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Featured Application: This study shows promising results for the development of artificial in-
telligence tools for the predicting of the progression of Stargardt disease. It further offers the
possibility of differentiating patients with Stargardt disease based on predicted progression rate
which may be a new approach to phenotypic differentiation or classification that may be useful
in clinical decision-making.

Abstract: Stargardt disease is the most common form of juvenile-onset macular dystrophy. Spectral-
domain optical coherence tomography (SD-OCT) imaging provides an opportunity to directly mea-
sure changes to retinal layers due to Stargardt atrophy. Generally, atrophy segmentation and predic-
tion can be conducted using mean intensity feature maps generated from the relevant retinal layers.
In this paper, we report an approach using advanced OCT-derived features to augment and enhance
data beyond the commonly used mean intensity features for enhanced prediction of Stargardt atrophy
with an ensemble deep learning neural network. With all the relevant retinal layers, this neural
network architecture achieves a median Dice coefficient of 0.830 for six-month predictions and 0.828
for twelve-month predictions, showing a significant improvement over a neural network using only
mean intensity, which achieved Dice coefficients of 0.744 and 0.762 for six-month and twelve-month
predictions, respectively. When using feature maps generated from different layers of the retina,
significant differences in performance were observed. This study shows promising results for using
multiple OCT-derived features beyond intensity for assessing the prognosis of Stargardt disease and
quantifying the rate of progression.

Keywords: biomedical optical imaging; ensemble deep convolutional neural networks; optical
coherence tomography; advanced OCT-derived features; data augmentation and enhancement;
predictive models

1. Introduction

Stargardt disease is a recessive inherited disorder that is the most common form
of juvenile-onset macular dystrophy, causing progressive damage or degeneration of
the macula [1–8]. Fundus autofluorescence (FAF) imaging and spectral-domain optical
coherence tomography (SD-OCT) are two widely accessible imaging modalities that can
aid in the diagnosis, monitoring, and classification of Stargardt disease. FAF imaging
provides an in vivo assay of the lipofuscin content within the retinal pigment epithelium
(RPE) cells. However, this does not provide any direct measure of the anatomical status
of the photoreceptors [9]. On the other hand, SD-OCT allows for the three-dimensional
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visualization of the retina’s microstructure and the direct evaluation of individual retinal
layers, including the photoreceptors and RPE [10,11].

In SD-OCT, Stargardt disease manifests as disruption of the outer retinal layers, namely
the photoreceptor inner and outer segments and RPE. At a Retinal Disease Endpoints
meeting with the Food and Drug Administration (FDA) in November of 2016, the integrity
of the ellipsoid zone (EZ) was proposed as a reliable measure of the anatomic status of
the photoreceptors and a suitable regulatory endpoint for therapeutic intervention clinical
trials [12].

Stargardt disease is currently phenotypically classified by appearance on various
imaging modalities, including FAF and SD-OCT [13–16]. The rate of progression does
not specifically factor into these classifications. Similarly, approaches for automated and
semiautomated analysis of features associated with Stargardt disease focus on analysis
at a single point in time [17–21]. Approaches to the automated analysis of Stargardt
disease frequently make use of some variants of U-Nets. U-Nets are a state-of-the-art
deep convolutional neural network (CNN) architecture for semantic segmentation [22].
CNN-based models have achieved state-of-the-art performance in several eye-assessment
tasks [23–27]. However, they are difficult to interpret, and it is often unclear how their
final decisions are reached, making CNNs something of a black-box representation [28].
An extension of CNNs to address this issue are ensemble CNNs, where multiple neural
networks are used together to each handle different inputs. This approach has been
used in the segmentation and prediction of geographic atrophy in age-related macular
degeneration [29,30].

This study, as a preliminary investigation, seeks to use baseline OCT en face feature
maps generated from SD-OCT segmentation for the predictive modeling of future atrophy
in Stargardt disease using deep convolutional neural networks. Typically, in the field
of disease detection and analysis, OCT en face intensity maps are used [30–32]. In our
approach, we apply multiple advanced en face feature maps beyond intensity maps to
augment and enhance data with the goal of enhancing the algorithm’s performance. This
paper represents the first attempt to use such enhanced en face feature maps generated from
disease-relevant retinal layers segmented from OCT to predict future Stargardt atrophy.
Furthermore, we report an inherently interpretable ensemble neural network architecture
designed to allow the determination of what features or combinations of features contribute
to the development and progression of atrophy in Stargardt disease.

2. Materials and Methods
2.1. Imaging Dataset

A total of 264 eyes from 155 patients diagnosed with Stargardt disease were identified
from the ProgStar study that had both SD-OCT scans performed on the initial visit and
FAF imaging performed at a six-month follow-up. Of these two hundred and sixty-four
eyes, two hundred and thirty-seven were identified that had FAF imaging performed at
a twelve-month follow-up. All of the FAF images were manually segmented by certified
graders to create ground-truth masks marking the atrophied regions of the retina. Images
were randomly assigned to training and testing sets in an approximate 3:1 ratio. Of the
six-month follow-up FAF images, two hundred of the images were used for training, and
sixty-four were used for testing. Of the twelve-month follow-up FAF images, one hundred
and eighty of the images were used for training, and fifty-seven of the images were used for
testing. The SD-OCT volume dimensions are 496 (depth) × 1024 (A-scans) × 49 (B-scans)
pixels or 496 (depth) × 512 (A-scans) × 49 (B-scans) pixels. The 496 × 512 images were
resized to a standard width of 1024. After segmentation, 49 × 1024 feature maps were
produced from each SD-OCT volume. These feature maps were resized to 512 × 512 for
registration to FAF images and later resized to 128 × 128 prior to being input to the neural
network due to memory constraints. SD-OCT scans and FAF images of right (OD) eyes
were reflected horizontally to maintain consistency throughout training and testing.
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All images were de-identified according to the Health and Insurance Portability and
Accountability Act Safe Harbor. All subjects gave their informed consent for inclusion
before they participated in this study. This study was conducted in accordance with the
Declaration of Helsinki, and the protocol was approved by the Ethics Committee of each of
the participating institutions. This study has been registered at https://www.clinicaltrials.
gov (NCT01977846, accessed on 12 June 2023).

2.2. Image Registration

Registration of FAF images and ground-truth manual segmentations was completed
using OCT en face mean intensity feature maps of the layers between the external limiting
membrane (ELM) and the Bruch’s membrane, which provided visualization of vessels that
could be used as landmarks for the registration. The OCT en face map was generated from
the baseline SD-OCT scans, resulting in feature maps of 49 × 1024, which were then resized
to 512 × 512 for ease of viewing. FAF images and ground-truth segmentation marking
the region of atrophy from the six-month and twelve-month follow-up datasets were then
registered to this baseline feature map through feature-based image registration, using
vessel branching, bifurcation, and crossover points to determine corresponding points in
the images. Figure 1 shows an example of a baseline OCT en face map and the registrations
of follow-up FAF images and ground truths to it.
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Figure 1. FAF and manual ground-truth registration. The baseline OCT en face mean intensity map
shows vessel features that were used to register the shown six-month and twelve-month FAF images
and ground truths.

2.3. Neural Network Structure

The ensemble neural network used in this study is made of a modular series of
U-Nets, a state-of-the-art deep learning architecture for semantic segmentation that can
be trained using very few images [22,23]. Each component U-Net consists of a series of
encoder blocks followed by a series of decoder blocks. Each encoder block consists of a
convolutional, a batch normalization, a rectified linear unit (ReLU), and a max pooling
layer. Each decoder block consists of a max unpooling, a concatenation, a convolutional,
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a batch normalization, and a ReLU layer. Concatenation is performed with feature maps
from the corresponding encoder block. All convolution kernels were set at a size of 5 × 5,
with a 1 × 1 kernel to complete the binary classification task. Of note, there is no softmax
layer in the component U-Nets. Rather, the maximum activations are obtained from each
component U-Net after the binary classification, and this result is sent to a softmax layer to
calculate the probabilities for each pixel to be assigned to the two classes of atrophy or not
atrophy. The architecture of a single U-Net is shown in Figure 2.
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Figure 2. Architecture of a single U-Net in the ensemble neural network. Each solid horizontal arrow
represents a set of a convolutional, a batch normalization, and a ReLU layer; each solid down arrow
represents a max pooling layer; each up arrow represents a max unpooling layer; and each dashed
horizontal arrow represents concatenation. The numbers in each box represent the dimensions of the
data in that layer (height × width × number of channels).

Figure 3 shows the architecture of the ensemble neural network used in the prediction
of atrophy from baseline feature maps. Each U-Net takes in one feature map as input.
Such a strategy naturally augments data, and the various advanced features derived from
OCT potentially enhance data beyond the commonly used mean intensity features. After
the 1 × 1 convolution for binary classification, the outputs of the U-Nets are combined by
taking the maximum activations for each pixel from the component U-Nets. This can be
imagined as follows:

g(E(Y)) = max( f1(x1), f2(x2), . . . , fn(xn)) (1)

where x1, x2,. . ., xn is the input with n features, Y is the observed quantity to be approx-
imated, g(.) is the link function, and each f (.) stands for a component U-Net. These
maximum activations are subsequently sent to a softmax function to obtain probability
maps of the area of interest. These probability maps can be used as-is or binarized through
thresholding. The U-Nets are trained jointly through back-propagation.

The neural network is optimized using weighted two-class logistic loss, Dice loss, and
a weight decay term for regularization:

LLogloss = −∑x∈Ω w(x)gl(x) log(pl(x)) (2)

LDice = 1− 2∑x∈Ω pl(x)gl(x)
∑x∈Ω gl

2(x) + ∑x∈Ω pl
2(x)

(3)

LOverall = LLogloss + LDice + λ‖W‖2
F (4)
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In the above equations, w(x) is the weight assigned to pixel x ∈ Ω, gl(x) is the ground-
truth probability that pixel x belongs to class l, pl(x) is the estimated probability that pixel
x belongs to class l, λ is the weight decay, and ‖W‖F is the Frobenius norm on the weights
of the neural network. The neural network has a total parameter count of 8.3 million and
89.7 GFLOPs.
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Figure 3. Architecture of the ensemble neural network. Each component U-Net takes in a single
feature map as input. The outputs of all the U-Nets are combined through a maximum function, and
probability maps are produced using a softmax function.

This ensemble neural network structure allows for the contributions of each feature
map to be isolated and interpreted. Furthermore, this structure makes it a simple matter
to add or remove features from consideration by adding or removing the component
modular U-Nets.

Figure 4 is an overview of the entire Stargardt progression prediction system, starting
with baseline SD-OCT segmentation and registration of six-month and twelve-month FAF
images and ground truths. The baseline SD-OCT segmentation results in a number of
feature maps that serve as inputs to an ensemble neural network, with each component U-
Net taking one feature map as input. The neural network was trained using the registered
six-month and twelve-month manual segmentations as ground truths. The output of the
ensemble neural network is a probability map for the predicted region of atrophy.

The training was conducted using stochastic mini-batch gradient descent with a batch
size of 8. The learning rate was set to 10−2 initially for 40 epochs and 10−3 for the final
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20 epochs for 60 total epochs. The momentum was set at 0.95 with a weight decay of 10−4.
Pixel weights were assigned as 6 for the atrophied region and background and 15 for the
boundary between them. Training and testing took approximately 45 s and 4 s per epoch,
respectively. The neural network was implemented using MATLAB R2017a and was run
on a desktop PC with an Intel i7-7800X CPU, 16 GB NVIDIA Quadro P5000 GPU, and
32 GB RAM.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 17 
 

to add or remove features from consideration by adding or removing the component mod-
ular U-Nets. 

Figure 4 is an overview of the entire Stargardt progression prediction system, starting 
with baseline SD-OCT segmentation and registration of six-month and twelve-month FAF 
images and ground truths. The baseline SD-OCT segmentation results in a number of fea-
ture maps that serve as inputs to an ensemble neural network, with each component U-
Net taking one feature map as input. The neural network was trained using the registered 
six-month and twelve-month manual segmentations as ground truths. The output of the 
ensemble neural network is a probability map for the predicted region of atrophy. 

 
Figure 4. Overview of the approach to predicting the region of atrophy in Stargardt patients. Orange 
boxes represent inputs, blue boxes represent processing and training, and yellow boxes represent 
output. 

The training was conducted using stochastic mini-batch gradient descent with a 
batch size of 8. The learning rate was set to 10−2 initially for 40 epochs and 10−3 for the final 
20 epochs for 60 total epochs. The momentum was set at 0.95 with a weight decay of 10−4. 
Pixel weights were assigned as 6 for the atrophied region and background and 15 for the 
boundary between them. Training and testing took approximately 45 s and 4 s per epoch, 
respectively. The neural network was implemented using MATLAB R2017a and was run 
on a desktop PC with an Intel i7-7800X CPU, 16 GB NVIDIA Quadro P5000 GPU, and 32 
GB RAM. 

2.4. Experimental Methods 
The initial visit SD-OCT scans for each image were segmented using the Deep Learn-

ing–Shortest Path (DL-SP) algorithm previously developed by our group [17,33]. From 
the results of this segmentation, feature maps were generated using various segmented 
layers as boundaries. These feature maps included mean intensity, median intensity, max-
imum intensity, minimum intensity, standard deviation, skewness, kurtosis, and thick-
ness. The SD-OCT scan dimensions resulted in feature maps of 49 × 1024, which were 
resized to 512 × 512 for the purposes of registration before being downscaled to 128 × 128 
to meet the memory constraints faced when training the neural network. 

Figure 4. Overview of the approach to predicting the region of atrophy in Stargardt patients. Orange
boxes represent inputs, blue boxes represent processing and training, and yellow boxes represent output.

2.4. Experimental Methods

The initial visit SD-OCT scans for each image were segmented using the Deep Learning–
Shortest Path (DL-SP) algorithm previously developed by our group [17,33]. From the
results of this segmentation, feature maps were generated using various segmented layers
as boundaries. These feature maps included mean intensity, median intensity, maximum
intensity, minimum intensity, standard deviation, skewness, kurtosis, and thickness. The
SD-OCT scan dimensions resulted in feature maps of 49 × 1024, which were resized to
512 × 512 for the purposes of registration before being downscaled to 128 × 128 to meet
the memory constraints faced when training the neural network.

After registration of the FAF images, the previously mentioned feature maps were
generated for the regions between the ELM and ellipsoid zone (EZ), the EZ and inner
retinal pigment epithelium, the inner RPE and outer RPE, the outer RPE and choroid–sclera
(C–S) junction, the EZ and inner RPE, and ± 5 pixels from the EZ. For the regions between
the outer RPE and the C-S junction and ± 5 pixels from the EZ, the thickness feature map
was excluded. This was because of too much natural variation in the case of the outer RPE
to C-S junction thickness and because there would be a constant thickness in the case of
±5 pixels from the EZ.

The registered FAF images and ground truths and the generated initial visit feature
maps were then sent to the neural network described above. The neural network output a
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probability of the predicted region of atrophy based on the initial visit SD-OCT scan feature
maps. The accuracy of the probability map was graded using the Dice coefficient [34]:

D =
2∑x∈Ω pl(x)gl(x)

∑x∈Ω gl
2(x) + ∑x∈Ω pl

2(x)
(5)

This measures the degree of overlap between the prediction and the ground truth.
The activations of each component U-Net were also extracted. These activations were sent
through a sigmoid function and were also graded using the Dice coefficient to determine
which feature maps were the best and worst contributors to the final result. The pixel
accuracy of the predictions was also calculated.

In addition, neural networks using only the traditional mean intensity feature maps
were also created for the purpose of comparison.

3. Results

The accuracy of the predicted regions of atrophy was evaluated using the median
Dice coefficient and pixel accuracy of the eyes tested. Tables 1 and 2 show the median Dice
coefficients and median pixel accuracies for the prediction of atrophy at a six-month follow-
up for feature maps generated from several different regions. Tables 3 and 4 show the same
for a twelve-month follow-up. Also included in these tables are the Dice coefficients and
pixel accuracies calculated from the activations of the individual component U-Nets after
being passed through a sigmoid function.

Table 1. Ensemble neural network and component U-Net median Dice coefficients for six-
month prediction.

ELM-EZ EZ-IRPE IRPE-ORPE ORPE-C-S ELM-IRPE EZ ± 5

Ensemble 0.824 0.804 0.803 0.706 0.830 0.803

Mean Intensity 0.196 0.126 0.344 0.259 0.349 0.260
Standard Deviation 0.558 0.694 0.199 0.443 0.303 0.430
Maximum Intensity 0.236 0.241 0.324 0.405 0.161 0.076
Minimum Intensity 0.425 0.089 0.297 0.179 0.327 0.077

Median Intensity 0.341 0.283 0.252 0.267 0.098 0.113
Kurtosis 0.771 0.240 0.592 0.293 0.451 0.219

Skewness 0.479 0.521 0.257 0.410 0.445 0.508
Gray-Level Entropy 0.247 0.276 0.413 0.016 0.677 0.237

Thickness 0.677 0.360 0.687 0.568

Table 2. Ensemble neural network and component U-Net median pixel accuracy for six-
month prediction.

ELM-EZ EZ-IRPE IRPE-ORPE ORPE-C-S ELM-IRPE EZ ± 5

Ensemble 0.977 0.973 0.974 0.964 0.980 0.971

Mean Intensity 0.921 0.834 0.873 0.902 0.845 0.854
Standard Deviation 0.902 0.958 0.885 0.897 0.782 0.881
Maximum Intensity 0.940 0.741 0.943 0.923 0.793 0.848
Minimum Intensity 0.920 0.677 0.894 0.889 0.912 0.792

Median Intensity 0.901 0.590 0.928 0.835 0.649 0.709
Kurtosis 0.971 0.842 0.933 0.887 0.858 0.823

Skewness 0.961 0.939 0.809 0.792 0.914 0.892
Gray-Level Entropy 0.947 0.895 0.853 0.808 0.948 0.686

Thickness 0.950 0.856 0.940 0.910
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Table 3. Ensemble neural network and component U-Net median Dice coefficients for twelve-
month prediction.

ELM-EZ EZ-IRPE IRPE-ORPE ORPE-C-S ELM-IRPE EZ ± 5

Ensemble 0.809 0.828 0.801 0.696 0.823 0.791

Mean Intensity 0.327 0.213 0.312 0.458 0.421 0.180
Standard Deviation 0.684 0.606 0.294 0.377 0.498 0.411
Maximum Intensity 0.244 0.373 0.296 0.276 0.380 0.180
Minimum Intensity 0.427 0.060 0.152 0.328 0.301 0.074

Median Intensity 0.309 0.172 0.191 0.327 0.123 0.068
Kurtosis 0.640 0.376 0.528 0.321 0.405 0.172

Skewness 0.751 0.467 0.245 0.369 0.403 0.544
Gray-Level Entropy 0.624 0.530 0.405 0.082 0.606 0.280

Thickness 0.552 0.421 0.638 0.585

Table 4. Ensemble neural network and component U-Net median pixel accuracy for twelve-
month prediction.

ELM-EZ EZ-IRPE IRPE-ORPE ORPE-C-S ELM-IRPE EZ ± 5

Ensemble 0.970 0.973 0.973 0.964 0.977 0.970

Mean Intensity 0.860 0.818 0.929 0.925 0.848 0.911
Standard Deviation 0.927 0.927 0.798 0.836 0.898 0.867
Maximum Intensity 0.898 0.927 0.946 0.924 0.900 0.845
Minimum Intensity 0.852 0.920 0.929 0.878 0.837 0.892

Median Intensity 0.855 0.884 0.942 0.873 0.649 0.839
Kurtosis 0.964 0.811 0.911 0.872 0.801 0.663

Skewness 0.962 0.948 0.932 0.809 0.906 0.905
Gray-Level Entropy 0.898 0.885 0.824 0.830 0.920 0.723

Thickness 0.942 0.880 0.918 0.902

From these results, it was examined whether using multiple feature maps resulted in
significant improvement and whether the choice of region had a significant impact on per-
formance. For each of the ELM-EZ, EZ-IRPE, IRPE-ORPE, ELM-IRPE, and EZ ± 5 regions,
the Wilcoxon signed-rank test resulted in p-values less than 0.05 for both six-month and
twelve-month predictions when comparing both Dice coefficient and pixel accuracy for
neural networks using all feature maps versus neural networks using only the mean
intensity feature map, indicating a significant difference in performance when adding addi-
tional feature maps. For a comparison between the choice of regions, the ELM-IRPE and
EZ ± 5 regions were examined as representative of two different strategies for selecting
a region. Significant differences were found when comparing Dice coefficients for both
six-month and twelve-month predictions when using all feature maps but not when using
only one feature map. These findings were not reflected when comparing pixel accuracy,
with significant differences found for six-month predictions when using all features or only
mean intensity and for twelve-month predictions when using only mean intensity, while
no significance was found when all features were used. These results for six-month and
twelve-month predictions are shown in Tables 5 and 6.

Examples of predicted regions of atrophy and their corresponding ELM-IRPE feature
maps are shown in Figure 5. These examples show a comparison of input feature maps, output
prediction maps, and ground truth. This figure also showcases the range of sizes of atrophied
regions included in the dataset. In Figure 6, the six-month and twelve-month predictions
are shown for the same eye, alongside a comparison to one of the baseline feature maps. In
Figure 7, two of the common errors in segmentations that were noted are shown: filling holes
in the prediction map compared to the ground truth and not segmenting satellite lesions.
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Table 5. Mean intensity vs. many features for six-month prediction.

ELM-IRPE EZ ± 5 p-Value

All Features Dice Coefficient 0.830 0.803 0.005
Mean Intensity Dice Coefficient 0.744 0.734 0.193
p-value <0.001 <0.001

All Features Pixel Accuracy 0.980 0.971 0.039
Mean Intensity Pixel Accuracy 0.967 0.968 0.046
p-value <0.001 0.011

Table 6. Mean intensity vs. many features for twelve-month prediction.

ELM-IRPE EZ ± 5 p-Value

All Features Dice Coefficient 0.823 0.791 0.003
Mean Intensity Dice Coefficient 0.762 0.700 0.395
p-value <0.001 <0.001

All Features Pixel Accuracy 0.977 0.970 0.076
Mean Intensity Pixel Accuracy 0.969 0.956 0.003
p-value 0.001 0.001Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 17 
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4. Discussion and Conclusions

This paper represents the first attempt to use novel en face feature maps generated
from disease-relevant retinal layers segmented in baseline SD-OCT images to predict future
Stargardt atrophy.

Previous approaches for automated and semiautomated analysis of features associated
with Stargardt disease generally focus on analysis at a single point in time [17–21]. For
example, J. Kugelman developed an approach using a U-Net-inspired neural network and
graph search algorithm to segment the retinal boundaries in SD-OCT images. J. Charng
developed an approach using a U-Net model with ResNet encoding steps to identify
hyperautofluorescent flecks on FAF images. In an extension of J. Kugelman’s approach,
we developed an approach using U-Net models and graph search algorithms to segment
multiple retinal layers and Stargardt features in SD-OCT images. In other previous work,
our group used ResNet to develop an automated screening system for Stargardt atrophy
and U-Net to segment the atrophic lesions from FAF images. P. Zhao developed an approach
to multilabel segmentation of FAF images of Stargardt atrophy, performing automated
segmentation of multiple autofluorescence lesion types using a modified U-Net using
ResNet encoder blocks. None of these approaches have considered an attempt to predict
the progression of Stargardt disease. The one other attempt to predict the progression of
Stargardt disease using deep learning methods also comes from our group, in which a self-
attended U-Net was developed to predict the progression of atrophy twelve months from a
baseline FAF image [35]. The self-attention mechanism used allowed for the identification of
early signs of disease progression towards atrophy, capturing “feature rings” corresponding
with atrophy progression. With all of the previously mentioned methods, FAF images were
used. However, FAF images can be thought of as a 2D summary of a 3D structure. Not
only is there a loss of data in that transformation, but also, there can be inclusion of data
from irrelevant parts of the 3D structure. With SD-OCT images, it is possible to look at the
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entire 3D structure and selectively decide what to then include in the 2D representation.
In the field of the research of a different macular atrophic disease, i.e., geographic atrophy
prediction in late-stage age-related macular degeneration, a related problem, Anegondi
et al. developed a model using FAF and SD-OCT en face images to predict annualized
atrophy growth rate using the Inception v3 architecture [36]. In their approach, OCT en
face images were generated using mean intensity over full, sub-Bruch’s membrane, and
above-Bruch’s membrane areas. However, they did not look at any more specific regions
of the retina (e.g., the ellipsoid zone), and the only feature they used to generate en face
maps was mean intensity. A final approach to atrophy prediction, again seen in the context
of geographic atrophy, is described by Zhang et al. [37]. In their approach, longitudinal
data are able to be leveraged using bidirectional long short-term memory (LSTM) based
prediction module. Their approach made use of the full volumetric OCT data at multiple
visits to predict future atrophy, additionally making use of a 3D U-Net to refine the final
segmentation. Their approach avoids the potential loss of axial information that comes
from the generation of 2D en face maps.

The ensemble neural network presented in this paper achieved a median Dice coef-
ficient of 0.830 for six-month predictions of atrophy against the ground truth and 0.828
for twelve-month predictions of atrophy against the ground truth. Significant improve-
ment was observed when comparing neural networks that used only the mean intensity
feature map and the ensembled neural networks that used several additional feature maps
(p < 0.05). Significant differences in performance were also observed when using the ELM-
IRPE region to generate feature maps compared to using the EZ± 5 region (p < 0.05). These
differences were observed for both the six-month and twelve-month predictions.

The Dice scores achieved are also an improvement from our previous work [35], which
reported a 12-month prediction Dice score of 0.76. Notably, our previous work used FAF
images, while this work uses en face maps generated from SD-OCT images. The use of
SD-OCT images allows us to focus on disease-relevant retinal layers in a way that is not
possible with FAF images. This may explain the improved performance.

In Tables 1–4, the highest performances are seen in the ELM-EZ, EZ-IRPE, IRPE-ORPE,
ELM-IRPE, and EZ ± 5 regions, with weaker performance in the ORPE-C-S regions. This
falls in line with the pattern of Stargardt disease in SD-OCT imaging, namely that disruption
is frequently seen at the EZ junction and the RPE. Within these five regions, Dice coefficients
remain around 0.8 for both the six-month and twelve-month predictions, indicating that,
from the baseline images, predictions can be made for at least up to twelve months later,
possibly longer.

The Dice coefficients and pixel accuracies calculated from the activations of the individ-
ual component U-Nets shown in Tables 1–4 can be thought of as a measure of that feature’s
strength or contribution. In almost all cases, mean intensity performs as a relatively weak
feature, with other, less commonly used features frequently standing out as stronger pre-
dictors, such as skewness, kurtosis, and standard deviation. Interestingly, the strength
of features can differ depending on which region of the retina was used to generate the
feature maps and between six-month and twelve-month predictions. For example, when
looking at Dice coefficients, for six-month predictions, the ELM-EZ region has kurtosis as
the strongest feature, and the ELM-IRPE region has gray-level entropy as the strongest
feature, while for twelve-month predictions, the ELM-EZ region’s strongest feature changes
to skewness but the ELM-IRPE region’s strongest feature remains gray-level entropy. This
indicates that the optimal feature maps for prediction may differ depending on the retinal
region being examined and how far into the future the prediction is being made. Also of
note is that when looking at pixel accuracy, different features appear to contribute more
strongly than when looking at Dice coefficients; however, because the neural network was
trained in part using Dice loss, we believe the Dice coefficients are a better representation
of each features relative strength.

In Figure 5, it is possible to compare the final prediction of the ensemble neural
network to the input feature maps generated from baseline and the FAF and ground truth
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from follow-up. Of interest in these images is that while minimum intensity appears
to be the feature map in which the area of atrophy is least distinguishable, it is not the
lowest-performing feature map, as shown in Tables 1–4. This indicates that feature maps
may not be able to be treated independently when deciding which feature maps are most
contributory. The inclusion of a group of weak-appearing feature maps may outperform a
single feature map that appears strong or more clearly defined.

In Figure 6, an increase in the predicted area of atrophy can be seen from the six-
month to the twelve-month prediction, as indicated by the orange lines. They appear
to correspond to the inner and outer borders of a ring that can be seen on the baseline
gray-level entropy feature map. This provides evidence that this neural network is capable
of predicting up to twelve months into the future and that predictions for different time
points are indeed different.

In Tables 5 and 6, significant differences can be seen when comparing performance
between using one feature and using several features. Furthermore, when using several
features, a significant difference is seen in the performances between regions used to
generate feature maps. However, notably, when only one feature is used, there is no
significant difference between the regions used. This indicates that using additional features
accentuates the difference between different regions during analysis.

In Figure 7, examples of two of the commonly encountered segmentation errors in this
study are shown. In both Figure 7A,B, the predicted atrophy fills the hole that is present in
the ground truth. In Figure 7B, the predicted atrophy does not include the satellite areas
of atrophy in the ground truth. We suspect that this is because, in general, the atrophic
regions in the dataset used are contiguous, central, and elliptical without holes. As such,
the neural network has not been trained on enough data to consistently recognize when
there is a hole in the atrophic region or when there are regions of atrophy outside of the
center of the image.

This study is not without limitations. Although this is a larger dataset than most
cohorts of Stargardt disease, the sample size is still limited. Due to the relative scarcity of
data on Stargardt disease, it is difficult to capture all aspects of the disease within a deep
learning model, and human graders struggle with making determinations in the process of
grading. This is exemplified in the difficulties faced when segmenting such phenotypes
as poorly demarcated questionably decreased autofluorescence [38]. Other limitations
include segmentation errors and errors introduced through the registration process, where
the registered image may be slightly sheared, rotated, or translated compared to the OCT
enface image.

Additionally, in comparing the neural network described to other current state-of-the-
art neural networks used in retinal segmentation tasks, we found that the computational
complexity of our model is relatively high with regard to floating-point operations (FLOPs).
This is shown in Table 7. The increased complexity comes from the modular nature of the
neural network. The complexity scales linearly from the computational complexity of a
single U-Net with the number of features used.

Table 7. Computational complexity of deep learning models.

Total Parameters (M) FLOPs (G)

U-Net [22] 118.4 35.3
U-Net++ [39] 138.0 87.2
AttentionUNet [40] 54.6 67.2
IPN [41] 103.9 54.1
IPN V2 [42] 207.8 195.6
ARA-Net (EfficientNet) [43] 57.7 7.2

Modular U-Net 8.3 89.7

Future projects would ideally address these limitations and expand the analysis further
into how to select the best feature maps to use. While this study shows that the inclusion of
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several feature maps results in better performance than using only one, each additional
feature map increases the computational workload significantly. Therefore, it would be
ideal to have a method of selecting the feature maps that contribute the most to the accurate
prediction of atrophy. We believe that the design of the ensemble neural network and its
inherent interpretability with its separation of input feature maps to individual U-Nets
will aid in this task. Other future work would include examining predictions at eighteen-
month and later follow-ups and determining at what point, reliable prediction is no longer
possible from the baseline images. Additionally, the performance of other architectures
could be explored, such as variational auto-encoders to enhance data augmentation, long
short-term memory networks to incorporate longitudinal data, and EfficientNet to reduce
computational complexity. Furthermore, other imaging modalities, such as FAF and
multi- or hyperspectral images could be examined. Multi- and hyperspectral imaging
in particular captures more spectral information than imaging modalities like FAF and
SD-OCT, and as such may provide further opportunities to identify unique features of
disease processes [44,45]. Lastly, such an approach could also potentially be adapted to the
detection of other retinal diseases in OCT with enhanced performance.

This study shows promising results for the development of tools for the predicting
of the progression of Stargardt disease, providing insight into the potential use of multi-
ple feature maps beyond the traditionally used mean intensity feature maps to improve
performance. While this study is a preliminary investigation, it offers the possibility of
differentiating patients with Stargardt disease based on predicted progression rate which
may be a new approach to phenotypic differentiation. As treatments for Stargardt dis-
ease are developed, such a classification may be useful to clinicians in selecting patients
for treatment.
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