generates an output that pos-
sesses a height of h and a width of ω, which is given by Equations (2) and (3). By aggre-
gating features along both spatial directions and retaining spatial position information,
the Coordinate Attention module achieves remote spatial interaction and improves the
model’s accuracy in locating objects of interest.

1 1

1 (,)H W
c cm n

xY m n
H W = =

=
×   (1)

0

1 (,)h c
m W

Y x hm
W ≤ <

=  (2)

0

1 (,)w c
n H

Y x n w
H ≤ <

=  (3)

Combining the structure illustrated in Figure 7, in the above equation, the input cx
is obtained directly from a convolutional layer, which employs a fixed kernel size. In the
current attention module, h and ω signify the dimensions of the input feature map, the
size of the pooling kernel is denoted by H and W. cY , hY , and wY correspond to the

outputs related to the c-th channel, where hY represents the output corresponding to

height h and wY represents the output corresponding to width ω.

Figure 7. Coordinate Attention structure: capturing spatial dependencies for enhanced object local-
ization.

After embedding the coordinate information, the two feature maps are combined
through concatenation and the number of channels is reduced by applying compression
with a Conv2d layer. The information regarding spatial relationships in both the horizon-
tal and vertical orientations is encoded, and the results undergo parallel Conv2d layers to
enhance the channel dimensions, followed by the application of a Sigmoid activation func-
tion to introduce nonlinearity, and the final Coordinate Attention is obtained by the mul-
tiplication of the corresponding elements between the attention maps and the input fea-
ture map.

3.3. Accelerating Networks with TensorRT
TensorRT is a high-performance tool focused on optimizing deep learning inference.

It aims to accelerate deep learning applications on various scales of data centers, embed-
ded platforms, and autonomous driving platforms, and supports the majority of main-
stream deep learning frameworks. TensorRT can map network models from these frame-
works to corresponding layers in TensorRT for efficient deployment and inference. It can

Figure 7. Coordinate Attention structure: capturing spatial dependencies for enhanced
object localization.

After embedding the coordinate information, the two feature maps are combined
through concatenation and the number of channels is reduced by applying compression
with a Conv2d layer. The information regarding spatial relationships in both the horizontal
and vertical orientations is encoded, and the results undergo parallel Conv2d layers to
enhance the channel dimensions, followed by the application of a Sigmoid activation
function to introduce nonlinearity, and the final Coordinate Attention is obtained by the
multiplication of the corresponding elements between the attention maps and the input
feature map.

3.3. Accelerating Networks with TensorRT

TensorRT is a high-performance tool focused on optimizing deep learning inference. It
aims to accelerate deep learning applications on various scales of data centers, embedded
platforms, and autonomous driving platforms, and supports the majority of mainstream
deep learning frameworks. TensorRT can map network models from these frameworks
to corresponding layers in TensorRT for efficient deployment and inference. It can also
convert models from other frameworks into TensorRT models and utilize NVIDIA GPUs
for optimization and acceleration. TensorRT is partitioned into two stages: compilation and
deployment. The flowchart of TensorRT is shown in Figure 8. Batch input data are inferred
through the plan file. Specifically, the enhanced YOLOv5 model (.pt) is first converted into a
model format (.wts) using Python, facilitating efficient storage and utilization. Subsequently,
the CMake command is executed with tensorrtx as the input, resulting in the generation
of a serializable file compatible with Visual Studio. The generated project is then built

Appl. Sci. 2023, 13, 8619 10 of 20

to produce an executable file (.exe). Additionally, the (.wts) model is converted into the
(.engine) format using C language, which can be read by TensorRT. Regarding the model
deployment, a detection file is created within the generated project, encompassing model
construction, initialization, inference, and output processes. This optimized and deployed
model showcases a high-performance integration, utilizing a serializable plan file to achieve
advanced accuracy and speed.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 20

also convert models from other frameworks into TensorRT models and utilize NVIDIA
GPUs for optimization and acceleration. TensorRT is partitioned into two stages: compi-
lation and deployment. The flowchart of TensorRT is shown in Figure 8. Batch input data
are inferred through the plan file. Specifically, the enhanced YOLOv5 model (.pt) is first
converted into a model format (.wts) using Python, facilitating efficient storage and utili-
zation. Subsequently, the CMake command is executed with tensorrtx as the input, result-
ing in the generation of a serializable file compatible with Visual Studio. The generated
project is then built to produce an executable file (.exe). Additionally, the (.wts) model is
converted into the (.engine) format using C language, which can be read by TensorRT.
Regarding the model deployment, a detection file is created within the generated project,
encompassing model construction, initialization, inference, and output processes. This
optimized and deployed model showcases a high-performance integration, utilizing a se-
rializable plan file to achieve advanced accuracy and speed.

Create Builder Build NetworkStart

Build cuda engine

Build wts

InferenceReturn DataEnd

Figure 8. the process of TensorRT.

TensorRT applies several optimization strategies to reduce computation and memory
usage. The optimization strategies of TensorRT are shown in Figure 9, where the Inception
structure represents the original network. Firstly, it eliminates unused layers and opera-
tions that are equivalent to no-op. Secondly, it supports fusion of convolutional layers,
biases, and ReLU operations to further reduce memory usage and data transfer. Vertical
op-timization was performed compared to the Inception structure by incorporating fusion
optimization of Conv + Bias + ReLU operations. Thirdly, it aggregates operations with
similar parameters and target tensors to further reduce computation and memory usage.
Horizontal optimization was conducted relative to vertical fusion by consolidating all 1 ×
1 Conv + Bias + ReLU (CBR) operations into a single large CBR module. Finally, it can
directly route the output to the correct final destination to merge concatenation layers. In
comparison to horizontal fusion, the concatenation layer was directly eliminated, enabling
the direct transmission of inputs from the concatenation layer to the next input. This re-
duction eliminated one transfer throughput and improved overall efficiency.

Figure 8. The process of TensorRT.

TensorRT applies several optimization strategies to reduce computation and memory
usage. The optimization strategies of TensorRT are shown in Figure 9, where the Inception
structure represents the original network. Firstly, it eliminates unused layers and opera-
tions that are equivalent to no-op. Secondly, it supports fusion of convolutional layers,
biases, and ReLU operations to further reduce memory usage and data transfer. Vertical
op-timization was performed compared to the Inception structure by incorporating fusion
optimization of Conv + Bias + ReLU operations. Thirdly, it aggregates operations with
similar parameters and target tensors to further reduce computation and memory usage.
Horizontal optimization was conducted relative to vertical fusion by consolidating all 1
× 1 Conv + Bias + ReLU (CBR) operations into a single large CBR module. Finally, it can
directly route the output to the correct final destination to merge concatenation layers. In
comparison to horizontal fusion, the concatenation layer was directly eliminated, enabling
the direct transmission of inputs from the concatenation layer to the next input. This
reduction eliminated one transfer throughput and improved overall efficiency.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 20

Concat

Input

1×1 Conv

3×3 Conv

Bias

ReLU

Bias
ReLU

3×3 Conv

Bias

ReLU

1×1 Conv

Bias

ReLU

1×1 Conv

Bias

ReLU

Max Pool

Concat

Next Input

1×1 Conv
Bias

ReLU

Inception structure

Concat

Input

1×1 CBR

5×5 CBR3×3 CBR1×1 CBR 1×1 CBR

Max Pool

Concat

Next Input

1×1 CBR

Vertical fusion

Input

1×1 CBR

5×5 CBR3×3 CBR 1×1 CBR

Max Pool

Next Input

TensorRT optimized Network

Concat

Input

1×1 CBR

5×5 CBR3×3 CBR 1×1 CBR

Max Pool

Concat

Next Input

Horizontal fusion

Figure 9. Optimization strategies of TensorRT.

4. Results and Analysis
4.1. Experimental platform

The experimental platform is based on Windows, Python 3.9, and PyTorch 1.13.1
deep learning frameworks. The hardware setup in the study consists of an octa-core Intel
Core i7-10700 processor running at 2.90 GHz, 16 GB of RAM, a 240 GB solid-state drive,
and a 16 GB NVIDIA RTX A4000 GPU. The experiment was developed using Microsoft
Visual Studio 2017, with CuDNN version 8.3.3, CUDA version 11.7, TensorRT version
8.5.1.7, Opencv Dnn 4.5.5, Openvino 2022.1.0, and Onnxruntime-1.9.0. Table 2 presents the
model parameters.

Figure 9. Cont.

Appl. Sci. 2023, 13, 8619 11 of 20

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 20

Concat

Input

1×1 Conv

3×3 Conv

Bias

ReLU

Bias
ReLU

3×3 Conv

Bias

ReLU

1×1 Conv

Bias

ReLU

1×1 Conv

Bias

ReLU

Max Pool

Concat

Next Input

1×1 Conv
Bias

ReLU

Inception structure

Concat

Input

1×1 CBR

5×5 CBR3×3 CBR1×1 CBR 1×1 CBR

Max Pool

Concat

Next Input

1×1 CBR

Vertical fusion

Input

1×1 CBR

5×5 CBR3×3 CBR 1×1 CBR

Max Pool

Next Input

TensorRT optimized Network

Concat

Input

1×1 CBR

5×5 CBR3×3 CBR 1×1 CBR

Max Pool

Concat

Next Input

Horizontal fusion

Figure 9. Optimization strategies of TensorRT.

4. Results and Analysis
4.1. Experimental platform

The experimental platform is based on Windows, Python 3.9, and PyTorch 1.13.1
deep learning frameworks. The hardware setup in the study consists of an octa-core Intel
Core i7-10700 processor running at 2.90 GHz, 16 GB of RAM, a 240 GB solid-state drive,
and a 16 GB NVIDIA RTX A4000 GPU. The experiment was developed using Microsoft
Visual Studio 2017, with CuDNN version 8.3.3, CUDA version 11.7, TensorRT version
8.5.1.7, Opencv Dnn 4.5.5, Openvino 2022.1.0, and Onnxruntime-1.9.0. Table 2 presents the
model parameters.

Figure 9. Optimization strategies of TensorRT.

4. Results and Analysis
4.1. Experimental Platform

The experimental platform is based on Windows, Python 3.9, and PyTorch 1.13.1
deep learning frameworks. The hardware setup in the study consists of an octa-core Intel
Core i7-10700 processor running at 2.90 GHz, 16 GB of RAM, a 240 GB solid-state drive,
and a 16 GB NVIDIA RTX A4000 GPU. The experiment was developed using Microsoft
Visual Studio 2017, with CuDNN version 8.3.3, CUDA version 11.7, TensorRT version
8.5.1.7, Opencv Dnn 4.5.5, Openvino 2022.1.0, and Onnxruntime-1.9.0. Table 2 presents the
model parameters.

Table 2. Model training parameter settings.

Parameter Value

Batch Size 64
Image size 640 × 640

Epochs 300
Momentum 0.937
Optimizer SGD

Initial learning rate 0.01
Final learning rate 0.1

4.2. Evaluation Metrics

To validate the effectiveness of the presented model, we employed the following eval-
uation metrics: precision (P), recall (R), model size, and mean average precision (mAP) [36].
The formulas are presented below:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

AP =
∫ 1

0
Max(P(k))dk (6)

Appl. Sci. 2023, 13, 8619 12 of 20

mAP =
1
m ∑ AP(j) (7)

In the above equation, TP, FP, and FN signify the quantity of true positives, false
positives, and false negatives, respectively. Max(p(k)) represents the maximum precision
value at point k, m represents the quantity of categories in the test set, and AP(j) represents
the average precision of the j-th category.

Accuracy and recall are the most basic metrics for evaluating the performance of object
detection algorithms. Accuracy denotes the correct identification rate for positive samples
among all detected positives, while recall indicates the accurate detection rate for positive
samples among all true positives. In object detection, positive samples refer to detected
targets. Model size is usually used to measure the complexity and deploy the ability of
algorithms. Detection speed is defined as the processing time of the algorithm for the
input image. To evaluate the comprehensive performance of the model across diverse
categories, the mean average precision (mAP) metric is utilized. It represents the average
of the AP for each category, where AP is determined by analyzing the area under the
precision–recall curve, which is obtained by ordering all detection results according to their
confidence scores.

4.3. Experimental Analysis

To validate the feasibility of our proposed algorithm, we tested it on 734 test images
of crayfish, and Table 3 shows the results. The precision and recall of our algorithm are
95.6% and 98.1%, respectively, with a mAP of 98.8%, a detection speed of 70.9 f/s, and
a parameter size of 13.9 MB. Our algorithm possesses an accuracy of 95.6% and a recall
rate of 98.1%, with an mAP of 98.8% and a parameter size measuring 13.9 MB, achieving a
detection speed of 70.9 f/s.

Table 3. The results of the proposed algorithm.

Precision (%) Recall (%) mAP (%) Detection (f/s) Speed Parameters/MB

Test results 95.6 98.1 98.8 70.9 13.9

Figure 10 illustrates the comparison of loss between our algorithm and YOLOv5
on the validation set. Based on the experimental findings, it was found that YOLOv5
had a lower loss function than our proposed model before epoch 169. However, after
epoch 169, the loss function of our algorithm continued to decrease while that of YOLOv5
remained nearly constant. This indicates that our proposed algorithm exhibited better
convergence performance, generalization ability, and model representation capacity. Based
on the experimental results of this study, we successfully developed a high-performance
crayfish sorting model that is highly accurate and has a fast detection speed. This model
demonstrated excellent performance in the task of crayfish detection, accurately identifying
the size and maturity of crayfish in the input images.

4.3.1. Comparative Analysis of Speed and Accuracy of Different Variants of YOLOv5

Different variants of YOLOv5 (YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5n) repre-
sent models of different sizes and complexities. These variants offer a trade-off between
speed and accuracy to accommodate varying computational capabilities and real-time
requirements. In consideration of the quantity and distribution of the crayfish dataset, the
selection process involved choosing the YOLOv5s model as the basis for our study, which
was subsequently improved. To assess the feasibility of our chosen approach to improve
the YOLOv5s model, we conducted comparative experiments among different variants of
YOLOv5, as detailed in Table 4, where the optimal values is shown in bold.

Appl. Sci. 2023, 13, 8619 13 of 20

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 20

Table 3. The results of the proposed algorithm.

 Precision (%) Recall (%) mAP (%) Detection (f/s) Speed Parameters/MB
Test results 95.6 98.1 98.8 70.9 13.9

Figure 10 illustrates the comparison of loss between our algorithm and YOLOv5 on
the validation set. Based on the experimental findings, it was found that YOLOv5 had a
lower loss function than our proposed model before epoch 169. However, after epoch 169,
the loss function of our algorithm continued to decrease while that of YOLOv5 remained
nearly constant. This indicates that our proposed algorithm exhibited better convergence
performance, generalization ability, and model representation capacity. Based on the ex-
perimental results of this study, we successfully developed a high-performance crayfish
sorting model that is highly accurate and has a fast detection speed. This model demon-
strated excellent performance in the task of crayfish detection, accurately identifying the
size and maturity of crayfish in the input images.

Figure 10. Comparison of loss between the improved model in this paper and the YOLOv5 model.

4.3.1. Comparative Analysis of Speed and Accuracy of Different Variants of YOLOv5
Different variants of YOLOv5 (YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5n) repre-

sent models of different sizes and complexities. These variants offer a trade-off between
speed and accuracy to accommodate varying computational capabilities and real-time re-
quirements. In consideration of the quantity and distribution of the crayfish dataset, the
selection process involved choosing the YOLOv5s model as the basis for our study, which
was subsequently improved. To assess the feasibility of our chosen approach to improve
the YOLOv5s model, we conducted comparative experiments among different variants of
YOLOv5, as detailed in Table 4, where the optimal values is shown in bold.

Based on the experimental results, it was found that the YOLOv5n model possesses
the fewest parameters and FLOPs compared to other variants of YOLOv5. It demonstrates
the highest processing speed for crayfish among the different model variations of
YOLOv5. However, its precision, recall, and mean average precision (mAP) are lower

Figure 10. Comparison of loss between the improved model in this paper and the YOLOv5 model.

Based on the experimental results, it was found that the YOLOv5n model possesses
the fewest parameters and FLOPs compared to other variants of YOLOv5. It demonstrates
the highest processing speed for crayfish among the different model variations of YOLOv5.
However, its precision, recall, and mean average precision (mAP) are lower compared
to other algorithm groups. On the other hand, YOLOv5m and YOLOv5l demonstrate
slightly higher precision, recall, and mAP. However, due to their significantly larger pa-
rameter count compared to YOLOv5n and our proposed model, their processing speed is
considerably slower. Thus, we believe they are not suitable for the crayfish dataset. After
comprehensive evaluation, we conclude that making improvements based on the YOLOv5s
model better meets the processing requirements for crayfish.

Table 4. Comparative analysis of speed and accuracy of different variants of YOLOv5.

Model Precision (%) Recall (%) mAP (%) The Processing Time
per Image/ms

Parameters
/106

FLOPs
/109

YOLOv5n 92.9 92.2 96.9 8.8 1.769989 4.2
YOLOv5m 94.9 95.8 97.4 17.9 20.899605 48.3
YOLOv5l 95.5 95.9 97.9 23.6 46.175989 108.3
Proposed 95.6 98.1 98.8 14.1 6.930653 15.7

4.3.2. Comparative Analysis of Speed and Accuracy of Different Object
Detection Algorithms

Among the currently popular object detection algorithms, SSD stands out for its high
speed, although it may lack precision in detection. Faster R-CNN demonstrates strong
versatility but compromises accuracy due to the use of original RoI pooling with double
rounding. On the other hand, Centernet achieves faster speeds by employing fewer anchors,
but this reduction in anchor quantity can lead to a decrease in accuracy. The YOLO series,
on the other hand, has gained widespread acclaim for its high accuracy and fast detection
speed. In order to further demonstrate the superiority of our proposed algorithm in terms
of crayfish recognition, we conducted qualitative and quantitative comparisons between
our algorithm and eight other commonly used object detection algorithms, encompassing

Appl. Sci. 2023, 13, 8619 14 of 20

SSD, Faster R-CNN, Centernet, Yolov4, Yolov5-6.0, YOLOv5-7.0, YOLOx, and YOLOv8.
Consistent datasets and experimental platforms were utilized for the training and validation
of all algorithms.

Figure 11 illustrates that qualitative analysis was performed on nine different object
detection algorithms, encompassing SSD, Faster R-CNN, Centernet, Yolov4, Yolov5-6.0,
YOLOv5-7.0, YOLOx, YOLOv8, and ours. Eight random images were selected, corre-
sponding to the categories of green_small, green_medium, green_large, green_extralarge,
red_small, red_medium, red_large, and red_extralarge. The confidence threshold of 0.5 and
an IoU threshold of 0.45 were set. Figure 11 reveals the generation of false positives by the
SSD algorithm, selecting a box for the blank space of the red_small category. Fast R-CNN
exhibited poor performance, producing two predicted boxes for the red_small category,
one of which was misclassified as green_small, resulting in low accuracy. The YOLOv4
algorithm demonstrated weak detection ability for small targets, missing the prediction
box for the green_medium category. The Centernet algorithm showed poor robustness,
missing the prediction box for the green_extralarge category. The YOLOv5 series, YOLOx,
as well as YOLOv8, have demonstrated stable and accurate performance in predicting and
testing images. This further validates the superior accuracy and robustness exhibited by
the YOLO series, enabling it to reliably and accurately output results for crayfish of varying
sizes and maturity levels.

As shown in Table 5, a quantitative comparison was made between these nine object
detection algorithms in terms of their precision, recall, mAP, model size, and processing
time per image. The algorithm proposed in this paper has the fastest detection speed
among all algorithms, except for SSD. SSD was 6% faster than the algorithm presented in
this paper, with a processing time per image that was 0.9 ms faster, but the mAP results
demonstrated a notable 12% superiority of the proposed algorithm over SSD, and the
detection speed also met the real-time requirements for crayfish detection. Therefore, while
ensuring detection speed, the algorithm presented in this paper achieved the highest mAP
for crayfish detection. YOLOv5-7.0 and YOLOv8 are currently considered to be highly
outstanding object detection algorithms; in comparison to the algorithm proposed in this
paper, they exhibit an improvement in accuracy by 0.3% and 0.9%, respectively. However,
in terms of recall, mAP, model size, and speed, their performance falls short of the algorithm
proposed in this study. Compared with the eight different object detection algorithms (SSD,
Faster R-CNN, Centernet, YOLOv4„ YOLOv5-6.0, YOLOv5-7.0, YOLOx, and YOLOv8), the
mAP of the presented algorithm was higher by 12.4%, 35.5%, 37%, 61.2%, 1.7%, 0.6%, 1.5%,
and 0.5%.

This demonstrates the outstanding capabilities of the algorithm proposed for crayfish
detection in terms of both speed and accuracy. In contrast to other object detection algo-
rithms, the algorithm proposed in this study exhibited outstanding performance in both
detection accuracy and robustness. This means that the proposed algorithm accomplishes
the rapid and accurate detection of crayfish for different sizes and maturities, further
improving the accuracy and efficiency of crayfish detection.

Table 5. Comparison between the proposed algorithm and other object detection algorithms.

Model Precision (%) Recall (%) mAP (%) Model Size (MB) The Processing Time
per Image/ms

SSD 84.5 89.2 88.0 94.1 13.2
Faster R-CNN 57.0 82.2 72.9 108 81.0

Centernet 82.5 58.0 72.1 124 14.5

YOLOv4 66.8 62.5 61.3 244 32.1
YOLOv5-6.0 94.6 94.2 97.1 14.0 15.9
YOLOv5-7.0 95.9 96.1 98.2 14.4 19.8

YOLOx 94.8 96.6 97.3 35.1 18.7
YOLOv8 96.5 96.1 98.3 22.0 17.5
Proposed 95.6 98.1 98.8 13.9 14.1

Appl. Sci. 2023, 13, 8619 15 of 20
Version July 26, 2023 submitted to Journal Not Specified 3 of 8

ImageA

ImageB

ImageC

ImageD

ImageE

ImageF

ImageG

ImageH

1. SSD 2. Faster R-CNN 3. Centernet 4. YOLOv4

Figure 11. Cont.

Appl. Sci. 2023, 13, 8619 16 of 20
Version July 26, 2023 submitted to Journal Not Specified 4 of 8

ImageA

ImageB

ImageC

ImageD

ImageE

ImageF

ImageG

ImageH

5. YOLOv5-6.0 6. YOLOv5-7.0 7. YOLOx 8. YOLOv8 9. Proposed

Figure 11. Qualitative analysis of results from various object detection algorithms.

4.3.3. Ablation Experiments: Comparing Speed and Analyzing Accuracy of the Algorithm

To further demonstrate the superiority of our proposed algorithm, ablation experi-
ments were conducted using four different network configurations on the same crayfish
dataset for testing. Table 6 displays the outcomes of the ablation experiments, with the
most optimal results being indicated in bold font.

Appl. Sci. 2023, 13, 8619 17 of 20

Table 6. Ablation experiments: comparing speed and analyzing accuracy of the algorithm.

No. Model Precision (%) Recall (%) mAP (%) The Processing
Time per Image/ms

Parameters
/106

FLOPs
/109

1 YOLOv5 94.6 94.2 97.1 15.9 7.041205 16.0
2 YOLOv5 + BoTNet 95.5 96.8 98.5 17.6 6.714037 15.5
3 YOLOv5 + CA 95.3 97.1 98.3 13.1 5.876165 14.9
4 Proposed 95.6 98.1 98.8 14.1 6.930653 15.7

Since the final C3 module in the YOLOv5 model Backbone is substituted in our
algorithm, with the goal of guaranteeing the accuracy of the ablation experiments, the
introduced modules in the experimental groups 2, 3, and 4 were all replaced with the last
C3 module in the Backbone. The parameters and FLOPs in the three experimental groups
of the ablation experiment were smaller than those in the YOLOv5 model, thus proving that
our algorithm has a lightweight effect. Table 6 shows that the precision, recall, and mAP of
experimental groups 2 and 3 are higher than those of experimental group 1. Experimental
group 2 took 2.1 ms longer to process a single image than experimental group 1, indicating
that BoTNet can weaken useless features effectively and improve network performance.
Group 3 had a processing time 2.8 ms shorter than group 1, demonstrating that replacing
the last C3 module with a CA module could reduce network parameters and computational
complexity while maintaining accuracy. Our algorithm outperforms other groups in terms
of precision, recall, and mAP, with precision, recall, and mAP values surpassing those of
YOLOv5 by 1%, 4%, and 1.8%, respectively, and the parameters and FLOPs are higher than
those of YOLOv5. In summary, through the conducted ablation experiments, our algorithm
not only achieves a significant improvement in detection accuracy but also ensures efficient
detection speed.

4.3.4. TensorRT Deployment

To deploy the YOLOv5 model with TensorRT acceleration, first we needed to generate
the .wts file from the .pt file trained with YOLOv5. Then, we compiled the C code in Visual
Studio to generate the .dll file and the YOLOv5.exe file, which was used to generate the
.engine file. Finally, we packaged the .engine file and .dll file to successfully deploy it
using Visual Studio. Common deployment tools such as Opencv Dnn, Openvino, and
Onnxruntime were also used to validate the superiority of TensorRT deployment.

Common deployment tools for object detection models include Opencv Dnn, Open-
vino, and Onnxruntime. To validate the excellence of TensorRT deployment, the improved
YOLOv5 model was deployed on Visual Studio using these tools. Opencv Dnn and On-
nxruntime were run on a GPU, while Openvino was run on a CPU. Table 7 shows the
processing time for a single image.

Table 7. Different performance of the improved YOLOv5 model on various deployment tools.

Tool The Processing Time per Image/ms

Opencv Dnn-GPU 322
Openvino-CPU 83

Onnxruntime-GPU 343
TensorRT-GPU 2~3

To validate the negligible impact of TensorRT deployment on accuracy, the study
conducted tests using the eight test images from the previous object detection comparison
experiments, as shown in Figure 12. The result revealed that the accuracy of the algorithm
was not affected by TensorRT acceleration. It remained capable of accurately detecting and
classifying crayfish, with an average processing speed of 3 ms per image, and a fastest speed
of 2 ms per image. Therefore, the application of TensorRT for model deployment results in a
marked decrease in computational complexity and greatly improves its inference speed and

Appl. Sci. 2023, 13, 8619 18 of 20

performance while ensuring computational accuracy. This approach meets the real-time
detection requirements for crayfish.

Version July 26, 2023 submitted to Journal Not Specified 5 of 8

Figure 12. Test images for TensorRT deployment.

4.4. Discussion

The proposed algorithm in this paper not only aims for accuracy but also for speed.
This study is focused on improving the accuracy and speed of object detection algorithms.
To achieve this goal, we compared the loss function of our improved algorithm with that of
YOLOv5’s, as well as compared our algorithm with various object detection algorithms
in terms of both qualitative and quantitative aspects. Moreover, we conducted ablation
experiments on the YOLOv5 network to compare with our proposed algorithm and validate
its high precision and robustness. It is evident from the experiments that the algorithm
exhibits a high precision and robustness in detecting crayfish with different sizes and
maturity levels. In terms of speed, we converted the .pt file generated by the improved
algorithm to a .wts file, compiled it with C language to generate a YOLOv5.exe, and used it
to generate an .engine file. This file, together with the .dll file, was encapsulated to deploy
with TensorRT. This approach significantly outperforms other deployment tools in terms of
speed, while ensuring detection accuracy, thus achieving the high accuracy and real-time
detection demands for small-sized crayfish.

5. Conclusions

Traditional methods for crayfish classification typically rely on manual sorting, in
which workers judge the morphology of each individual crayfish and assign it to the
corresponding species category. However, due to the influence of environmental factors
and individual differences, this classification method is subject to certain uncertainties and
subjectivity. Moreover, manual classification requires a significant amount of time and labor,
is inefficient, and can easily damage live crayfish, affecting their marketability. Therefore,
to achieve higher accuracy and efficiency in crayfish classification, we introduce a rapid
selection method for crayfish maturity and size based on an improved YOLOv5 model.
This improvement primarily involves introducing Bottleneck Transformers and Coordinate
Attention to optimize the detection accuracy and robustness of the model within YOLOv5.
Additionally, the application of TensorRT for model deployment results in a marked
decrease in computational complexity and achieves faster speeds. It can be observed
from the experimental results that our YOLOv5 algorithm achieves an mAP of 98.8%
after improvements, with strong convergence and generalization capabilities and high
accuracy compared to five different object detection algorithms (SSD, Yolov4, Faster R-CNN,

Appl. Sci. 2023, 13, 8619 19 of 20

Centernet, Yolov5). Furthermore, after deployment on TensorRT, our algorithm model
achieves detection speeds of 2 ms, enabling the rapid and high-accuracy, real-time detection
of crayfish. Our method has a high-engineering application value, strong universality, and
scalability, making it suitable for the classification of other marine organisms.

Author Contributions: Conceptualization, X.Y. and Y.L.; methodology, Y.L.; software, Y.L.; project
administration, X.Y.; visualization, Y.L. and D.Z.; validation, D.Z., Y.L. and X.Y.; formal analysis, D.Z.,
Y.L. and X.Y.; investigation, X.H.; writing—original draft preparation, X.Y. and Y.L.; writing—review
and editing, Y.L. and X.Y.; resources, Y.L. and X.H.; data curation, Y.L. and Z.H.; visualization, Y.L.,
Y.C. and Z.H.; supervision, D.Z. and X.Y. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China
(No. 52075152), the Hubei Province Key R&D Program of China (No. 2022BBA0016), the Hubei
Province agricultural machinery equipment reinforcement board core technology application project
(HBSNYT202221).

Data Availability Statement: The dataset utilized in this study can be acquired from the correspond-
ing author upon a reasonable inquiry.

Acknowledgments: We would like to thank Hubei University of Technology for providing us with a
good experimental platform. We also appreciate the support of the National Natural Science Founda-
tion of China (No. 52075152), the Hubei Province Key R&D Program of China (No. 2022BBA0016),
and the Hubei Province agricultural machinery equipment reinforcement board core technology
application project (HBSNYT202221). Co-first author YuXiang Liu would like to express his gratitude
to his teachers and friends for their careful guidance, as well as to his family for their unwavering
support, encouragement, and never-give-up attitude.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. China Crayfish Industry Development Report; China Fishery News; China Fisheries Association: Beijing, China, 2022. (In Chinese)
2. Wang, Y.; Dan, X.; Li, J.; Wu, S.; Yang, L. Multi-Perspective Digital Image Correlation Method Using a Single Color Camera. Sci.

China Technol. Sci. 2018, 61, 61–67. [CrossRef]
3. Deep Learning for Visual Understanding: A Review-ScienceDirect. Available online: https://www.sciencedirect.com/sc-ience/

article/abs/pii/S0925231215017634 (accessed on 20 April 2023).
4. Shankar, R.S.; Srinivas, L.V.; Neelima, P.; Mahesh, G. A Framework to Enhance Object Detection Performance by Using YOLO

Algo-rithm. In Proceedings of the 2022 International Conference on Sustainable Computing and Data Communication Systems
(ICSCDS), Erode, India, 7–9 April 2022; pp. 1591–1600.

5. Cha, Y.-J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous Structural Visual Inspection Using R-egion-Based
Deep Learning for Detecting Multiple Damage Types: Autonomous SHM Using Deep Faster R-CNN. Co-Mputer-Aided Civil.
Infrastruct. Eng. 2018, 33, 731–747. [CrossRef]

6. Optimization of Plane Image Color Enhancement Based on Computer Vision. Available online: https://www.hindawi.c-om/
journals/wcmc/2022/3463222/ (accessed on 19 April 2023).

7. Nyalala, I.; Okinda, C.; Kunjie, C.; Korohou, T.; Nyalala, L.; Chao, Q. Weight and Volume Estimation of Poultry and Products
Based on Computer Vision Systems: A Review. Poult. Sci. 2021, 100, 101072. [CrossRef] [PubMed]

8. Palacios, F.; Melo-Pinto, P.; Diago, M.P.; Tardaguila, J. Deep Learning and Computer Vision for Assessing the Numb-er of Actual
Berries in Commercial Vineyards. Biosyst. Eng. 2022, 218, 175–188. [CrossRef]

9. Ahmad Sobri, M.Z.; Redhwan, A.; Ameen, F.; Lim, J.W.; Liew, C.S.; Mong, G.R.; Daud, H.; Sokkalingam, R.; Ho, C.-D.; Usman,
A.; et al. A Review Unveiling Various Machine Learning Algorithms Adopted for Biohydrogen Productions from Microalgae.
Fermentation 2023, 9, 243. [CrossRef]

10. Ma, G.; Tian, Y.; Li, X. Application of K-Means Clustering Algorithm in Colour Image Segmentation of Grouper in SEAWATER
Background. Comput. Appl. Sand Softw. 2016, 33, 192–195. (In Chinese)

11. Kesvarakul, R.; Chianrabutra, C.; Chianrabutra, S. Baby Shrimp Counting via Automated Image Processing. In Proceedings of
the 9th International Conference on Machine Learning and Computing, Singapore, 24–26 February 2017; ACM: Singapore, 2017;
pp. 352–356.

12. Hernández-Ontiveros, J.M.; Inzunza-González, E.; García-Guerrero, E.E.; López-Bonilla, O.R.; Infante-Prieto, S.O.; Cárdenas-
Valdez, J.R.; Tlelo-Cuautle, E. Development and Implementation of a Fish Counter by Using an Embedded System. Comput.
Electron. Agric. 2018, 145, 53–62. [CrossRef]

https://doi.org/10.1007/s11431-017-9101-8
https://www.sciencedirect.com/sc-ience/article/abs/pii/S0925231215017634
https://www.sciencedirect.com/sc-ience/article/abs/pii/S0925231215017634
https://doi.org/10.1111/mice.12334
https://www.hindawi.c-om/journals/wcmc/2022/3463222/
https://www.hindawi.c-om/journals/wcmc/2022/3463222/
https://doi.org/10.1016/j.psj.2021.101072
https://www.ncbi.nlm.nih.gov/pubmed/33752071
https://doi.org/10.1016/j.biosystemseng.2022.04.015
https://doi.org/10.3390/fermentation9030243
https://doi.org/10.1016/j.compag.2017.12.023

Appl. Sci. 2023, 13, 8619 20 of 20

13. Zhu, P.; Zhang, Y.; Chou, Y.; Gu, Y. Recognition of the Storage Life of Mitten Crab by a Machine Olfactory System with Deep
Learning. J. Food Process Eng. 2019, 42, e13095. [CrossRef]

14. Puig-Pons, V.; Muñoz-Benavent, P.; Espinosa, V.; Andreu-García, G.; Valiente-González, J.M.; Estruch, V.D.; Ordóñez, P.; Pérez-
Arjona, I.; Atienza, V.; Mèlich, B.; et al. Automatic Bluefin Tuna (Thunnus Thynnus) Biomass Estimation during Transfers Using
Acoustic and Computer Vision Techniques. Aquac. Eng. 2019, 85, 22–31. [CrossRef]

15. Zhang, Y.; Zhang, F.; Cheng, J.; Zhao, H. Classification and Recognition of Fish Farming by Extraction New Features to Control
the Economic Aquatic Product. Complexity 2021, 2021, 5530453. [CrossRef]

16. Mathis, M.W.; Mathis, A. Deep Learning Tools for the Measurement of Animal Behavior in Neuroscience. Curr. Opin. Neurobiol.
2020, 60, 1–11. [CrossRef]

17. Wang, F.; Zhou, Y.; Yan, H.; Luo, R. Enhancing the Generalization Ability of Deep Learning Model for Radio Signal Modulation
Recognition. Appl. Intell. 2023, 53, 18758–18774. [CrossRef]

18. Li, Y.; Huang, K.; Xiang, J. Measurement of dynamic fish dimension based on stereoscopic vision. Trans. Chin. Soc. Agric. Eng.
2020, 36, 220–226. (In Chinese)

19. Sun, L.; Sun, X.; Wu, Y.; Luo, B. Multi-target Fish Detection Model Based on DRN Faster-R-CNN in Complex Background. Trans.
Chin. Soc. Agric. Mach. 2021, 52, 245–251+315. (In Chinese)

20. Xu, J.; Dou, Y.; Zheng, Y. Underwater target recognition and tracking method based on YOLO-V3 algorithm. J. Chin. Inert. Technol.
2020, 28, 129–133. (In Chinese) [CrossRef]

21. Wageeh, Y.; Mohamed, H.E.-D.; Fadl, A.; Anas, O.; ElMasry, N.; Nabil, A.; Atia, A. YOLO Fish Detection with Euclidean Tracking
in Fish Farms. J. Ambient. Intell. Human. Comput. 2021, 12, 5–12. [CrossRef]

22. Hu, K.; Lu, F.; Lu, M.; Deng, Z.; Liu, Y. A Marine Object Detection Algorithm Based on SSD and Feature Enhancement. Complexity
2020, 2020, 5476142. [CrossRef]

23. Hu, X.; Liu, Y.; Zhao, Z.; Liu, J.; Yang, X.; Sun, C.; Chen, S.; Li, B.; Zhou, C. Real-Time Detection of Uneaten Feed Pellets
in Underwater Images for Aquaculture Using an Improved YOLO-V4 Network. Comput. Electron. Agric. 2021, 185, 106135.
[CrossRef]

24. Vo, S.A.; Scanlan, J.; Turner, P.; Ollington, R. Convolutional Neural Networks for Individual Identification in the Southern Rock
Crayfish Supply Chain. Food Control 2020, 118, 107419. [CrossRef]

25. Jocher, G. YOLOv5; Ultralytics: Los Angeles, CA, USA, 2020.
26. Wang, C.Y.; Liao, H.Y.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A New Backbone That Can Enhance Learning

Capability of CNN. arXiv 2019, arXiv:1911.11929.
27. Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.
28. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.
29. Efficient Non-Maximum Suppression IEEE Conference Publication IEEE Xplore. Available online: https://ieeexplore.ieee.org/

document/1699659/ (accessed on 10 April 2023).
30. Yu, J.; Hu, C.-H.; Jing, X.-Y.; Feng, Y.-J. Deep Metric Learning with Dynamic Margin Hard Sampling Loss for Face Verification.

SIViP 2020, 14, 791–798. [CrossRef]
31. Srinivas, A.; Lin, T.-Y.; Parmar, N.; Shlens, J.; Abbeel, P.; Vaswani, A. Bottleneck Transformers for Visual Recognition. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021.
32. Nan, Z.; Peng, J.; Jiang, J.; Chen, H.; Yang, B.; Xin, J.; Zheng, N. A Joint Object Detection and Semantic Segmentation Model with

Cross-Attention and Inner-Attention Mechanisms. Neurocomputing 2021, 463, 212–225. [CrossRef]
33. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.
34. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the European conference

on computer vision (ECCV), Munich, Germany, 8–14 September 2018.
35. Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for Efficient Mobile Network Design. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021.
36. Devareddi, R.B.; Srikrishna, A. Review on Content-Based Image Retrieval Models for Efficient Feature Extraction for Data

Analysis. In Proceedings of the 2022 International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India,
16–18 March 2022; pp. 969–980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1111/jfpe.13095
https://doi.org/10.1016/j.aquaeng.2019.01.005
https://doi.org/10.1155/2021/5530453
https://doi.org/10.1016/j.conb.2019.10.008
https://doi.org/10.1007/s10489-022-04374-7
https://doi.org/10.13695/j.cnki.12-1222/o3.2020.01.020
https://doi.org/10.1007/s12652-020-02847-6
https://doi.org/10.1155/2020/5476142
https://doi.org/10.1016/j.compag.2021.106135
https://doi.org/10.1016/j.foodcont.2020.107419
https://ieeexplore.ieee.org/document/1699659/
https://ieeexplore.ieee.org/document/1699659/
https://doi.org/10.1007/s11760-019-01612-3
https://doi.org/10.1016/j.neucom.2021.08.031

	Introduction
	Materials
	Method
	YOLOv5
	Improved YOLOv5
	Bottleneck Transformers
	Coordinate Attention

	Accelerating Networks with TensorRT

	Results and Analysis
	Experimental Platform
	Evaluation Metrics
	Experimental Analysis
	Comparative Analysis of Speed and Accuracy of Different Variants of YOLOv5
	Comparative Analysis of Speed and Accuracy of Different Object Detection Algorithms
	Ablation Experiments: Comparing Speed and Analyzing Accuracy of the Algorithm
	TensorRT Deployment

	Discussion

	Conclusions
	References

