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Abstract: Electrocardiography (ECG)-based arrhythmia classification intends to have a massive
role in cardiovascular disease monitoring and early diagnosis. However, ECG datasets are mostly
imbalanced and have regularization to use real-time patient data due to privacy concerns. Traditional
models do not generalize on unseen cases and are also unable to preserve data privacy. Which
incentivizes performance degradation in existing models with privacy limitations. To tackle gener-
alization and privacy issues together, we introduce the framework SF-ECG, a source-free domain
adaptation approach for patient-specific ECG classification. This framework does not require source
data during adaptation, which solves the privacy issue during adaptation. We adopt a generative
model (GAN) that learns to synthesize patient-specific ECG data in data-inefficient classes to make
additional source data for imbalanced classes. Then, we use the local structure clustering method to
strongly align target ECG features with similar neighbors. After seizing clustered target features, we
use a classifier that is trained on source data with generated source samples, which makes the model
generalizable in classifying unseen data. Empirical results under different experimental conditions in
various interdomain datasets prove that the proposed framework achieves 0.8% improvements in
UDA settings, along with preserving privacy and generalizability.

Keywords: electrocardiography; source-free domain adaptation; generative adversarial networks

1. Introduction

Electrocardiography is a noninvasive tool that is accessible globally for the initial
diagnosis of cardiovascular diseases [1,2]. There are many forms of cardiovascular dis-
ease that can be identified via the ECG graph of a patient, including arrhythmia [3] Due
to the huge volume of its application, researchers are developing several effective tools
to classify ECG signals effectively. Arrhythmia is considered the most common form of
heart disease, which refers to a condition where heart rhythms are irregular. It can be
detected with abnormalities in the ECG graph. But analyzing the ECG graph abnormali-
ties is time-consuming and difficult without expert supervision. On the other hand, the
morphology and characteristics of different patients’ ECG signals have diversity due to
different physiological situations. Some of the same diseases can have different patterns in
the ECG signals [4], which can be difficult to interpret or annotate for generating training
samples’ deep learning models. Recently, deep learning (DL) appears with strong baseline
capabilities in many real-life applications. DL-based ECG classification has become so
popular and mainstream nowadays due to the growth of AI in disease diagnosis. As DL has
the powerful attribute to learn features from large-scale clinical data in various conditions,
several successful DL-based diagnosis tools are designed [3]. Mostly, CNNs and RNNs are
used to learn the high-level features from raw time series ECG data, and these features are
utilized in the classification task. But these classification models are not generalizable in
new subject data during testing. In most real-time applications, these models fail to deliver
desired precision in classification.
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ECG classification can be referred into two schemes, namely, intrasubject and inter-
subject. However, the training and test examples are differently distributed but belong to
the same subject and can be referred to as intrasubject. The main limitation of developing
the intrasubject scheme is that models are not well generalized in new subject cases; hence,
there is a noticeable performance drop, whereas if the training and test examples are not
overlapping and belong to different subjects, that can be referred to as intersubject. In
the intersubject scheme, the samples have differences individually. Individual differences
refer to differences in sex, age, physiological conditions, etc. In this case, the classification
performance is based on being subject-to-subject. Therefore, differences in the training and
testing examples make the whole learning generalizability difficult; hence, it is considered
the most challenging and realistic setting for developing ECG classification models [5].

Even though DL methods have made great advances in the intrasubject scheme,
they are still facing considerable performance degradation in the intersubject scheme,
as the intersubject scheme is a more realistic setting for developing applications, since
each subject/patient has different morphological characteristics in ECG signal data due to
the variance in individual cases. Considering the application reliability, a method called
subject-independent refers to the training of a model with labeled training samples and
testing the model into the new test samples strictly. But in this case, the model performance
deteriorates by a significant margin, which can not be relied on while building models. The
problem can be solved via subject-specific training with a specific model, where the whole
scheme can be divided into two phases, such as initial training and fine tuning [5]. Usually,
in the initial training, the model uses the training samples to train, and in the next stage,
the model is fine-tuned by partially labeled samples from test samples. The whole phase
increases the adaptation capacity of intersubject variation. But this scheme is associated
with various underlying issues, such as developing models for each individual subject or
patient is not feasible for real-time deployment where computational resources are limited.
Another major drawback is that annotating such a large amount of subject-wise data tends
to be expensive and laborious. Instead of annotating in a conventional way, researchers
adopt domain adaptation (DA) methods to solve these limitations, where domain shift
refers to distribution diversity between train and test samples [6]. And DA is a prominent
method that solves the issue of domain shift. In that case, training and test samples are
considered as source and target samples, respectively.

However, ECG datasets are often limited for real-time testing, and data imbalance
issues are also there. For example, the MIT-BIH arrhythmia dataset is an imbalanced dataset,
where normal class data are higher than rare disease class data. In other datasets, this sparse
representation of data is presented. Another challenge is collecting well-representable data
for model training. Technically, deep learning models show an inherent bias towards
classes that are more common in training [7]. But individual performance in minor classes
is not appreciable considering the relative overall performance based on accuracy. Hence,
we need a well-occupied data augmentation method that can create synthetic data with
respect to the original data for the minor classes. But it causes a marginal performance
boost that might not be sufficient in medical diagnosis. Hence, generative models can
learn the distribution of the training data so that it generates samples that have the same
distribution. Thus, it can improve the classification performance in minor classes.

Most of the unsupervised domain adaptation (UDA)-based methods require a common
connection between source and target distributions [8], and also need access to source data
during real-time deployment. But in medical cases, it is intended to be highly impractical
due to the nature of privacy concerns in patient data due to several ethical implication
issues, such as how most UDA cases and other traditional models tend to access the direct
patient data in the real-time adaptation, which breaks data confidentiality. It is also highly
risky that traditional approaches are vulnerable in preserving data anonymization since
most of the deep learning approaches tend to memorize specific information of the patient.
There are some other ethical concerns that are associated with data privacy, such as data
sharing without explicit consent, bias, and discrimination, etc. And it is not feasible to train
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a model with limited computational resources. On the other hand, an accidental loss of
source data can make it impossible for traditional UDA techniques to generalize in new
subject data. Therefore, there are many underlying challenges even in the UDA setting
for ECG classification tasks. In Figure 1, we illustrate the source and target sample before
adaptation and also illustrate the effect of source-free adaptation with generated samples.

To tackle the aforementioned issues in traditional DL-based models and UDA methods
in ECG classification, we adopt a novel problem-setting source-free adaptation. Source-free
adaptation (SFA) [8,9] is a new extension of the area of DA/UDA, where in real-time
adaptation, a source dataset is not required. Perhaps, it is suitable for overcoming all the
open challenges in ECG classification can be solved via the SFA method. So, we reinforce
the SFA idea into ECG classification, which is totally a novel scenario in this problem. We
propose a source-free intersubject method, SF-ECG, for ECG classification. Our proposed
framework can improve the intersubject performance of DNN without requiring source
data in adaptation. Our framework consists of three modules: data adjustment, local
clustering, and data adaptation. More of the details can be found in Section 3.

Our contributions are summarized into four folds:

• To the best of our knowledge, we first incorporate the source-free adaptation strategy
to address interpatient ECG classification.

• We propose an SF-ECG framework, which is an unsupervised domain adaptation
method that predicts unlabeled target samples without requiring source data in the
test-time adaptation setting.

• We adopt a generative model that generates high-quality ECG training samples for
the source classifier. It alleviates the data insufficiency problem in class-wise training.
Which exhibits a strong source classifier that is utilized in the test-time adaptation.

• Empirical experiments show that our framework is capable of classifying interpatient
ECG samples with high precision even in this novel scenario, outperforming many
state-of-art methods in the same settings with a better generalization ability.

Organizations. The remaining part of the paper is organized as follows, Section 2
discusses related work. Section 3 provides an extensive demonstration of our proposed
framework in detail. Section 4 presents the experimental setting, results, and ablation
studies. And finally, Section 5 ends with a discussion and conclusion of this work.

(a) (b) (c)

Target ECG Samples

Source ECG Samples

Generated Source ECG Samples

Decision Boundary

Figure 1. Illustration of domain adaptation method. (a) Source and target samples before adaptation.
(b) New source samples are generated by a generative model for imbalanced datasets with the
same distribution as the original source distribution. (c) After adaptation by our SF-ECG using the
generated samples.
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2. Related Work

This section is comprised of recent related works on unsupervised domain adaptation
(UDA) and generative adversarial network (GAN) for ECG classification tasks.

2.1. UDA for ECG Signal Classification

Recently, there are many recent works that adopt the UDA method in interclass ECG
classification tasks. Chen et al. [1] proposed a multipath network as a baseline classification
model assigned with cluster-aligning separating loss to reduce the discrepancy between
train and test distributions for ECG-enabled arrhythmia classification. Deng et al. [2]
proposed a multisource UDA method that utilizes multiple data sources to incorporate
generalization. This method comprises a two-stage adaptation and imbalance-aware
mixing strategy to learn features across all domains from multiple sources. Wang et al. [3]
introduced a UDA method that learns discriminative features from clustering characteristics
of source and target data. They also utilized cluster-aligning and maintaining losses
to regulate and structure feature information of the source and target data in invariant
space. Yuan et al. [4] introduced a hypergraph-based UDA method that exploits cross-
attention dual-channel networks in adaptation tasks. They also used a domain alignment
method based on Wasserstein distance for edge features, which also applies a pseudo-
label generation technique for retaining category-level fine-grained information of the
distribution. He et al. [5] proposed a multilevel UDA method, which comprises an ASPP-R
module to extract SP features; then, they used Graph-CN to extract structural features of
the data. The whole framework exhibits three feature alignment stages, namely, domain,
semantic, and structure alignment. Bazi et al. [10] utilized domain transfer SVM and
weighted KLR methods to compare within the MIT-BIH dataset to see the statistical shift
between the train and test ECG samples. Niu et al. [11] proposed an adversarial DA
method that comprises three different modules, namely, feature extractor, discriminator,
and classification tasks. These modules reduced the performance gap under discrepant
ECG data distribution. Yin et al. [12] introduced a self-adjustable domain adaptation
method to dispute the overfitting issue and unlabeled data exploitation. They adapted
data augmentation methods to extend the ECG database in training conditions and a self-
obtained map of the unlabeled data features with the transfer learning strategy. He et al. [13]
introduced an online cross-domain DA approach, which is based on a shared subspace
classifier. It reduces the interclass discrepancy. It also includes an online adaptation method
for emotion recognition via ECG data, which apparently defers from the ECG-based
disease classification.

Natarajan et al. [14] addressed the generalization issue of DA methods in lab-to-field
data scenarios in ECG-based cocaine use detection. This works limits the prior probability,
covariate, and label granularity shifts in lab-field data usage. Hang et al. [15] proposed a
UDA method that uses a CNN to extract deep features from raw data; then, they used MMD
to increase distribution gaps between source and target features. Ammour [16] proposed an
asymmetric DANN method that uses a denoising autoencoder to learn features and FCNN
layers to alienate data-shift. Helm et al. [17] introduced a Fisher’s linear discriminant
method for DA that determines the expected risk of the combined hypothesis of the target
distribution and also estimates a convex coefficient of BV-trade between source and target
samples. This method explores both ECG and EEG data in the DA setting. Carrera [18] et al.
proposed a DA method that learns the user-independent linear transformation of the ECG
data. They also modeled heartbeat-based sparse representations. This transformation
method maps the patient-specific dictionaries in modeling ECG heartbeats, which is usable
for online ECG monitoring. Chen et al. [19] proposed a UDA method based on an adaptive
region network; they utilized adversarial training to reduce the discrepancy of the domain.
The proposed model learns the invariant features with a generative network, consisting of
one generator and one discriminator. Yamac et al. [20] proposed a null space-based analysis
for healthy cardiac signal space, reducing computational complexity. However, they also
introduced a sparse-representation-based UDA method that learns new signals without
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having a domain shift between existing signals and new signals. Ye et al. [21] introduced a
clustering-enhanced UDA method that relies on a discriminative attribute. They used a
self-supervised loss on the target data and obtained pseudolabels based on the target data.
The framework encourages ambiguous target data to be correctly classified. Li et al. [22]
proposed a signal quality assessment strategy based on the UDA method, which increases
the feature extraction from target data. The framework is based on a feature distribution
alignment strategy by an adaptation layer. Peng et al. [23] introduced a UDA method
that learns universal features by adversarial autoencoder. The embedding space after
adversarial training aligned with the Riemannian manifold prior to obtaining cross-domain
features. They also used a variational interface method to increase the generalization
capacity of the framework.

2.2. GAN for ECG Signal Classification

Previous works have also explored generative adversarial networks (GANs) for gen-
erating synthetic data for imbalanced datasets, whereas most of the well-known ECG
datasets and real-world databases are not balanced. Shaker et al. [7] proposed a data
augmentation method with GAN; they utilized a CNN to extract features and leverage
a feature reduction strategy for their framework that increases the high number of sam-
ples in the training set. Golany et al. [24] proposed a simulation-based GAN framework
that understands the complex dynamics of generating close-to-real ECG training samples
with the help of ordinary differential equations. Golany and Radinsky [25] introduced a
GAN-based semisupervised framework that learns to generate synthetic per-patient ECG
data to improve the patient-specific ECG classification. Golany et al. [26] studied GAN
for generating improved training ECG samples following LSTM-based ECG classifica-
tion. Wang et al. [27] introduced a data augmentation method based on an auxiliary GAN
classifier. They constructed a classification model based on a stacked residual network
with LSTM. Yang et al. [28] propose ProGAN method based on GAN that solves the data
imbalance issue. They generated a diverse state of ECG samples so that the model obtains
higher fidelity and diversity in training samples. Hence, that ensures better generalization
in the test set. Ye et al. [29] introduced a policy gradient-based sequence GAN framework
for negotiating with low-quality training without insufficient extracting global ECG fea-
tures. The proposed framework shows a stable variance in generation loss. Zhu et al. [30]
proposed a bidirectional LSTM-CNN-based GAN framework for ECG training sample
generation with a diverse combination of generators and discriminators. Wang et al. [31]
proposed a conditional GAN-based ECG denoising method that comprises a convolutional
autoencoder as the generator, which preserves spatial locality and feature representations.
Several hidden layers are the discriminator. Harada et al. [32] proposed a recurrent neural
network-based GAN framework for ECG data augmentation and generation. Singh and
Pradhan [33] proposed a CNN-GAN framework for ECG noise filtering for denoising.
Adib et al. [34] studied five different GANs, including BiLSTM-DC-GAN and WGAN, for
generating synthetic ECG signals for robust training ECG samples. They also proposed a
residual ECG network for ECG classification. Rafi and Young [35] proposed a multihead
attention-based CNN framework that adopts GAN to tackle data insufficiency issues in
imbalanced datasets by generating additional ECG data samples.

3. Proposed Method

Our framework for source-free intersubject ECG classification is divided into three
modules, namely, data adjustment, local structure learning, and adaptation network. In the
data adjustment module, we use a generative model to generate synthetic samples based
on the source sample distribution. The local structure module learns the target features and
clusters these features based on the neighbors. An illustration of the overall framework is
shown in Figure 2.
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Figure 2. Illustration of our SF-ECG framework. Here, GAN model is used to generate synthetic
samples from the training distribution, and the local structure module clusters the generated samples
in a local neighborhood. Lastly, another GAN model exhibits the prediction without explicitly
requiring the source data.

3.1. Preliminaries

In the source-free domain adaptation task (SFDA), we consider Ds = {(xs
i , ys

i )}
ns
i=1;

here, ns is the number of samples in the source set that are labeled. xs
i and ys

i are the
source samples and their corresponding labels, respectively. We also have the target set
Dt = {xt

j}
nt

j=1
; here, nt is the number of samples that have no corresponding labels. In the

SFDA settings, we only have access to the source set in the model pretraining condition.
However, it is not available in the real-time adaptation task.

3.2. Generative Model for Data Adjustment

In various cases, ECG datasets often face data imbalance in minor classes. To generate
synthesized data, we use a generative model, GAN [25–27]. Generally, GAN is formulated
into two modules: (1) generator and (2) discriminator. The generator takes source samples
with random noise, z. This random noise z learns the distribution of the source data
Ds = (Xs,Ys) and outputs synthetic samplesD f = (X f ,Y f ). The output of the discriminator
is usually the synthetic and original data. The discriminators’ objective is to distinguish the
synthetic and original data precisely. Basically, the generator is trained to generate synthetic
data to classify the original by the discriminator. On the other hand, the discriminator tends
to recognize the synthetic and original data as accurately as possible. The training objective
of GAN can be described as the value function V(D,G), where the generator value function
V(G) is expected to maximize and the discriminator value function V(D) is expected
to minimize:

min
G

max
D
V(G,D) = Ex∼Pdata(x)

[logD(x)]

+Ez∼Pz(z)
[log(1−D(G(z)))].

(1)

Here, D(x) and G(z) are denoted as the probability of x, which belongs to the original
data distribution Pdata, and a substantial mapping function obtained from the noise vector
to the generated vector, respectively. However, the optimal parameters can be obtained
by maximizing and minimizing the value function of the discriminator and generator,
respectively. Discriminator D is trained with both positive and negative ECG samples in
each iteration. And the generator G is updated with policy gradients two times, while
D is updated once; we consider this strategy from [25]. Training converges until G is
indistinguishable. Generated synthetic samples on the class-deficient category alleviate this
issue, and certainly make the dataset considerably balanced. We use the balanced dataset
in the local structure module (C). Adversarial loss and cross-entropy loss are adopted for
the GAN module. Table 1 depicts the model description.



Appl. Sci. 2023, 13, 8551 7 of 19

Table 1. Model description of GAN framework for data adjustment.

Discriminator Generator

Layers Output Shape Parameters Layers Output Shape Parameters

Conv1D (None, 180, 8) 72 Reshape (None, 100, 1) 0

LeakyReLU (None, 180, 8) 0 Bidirectional (None, 100, 32) 2304

Dropout (None, 180, 8) 0 Conv1D (None, 100, 32) 8224

MaxPooling1D (None, 60, 8) 0 LeakyReLU (None, 100, 32) 0

Conv1D (None, 60, 16) 1040 UpSampling1D (None, 200, 32) 0

Dropout (None, 60, 16) 0 Conv1D (None, 200, 16) 4112

MaxPooling1D (None, 29, 16) 0 LeakyReLU (None, 200, 16) 0

Conv1D (None, 15, 32) 4128 UpSampling (None, 200, 16) 0

LeakyReLU (None, 15, 32) 0 Conv1D (None, 200, 16) 1032

Dropout (None, 15, 32) 0 LeakyReLU (None, 400, 8) 0

MaxPooling1D (None, 7, 32) 0 Conv1D (None, 400, 1) 65

Conv1D (None, 4, 64) 16,448 Flatten (None, 400) 0

LeakyReLU (None, 4, 64) 0 Dense (None, 180) 72,180

Dropout (None, 4, 64) 0 Activation (None, 180) 0

MaxPooling1D (None, 64) 0 Reshape (None, 180, 1) 0

Flatten (None, 64) 0 - - -

Dense (None, 1) 65 - - -

3.3. Local Structure Module

In traditional settings, UDA methods are based on the feature alignment strategy of
source and target features. But in the SFA setting, it is not feasible to access the source data.
We usually obtain a class prediction p(x) and feature embedding space f (x). Following [9],
the local structure method intends to shift the target features with the source domain. In
the first place, due to the expected domain shift, some of the target features can be deviated
by far from the source feature region. But in this case, we still consider that feature space
retains the clusters that are formed by the classes. For this, we actually measure the distance
and move the data point into the close likely data point cluster. Due to the domain shift
between the source and target interpatient data, there can be wrong predictions by the
classifier. So, it is essential to cluster target features that are in the same class clustered
together. Therefore, it is obvious that the nearest neighbor target features tend to have share
category labels. As a result, the clustered features are most likely to have an inclination
toward a common label jointly. As shown in Figure 2, this scheme helps to classify target
features correctly that possibly have the wrong classification.

To ensure semantically close neighborhoods, we use a feature extractor bank
F = {( f (xi)}εDi to accumulate joint target features. Then, we utilize a neighborhood
selection procedure to ensure the best clusters among target features. It explicitly encour-
ages correct classification. We take a few nearest neighbors from the feature extractors
with a consistency regularization. To store the softmax predicted scores, we use a score
bank S = {g( f (xi)}εDi . Here, g, f (xi) are the classifier and feature extractor, respectively.
To achieve this, we adopt the ResNet-50 model with a fully connected layer as the feature
extractor f (xi), and an additional fully connected layer as classifier g. The local clustering
is obtained by adopting the following loss in Equation (2) for consistent predictions in the
k-nearest features [9].
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LLC =− 1
n

n

∑
i=1

K

∑
k=1

log[p(xi) · s(Nk)] +
C

∑
c=1

KL( p̄c‖qc)

N{1,...,K} =
{
Fj | top − K

(
cos

(
f (xi),Fj

)
, ∀Fj ∈ F

)}
p̄ =

1
n

n

∑
i=1

pc(xi), and q{c=1,...C} =
1
C

.

(2)

Here, N is the k-nearest neighbors stored in the feature extractors for each target
feature; it is calculated based on the cosine similarities. The dot product between stored
prediction scores s(N k) and target sample xi is minimized of the negative log values.
Equation (2) intends to ensure the consistent correct prediction between the nearest neigh-
bors and features. Here, the term pc and q are the empirical label distributions and uniform
distribution, respectively. And finally, the old items are replaced in the bank with the new
items using the corresponding minibatch. Figure 3 illustrates the local structure module.

Before Adaptation After Adaptation

Nearest Neighborhoods

Source and Target Features

Figure 3. Illustration of local structure module.

3.4. Source-Free Domain Adaptation Module

Our domain adaptation module has the feature extractor from the local structure
module, which is a shared feature extractor with source and target features aligned. We also
have a classifier network and a discriminator; the whole setting is replicated from [36]. As
we know, in the SFDA setting, source data are not accessible during the adaptation. So, in
this case, using the GAN framework we generated identically distributed samples from the
source samples to use in the training time withDt. As we already have the feature extractor,
which exhibits the neighborhood-based domain-invariant target feature alignment with
the source samples, the discriminator tends to separate the generated samples from the
unlabeled target samples. The classifier network is utilized to classify the target samples
while it is trained and fine-tuned with the D f . As such, no source database Ds is required
in the adaptation time, since we are only using the generated source samples. All the
feature extractors, classifiers, and discriminators have learnable parameters. However, in
the adaptation task, fixed numbers of generated source samples from D f are taken; hence,
the adaptation performance is based on the number of source samples that are used during
the adaptation.

3.5. Objective Function

Following the work in [36], we use four types of loss functions in our framework to
train. Here is the description of each loss function.



Appl. Sci. 2023, 13, 8551 9 of 19

Adversarial Loss (Ladv): Adversarial loss is used during the GAN discriminator training;
it actually helps the discriminator to discriminate between synthetic data and original
data. There are two adversarial losses for the generator and discriminator. Here, Lg(adv)
and Ld(adv) are the generator and discriminator loss, respectively. Generator loss Lg(adv) is
denoted as:

Lg(adv) =
n

∑
i

log(1−D(G(zi, yi))) (3)

where z and y are the random noise and generated class labels, respectively. The discrimi-
nator loss Ld(adv) is denoted as:

Ld(adv) =
n

∑
i

logD(G(zi, yi)) + ∑
ti∼τ

logD(ti) (4)

Here, ti is the target data, which are sampled from τ distribution.
Cross-Entropy Loss (LCE): This loss is calculated when the generated samples are used
in the pretrained classifier. This loss ensures consistent parameters by not updating the
pretrained classifier. (LCE) is denoted as:

LCE =
1
Dn f

∑
G(zi ,yi)∈D

Lt(Pc(G(zi, yi)), yi) (5)

Here, Pc, Lt is the pre-trained classifier and traditional cross-entropy [36] loss respec-
tively. Dn f is the number of synthetically generated samples.
Discriminative Loss (LD): Domain invariant features are obtained from the feature ex-
tractor, and discriminative loss is used in the feature extractor. This is apparently a binary
loss between generated source and target samples. We train this feature extractor using a
gradient reversal layer [37]. (LD) is denoted as:

LD =
1
n ∑

xi∈D∫∪Dt

Lt(Dd(F (xi)), li) (6)

Here, n and li are the total number of generated and target samples and domain labels,
respectively.
Classification Loss (Lclas): The classification loss for the classifier in training with the
generated samples. The gradient of classification loss is also utilized in the feature extractor
training.

Lcls =
1
Dn f

∑
G(zi ,yi)∈D

Lt(C(F (G(zi, yi)), yi) (7)

Here, C is the classifier and Dn f is the number of synthetically generated samples.
Total Loss (Ltotal): The total loss is expressed by:

Ltotal = α×Ladv + β×LCE + γ×LD + ω×Lcls. (8)

Here, α, β, γ, ω are the tuning factors. Ideally, α, γ, and β are set to 1, and ω is set to 0
until 50 epochs, and then it is set to 1.

4. Experiments
4.1. Datasets

In this experiment, we evaluate our proposed model in six publicly available databases,
Which makes our experiment thorough and robust in the domain adaptation context: MIT-
BTH arrhythmia database (MITDB), St. Petersburg Institute of Cardiological Technics
12-lead Arrhythmia Database (INCARTDB), Physikalisch-Technische Bundesanstalt (PTB),
PTB_XL, e MITBIH Long-Term ECG database (LTDB), and the MIT-BIH Supraventricular
Arrhythmia Database (SVDB). These databases are labeled extensively by domain experts.
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Following the [5] standard protocol based on the AAMI, as per the AAMI standard sug-
gested, all the heartbeats are categorized into five different types, namely, N (normal), V
(ventricular ectopic, S (supraventricular ectopic, and F (fusion). Description of respective
databases are given below:

MITDB [38]: MITBH database is the most commonly utilized database for arrhythmia
classification. This dataset has 48 records, with 47 subjects and a sampling rate of 360 Hz.
For this experimental purpose, we divided this database into two parts: DS1 and DS2. We
use them as a source and target set jointly. This conversion is performed based on the
intersubject scheme;
This database has 75 records from 30 individual subjects. The sampling frequency chosen
for each recording is 257 Hz. This database contains around 175,000 samples.;
SVDB [39]: This database contains nearly 78 records, which subsequently belong to the S
class of MITDB database. Each sample is recorded at 128 Hz;
LTDB [39]: This database contains seven recordings that are long-term, ranging from 14 h
to 22 h. Each sample is recorded at 128 Hz, same as the SVDB database;
PTB [39]: This database has 549 records from 290 individuals. Each of the recordings is
sampled at 100 Hz and the length ranges from 30 s to 120 s. This database has five subtypes,
unlike other databases such as (AMI, ASMI, ALMI, IMI, and ILMI);
PTB_XL [40]: This database is a large-scale database that consists of 21,887 records from
18,885 individuals. Each record is sampled at 500 Hz and the length is 10 s for each sample.
In Tables 2 and 3, the number of samples in each databases are given.

Table 2. Number of preprocessed samples in each database.

Database N V S F Total Records Datasets

MITDB 89,507 6872 2764 801 100,035 44 -

INCARTDB 152,889 19,914 1952 219 174,974 75 -

SVDB 161,509 9900 12,450 23 183,582 78 -

LTDB 600,167 64,080 1499 2906 668,652 7 -

MITDB 45,642 3776 943 413 50,774 22 DS1

MITDB 43,865 3196 1821 388 49,261 22 DS2

Table 3. Number of preprocessed samples in PTB and PTB_X databases.

Database AMI ASMI IMI ALMI ILMI HC Total

PTB 6178 11,062 12,402 6456 7513 10,318 53,929

PTB_X 850 13,898 10,371 1345 3228 9678 39,370

4.2. Evaluation Protocols

We use four evaluation protocols to evaluate our proposed method: (1) accuracy (Acc),
(2) sensitivity (Se), (3) positive predictivity (Pp), and (4) F1 score (F1) [3,5]. These metrics
are expressed as follows:

Acc =
XP + XN

XP + XN + YP + YN
(9)

Se =
XP

XP + YN
(10)

Pp =
XP

XP + YP
(11)
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F1 =
2× Se× Pp

Se + Pp
. (12)

Here,

XP = true positive samples
XN = true negative samples
YP = false positive samples
YN = false negative samples

4.3. Experimental Results
4.3.1. Results on DS1 and DS2

Tables 4 and 5 show the results on the MITDB dataset based on DS1 → DS2 and
DS2→ DS2, respectively. As we mentioned, they divided the MITDB dataset into two
parts, DS1 and DS2, for the cross-domain task evaluation. We preprocessed the dataset
and increased the number of samples in the V, S, and F segments for fair training. In
particular, in the sample, deficient classes such as S and F received a boost in Se, Pp, and
F1 scores (Figure 4). Overall, both DS1→ DS2 and DS2→ DS1 achieved an acceptable
overall accuracy of 98.4% and 96.5% respectively. However, we also tested our model
performance in terms of K-fold cross-validation to understand its generalization ability; we
also show the confusion matrix of our model in Tables 6 and 7, respectively.

N V S F
Heartbeat Category
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80
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SF-ECG Performance on Each Category
Se
Pp
F1

Figure 4. Class-wise performance of our framework in MITDB at DS1→ DS2 setting.

Table 4. Results on DS1→ DS2. Here, DS1 and DS2 are utilized as source and target domains. But
in the adaptation time, DS1 (source) is not utilized. (All results shown here are without requiring
source data).

DS1→ DS2 Sensitivity (%) Positive Predictivity (%) F1 Score (%)

N 99.4 99.2 99.7

V 96.4 97.2 98.2

S 97.1 98.6 99.4

F 85.4 83.4 88.2

Overall Accuracy (%) 98.4



Appl. Sci. 2023, 13, 8551 12 of 19

Table 5. Results on DS2→ DS1. Here, DS1 and DS2 are utilized as source and target domains. But
in the adaptation time, DS2 (source) is not utilized. (All results shown here are without requiring
source data).

DS2→ DS1 Sensitivity (%) Positive Predictivity (%) F1 Score (%)

N 94.2 94.7 96.2

V 96.2 92.3 92.3

S 96.4 97.4 96.2

F 85.6 86.8 83.2

Overall Accuracy (%) 96.5

Table 6. K-fold cross validation results on DS1→ DS2 with standard deviation.

Fold, K Sensitivity (%) Positive Predictivity (%) F1 Score (%) Accuracy (%)

K = 1 93.2 ± 0.6 93.4 ± 0.6 94.2 ± 0.5 92.2 ± 0.3

K = 2 95.6 ± 0.2 95.3 ± 0.3 94.2 ± 0.3 94.3 ± 0.2

K = 3 96.1 ± 0.7 96.7 ± 0.4 96.2 ± 0.5 96.8 ± 0.3

K = 4 98.2 ± 0.8 97.0 ± 0.7 98.0 ± 0.7 97.9 ± 0.5

K = 5 99.1 ± 0.5 99.2 ± 0.5 98.5 ± 0.3 98.2 ± 0.4

Table 7. Confusion matrix on DS2→ DS1 adaptation.

N V S F

N 44,176 226 46 39

V 43 3196 76 31

S 23 7 3681 6

F 24 30 38 1779

4.3.2. Results on Original Source to Target Data

In Table 8, we provide the results on the original source and target domains. Here,
we consider the source domain as a train set and the target domain as a test set. In this
scenario, we do not use the adaptation task to understand how our model can perform in
traditional conditions. We observe that the results we obtained in the traditional setting are
nearly the same as in the adaptation setting. Hence, our model has generalization power,
even without the adaptation setting.

Table 8. Results on the original source to target domains.

Class Sensitivity (%) Positive Predictivity (%) F1 Score (%)

N 98.3 98.7 99.1

V 97.2 96.8 98.1

S 96.2 95.3 96.6

F 85.4 87.2 85.1

Overall Accuracy (%) 98.1

4.3.3. Results on MITBD, INCARTDB, SVDB, and LTDB

In Table 9, we show the results of the generalization of our proposed source-free
domain adaptation model in different scenarios. In this case, we only consider overall
accuracy by combining each class, such as N, V, S, and F. Here, S and F tend to have
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fewer samples, but we increase the number of samples adopting the GAN framework. We
evaluate the MITDB database as the base database for the adaptation task. Therefore, at
first, we use the MITDB database for our initial source training and evaluate each database
such as INCARTDB, SVDB, and LTDB. We denote each of the databases as MITDB (DM),
INCARTDB (DI), SVDB (DS), and LTDB (DL). Then, we also use INCARTDB, SVDB, and
LTDB as source sets and MITDB as target sets for experimental purposes. In every case,
we have a boost after adopting our source-free domain adaptation method, even in critical
S and F classes where the samples are very less than the N and V classes. Our strategy
of adopting GAN for generating more synthetic samples increases the generalization of
our method.

Table 9. Cross-domain experimental results on each domain. Here, MITDB (DM), INCARTDB (DI),
SVDB (DS), and LTDB (DL). Results without domain adaptation and with source-free adaptation
are shown.

Task N (%) V (%) S (%) F (%) Accuracy (%)

Se Pp F1 Se Pp F1 Se Pp F1 Se Pp F1

DM → DI
w/o DA 96.5 96.2 93.1 70.4 91.4 71.2 69.2 40.1 51.6 32.4 42.2 45.7 94.2
w SF-DA 98.3 97.2 96.4 76.3 95.2 82.2 72.6 43.8 62.9 37.1 56.2 66.2 96.1

DM → DS
w/o DA 93.2 92.1 91.4 83.3 71.7 81.4 46.3 68.3 34.6 23.2 33.1 34.0 92.2
w SF-DA 96.8 94.2 95.3 87.7 77.5 89.5 51.1 78.2 43.2 29.0 38.9 34.0 94.7

DM → DL
w/o DA 86.8 96.3 95.7 72.1 76.3 67.1 41.9 29.0 25.0 30.3 79.2 41.2 88.9
w SF-DA 96.8 96.4 91.2 77.8 89.0 72.3 46.2 36.2 28.0 34.0 76.2 48.2 94.2

DI → DM
w/o DA 94.1 97.2 92.3 87.4 67.9 72.5 39.0 40.2 39.8 42.0 46.2 53.6 94.6
w SF-DA 99.1 98.4 96.0 80.6 73.3 81.0 40.5 45.1 49.1 29.1 59.0 56.2 96.5

DS → DM
w/o DA 92.4 97.3 96.3 79.7 90.4 85.4 52.5 38.7 24.0 39.0 43.1 63.2 92.9
w SF-DA 95.1 98.1 96.4 88.7 94.3 85.8 64.2 46.2 27.6 50.5 47.8 71.4 96.1

DL → DM
w/o DA 85.2 93.2 92.4 82.5 58.8 59.0 26.1 30.0 29.2 23.2 22.0 23.0 88.3
w SF-DA 92.0 95.9 95.3 77.4 75.5 71.4 27.2 37.4 38.2 25.0 22.0 23.0 95.4

4.3.4. Results on PTB and PTB_XL

For experimental purposes, we divided the PTB database into two non-overlapping
subsets: PTB1 and PTB2. Here, the PTB1 consists of 74 patient data, whereas PTB2 consists
of 90 patient data in the PTB1→ PTB2 test case. Table 10 shows the results of each class
adaptation. In the second case, PTB→ PTB_XL, we utilized all 164 patient data from the
PTB database, where PTB_XL is used as a target set. Table 11 shows the detailed results
of each class adaptation. Overall, both PTB1→ PTB2 and PTB→ PTB_XL achieved an
acceptable overall accuracy of 95.5% and 93.2%, respectively.

Table 10. Results on PTB1 → PTB2, cross-patient classification task.

MI-Sub Category Sensitivity (%) Positive Predictivity (%) F1 Score (%) Accuracy (%)

AMI 95.5 89.2 90.7

ASMI 97.2 93.3 93.0

IMI 94.6 96.8 95.2

ALMI 91.8 95.8 94.1 95.5

ALMI 91.8 95.8 94.1

HC 89.2 92.5 88.3

Average 94.5 94.4 93.5
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Table 11. Results on PTB→ PTB_XL, cross-patient classification task.

MI-Sub Category Sensitivity (%) Positive Predictivity (%) F1 Score (%) Accuracy (%)

AMI 73.5 70.3 69.3

ASMI 88.3 89.2 92.3

IMI 88.2 92.9 86.2

ALMI 71.3 73.6 74.3 93.2

ALMI 86.6 70.5 85.2

HC 96.4 96.3 93.6

Average 85.7 82.1 83.4

4.3.5. Comparison with State-of-Art Methods

Table 12 shows the comparison between our model with other methods. We consider
all the results from [3] and compared the results with our method. All results in the table
are based on only the MITDB database, as it is widely used by other works, and also
convenient to use for UDA tasks. For a fair comparison, we utilized several traditional
methods [37,41–46] methods to compare results. These traditional methods are based on
interpatient and patient-specific settings. For comparison purposes, we used DS1→ DS2.
These methods can be classified into interpatient, patient-specific, unsupervised domain
adaptation, and source-free domain adaptation. In all settings, the results are considerably
good in the ECG classification task. But the main challenge of generalization in unseen
samples is still unfolding in traditional approaches. On the other hand, UDA methods
can unfold this issue with its generalization capability in unseen domains. But it still
lacks privacy in real-world settings. On the other hand, our proposed method SF-ECG
outperformed the traditional-DL methods as well as UDA methods, even in critical new
settings of UDA. Our method has many advantages, since it does not require a source set
during training. So, it preserves privacy and generalization. This is considered a great
advantage in many ECG classification applications.

Table 12. Comparison between recent state of the art with our source-free adaptation method and
unsupervised domain adaptation method on MITDB DS2. All the results are taken from [3]. Here,
we denote interpatient = IP, patient-specific = PS, unsupervised domain adaptation = UDA, and
source-free domain adaptation = SFDA.

Methods Types N (%) V (%) S (%) F (%) Accuracy (%)

Se Pp F1 Se Pp F1 Se Pp F1 Se Pp F1

[37] IP 99.2 95.2 90.0 93.9 90.9 92.0 91.1 42.2 58.0 - - - 93.8

[41] IP - - - 91.25 88.3 90.0 62.7 61.2 62.0 - - - -

[42] IP 98.9 97.4 98.0 85.7 94.1 89.0 76.5 76.6 76.0 25.0 1.79 0.0 96.4

[43] IP 88.5 98.8 93.0 92.0 72.1 80.0 82.0 30.4 44.0 68.3 26.6 38.0 95.3

[44] IP 91.8 98.9 95.0 95.1 90.1 92.0 89.0 35.4 50.0 32.2 20.3 25.0 91.4

[45] PS 97.6 98.5 98.0 93.8 92.4 93.0 76.8 74.0 75.0 79.6 62.4 70.0 96.1

[46] PS 99.7 97.2 98.0 91.8 98.0 95.0 61.4 90.7 73.0 9.0 28.3 14.0 97.0

[10] UDA - - - - - - - - - - - - 93.0

[3] UDA 99.1 98.4 99.0 94.0 92.3 93.0 76.5 90.2 83.0 57.9 74.1 65.0 97.6

[5] UDA 99.4 98.0 98.7 91.4 87.2 89.2 57 88.6 69.4 37.3 47.6 41.8 96.8

SF-ECG (Ours) SFDA 99.4 99.2 99.7 96.4 97.2 98.2 87.1 88.6 89.4 81.7 86.9 82.8 98.4
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4.4. Ablation Studies
4.4.1. Effect of Part by Part Loss Function

In Tables 13 and 14, we show the ablation of the impact of the loss functions. We
show the effect based on the MITDB database, considering two tasks: DS1→ DS2, and
DS2→ DS1. In both cases, if we remove the adversarial loss Ladv, the model does not
converge. But if we use all the loss functions together, we can have a significant perfor-
mance boost compared to not using all the loss functions. Each loss function has its own
contribution to the overall performance of our framework. Figure 5 shows the effectiveness
of using all loss functions together.

{ cls + ce + d} { cls + ce + adv} { avd + ce + d + cls}
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Figure 5. Ablation on the effect of loss functions.

Table 13. Ablation on the effect of loss functions. Here, we use the MITDB database. Here, results on
DS1→ DS2 are presented.

Ladv LCE LD Lcls Accuracy (%)

- X X X Not converge

X X - X 87.8

X X X X 98.4

Table 14. Ablation on the effect of loss functions. Here, we use the MITDB database. Here, results on
DS2→ DS1 are presented.

Ladv LCE LD Lcls Accuracy (%)

- X X X Not converge

X X - X 85.4

X X X X 96.5

4.4.2. Effectiveness in Number of Generated Source Samples

We experiment to examine the effectiveness of our proposed framework on generated
source samples. Table 15 shows the results of the effectiveness of our framework on
the number of generated samples. We tested our model without generating synthetic
samples on the S and F classes. As we can see, both with (source-free) and without domain
adaptation, the model has a performance drop, whereas a higher number of samples leads
to a better result in all possible cases.
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Table 15. Results on the effectiveness of increasing the number of samples in adaptation task.

Class No. of Samples w/o UDA SFDA

S 3712 92.2 96.2

2764 81.2 83.2

F 1871 79.4 86.2

801 77.6 84.8

4.4.3. Generalization of Source Free Adaptation

Table 16 shows the generalization of source-free domain adaptation in different case
scenarios. As we can see, not utilizing the UDA technique can hinder the performance by
a large margin, whereas utilizing the UDA technique can increase the performance by a
considerable margin. In all cases, we offer better performance than the traditional UDA
method, even altering source-free training during the adaptation, which also offers many
advantages over traditional UDA techniques.

Table 16. The accuracy of without/with UDA-based tasks in both MITDB, PTB, and PTB_XL, which
demonstrates the generalization and impact of our SFDA method.

Tasks w/o UDA UDA with Source SFDA (Ours)

DS1→ DS2 91.7 94.0 98.4

DS2→ DS1 89.5 93.2 96.5

PTB_1→ PTB_2 61.4 93.2 95.5

PTB→ PTB_XL 59.8 90.3 93.2

5. Conclusions

In this paper, we propose a novel domain adaptation technique called SF-ECG, and also
devise a new domain adaptation task in ECG classification, which is source-free domain
adaptation. Our framework is developed for interpatient adaptation tasks, mostly for
arrhythmia classification. We design a framework that consists of three modules, namely,
data adjustment, local clustering, and source-free adaptation. With a more balanced
performance across multiple categories, we achieve results that are comparable to those
of other contemporary arts. To efficiently improve the deep learning model, we use four
loss functions to reduce the performance-degrading distribution discrepancies of various
records. In the inference phase, our method does not require additional data or even
sources, and does not necessitate the addition of annotations to new records. The proposed
approach is adaptable to new data and has the potential to significantly enhance deep
learning models’ interpatient performance. Our approach is also capable of data privacy
and generalizability in unseen samples. We obtain more stable results in minor categories
where samples are deficient.
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