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Abstract: The complexity of modern power systems is increasing because of the development of
various intermittent generators. In practical reliability evaluations, it is essential to include both the
failure of conventional generators and the output characteristics of renewable energy; the use of the
latter has increased rapidly. The weather-dependent nature of renewable energy output, which is
inexplicable in the load duration curve method, highlights the need for further study of the methods of
a reliability evaluation that can consider temporal characteristics. This paper proposes a deterministic
reliability evaluation method based on the Booth–Baleriaux method, chronologically extended to
address the preventative maintenance schedule of a generator and the characteristics of renewable
energy. The proposed method was applied to an IEEE reliability test system for performance
verification, and a reliability evaluation was performed considering various chronological patterns.
The proposed method was also applied to determine the adequate capacity reserve that should be
installed in a Korean power system. The proposed method is stable, and it produced robust results.

Keywords: power system reliability; reliability evaluation; convolution method; chronological
reliability; loss of load probability; deterministic method; reliability test system

1. Introduction

Power system reliability is considered one of the most important factors in the oper-
ation and planning of a power system. Because of the unexpected failures of generators,
system operators must secure additional capacity to ensure the system runs reliably [1,2].
On the other hand, the indiscriminate expansion of generators can lead to high social
costs. Therefore, it is necessary to establish reliability standards and quantitatively express
reliability to develop appropriate generation expansion planning [3].

Therefore, several indices have been suggested. The deterministic reliability indices
are represented by a system margin based on the supply capacity according to the demand,
and the probabilistic reliability indices express the risk of loss of load probabilistically.
Although the relative influence of each generator on reliability is difficult to explain using
the deterministic indices, probabilistic indices can quantify risk more effectively because
they consider generator failures [4]. As power systems have become more variable and
complex, probabilistic reliability indices that could effectively quantify risk have become
popular in many electricity markets, and these probabilistic indices are currently adopted
in stipulating reliability standards [5–9].

Probabilistic reliability indices are obtainable via reliability evaluations. Reliability
evaluation methods include stochastic methods, which are simulation-based, and determin-
istic methods conducted via mathematical processes, such as convolution. The deterministic
method evaluates reliability by estimating system availability distribution based on the
probability of generator failure (forced outage rate, FOR) [10–12]. On the other hand, the
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stochastic method estimates reliability through sampling approaches, such as a Monte Carlo
simulation, which is a representative stochastic algorithm [13]. Deterministic methods
show consistent results, but they are computationally expensive. In contrast, although
stochastic methods have poor reproducibility, they are simple to implement and can quickly
evaluate reliability [14].

For practical reliability evaluations, it is essential to consider the realistic aspects of a
power system, including preventative maintenance and generator failure. Considering that
the maintenance schedule affects daily (or hourly) system availability, reliability must be
assessed individually according to availability [15,16]. On the other hand, this procedure
results in a substantial computational load, making it challenging for a deterministic
reliability evaluation incorporating maintenance in large-scale system cases. Chanan and
Quan proposed a deconvolution method to reduce the time required for each reliability
evaluation [17]. Instead of performing several evaluations, some studies attempted to
account for the impact of maintenance within a single process. For example, WASP-IV
adjusts the generation capacity to accommodate the decrease in availability caused by
maintenance [18]. Hoffer [19] and Kim and Park [20] modified the FOR depending on
the maintenance period by assuming maintenance as a probabilistic factor. Nevertheless,
previous approaches might be unsuitable in some instances. Consequently, several studies
have used stochastic methods to study maintenance [21–23].

In recent years, the complexity of power systems has increased significantly because
of the integration of renewable generation resources. Recent studies have also analyzed
the effects of renewable resources on the reliability of the system [24,25]. On the other
hand, most research is biased toward the stochastic method, which is relatively tractable for
studying chronological patterns compared to the deterministic method [26–31]. Neverthe-
less, a study of the deterministic method, which can serve as a benchmark for validating or
converging results should be used because the stochastic method may be inconsistent and
potentially inaccurate. This paper proposes a deterministic reliability evaluation method,
incorporating chronological patterns, i.e., the characteristics of renewable resources and
maintenance schedules.

This paper proposes a deterministic reliability evaluation method for power sys-
tems. Deterministic methods assess reliability by estimating system availability based on
probabilistic models of system components. Therefore, the proposed method includes an
availability estimation approach and component modeling. As most probabilistic reliability
indices necessitate a calculation of the loss of load probability (LOLP), this study focuses
primarily on enhancing the LOLP calculation method.

The proposed method is based on the load duration curve (LDC) convolution approach
known as the Booth–Baleriaux method [11,12]. This proposed method enables an hourly
reliability evaluation by modeling hourly demand distribution and suggests a generator
model that considers time-variant generation characteristics. Furthermore, the proposed
model enables efficient convolution, reducing computational time.

The contributions of this paper are as follows. (1) In the proposed method, the hourly
demand distributions reflect the characteristics of time-dependent generators in a reliability
evaluation. Moreover, the resolution of demand distribution is not limited to the “hour”
and is extendable to arbitrary resolutions, which can accommodate time-varying generation
resources with various frequencies. (2) The proposed method is deterministic and has con-
sistent indices. Policymakers may prefer accurate and consistent results, and the method
can be used to validate reliability evaluation algorithms based on stochastic approaches.
(3) The proposed method was validated by applying it to the IEEE Reliability Test System
2020. Furthermore, a reliability evaluation was performed considering various chronologi-
cal information and analyzing how chronological information affects reliability.

This paper is organized as follows: Section 2 describes the mathematical formulation
of the existing deterministic and proposed method. The reliability of the IEEE Reliability
Test System 2020 is evaluated in Section 3 to verify the proposed method, followed by an
analysis of the effect of various chronological patterns on reliability. Section 4 applies the
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proposed method to a reliability evaluation of the Korean power system to assess resource
adequacy. Finally, Section 5 presents the conclusions.

2. Literature Review
2.1. Loss of Load Probability

The loss of load probability (LOLP), a representative probabilistic reliability index, is
defined as the likelihood that the available capacity is insufficient to meet demand, leading
to a loss of load. The mathematical expression for LOLP is presented below:

LOLP = P(Available capacity < Demand), (1)

where the P(·) operator denotes the probability that (·) is true. The “Available capacity”
term refers to the system availability contributed by all resources participating in electricity
generation, encompassing non-dispatchable resources. “Demand” pertains to the electricity
requirements of consumers. The “Available capacity” exhibits a probability distribution
assuming that the failure risk of a generator is a random variable, denoted as FOR.

Conventionally, estimating the system availability necessitates a consideration of every
combination of commitment states of generators. On the other hand, several studies have
proposed efficient reliability evaluation methods for calculating the LOLP because of the
exponential complexity of this process, circumventing the problem of dimensions.

2.2. Capacity Outage Probability Table Method

The capacity outage probability table (COPT) method was used to obtain the LOLP by
estimating the outage capacity distribution according to the failure of the generator [10].
The general formulation of COPT is expressed as follows:

COPTk(x) = (1− FORk)COPTk−1(x− Ck) + FORkCOPTk−1(x), (2)

COPT0(x) =
{

0, x > 0
1, x ≤ 0

, (3)

where COPTk(x) denotes the probability of x outage capacity in generators 1 to k, while
FORk and Ck represent the failure probability and capacity of the generator k, respectively.
The COPT is updated through a recurrent process. In (2), the initial term (1− FORk term)
corresponds to the contribution of generator k to the system, whereas the subsequent term
(FORk term) shows the impact of the outage of generator k on the system. Employing
COPT, the LOLP can be expressed as follows:

LOLP =
∫ ICP

ICP−d
COPTN(x)dx, (4)

where COPTN is the capacity outage probability table by all generators within the system;
ICP signifies the total installed capacity; d is the system demand. A loss of load occurs
when the system availability falls below d, i.e., ICP− x < d. Consequently, LOLP equals
the integral of COPTN over the interval [ICP− d, ICP].

2.3. Load Duration Curve Method

The load duration curve (LDC) convolution method is a deterministic reliability
evaluation method that simultaneously considers a demand over periods [11,12]. The LDC
convolution method regards generator failure as the occurrence of additional demand and
updates the equivalent load duration curve (ELDC), similar to the COPT method. The
general formulation of ELDC is expressed as follows:

ELDCk(x) = (1− FORk)ELDCk−1(x− Ck) + FORkELDCk−1(x), (5)
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ELDC0(x) = LDC(x), (6)

where ELDCk(x) is the probability that the equivalent demand exceeds x capacity, consid-
ering the uncertainty of generators 1 to k. In (5), the initial term (1− FORk term) is the
contribution of generator k to the system, whereas the subsequent term (FORk term) refers
to the impact of the outage of generator k on the system. LDC(x) is the probability that
system demand surpasses x capacity and is defined as 1, while x ≤ 0. Using ELDC, the
LOLP can be expressed as follows:

LOLP = ELDCN(ICP), (7)

where ELDCN is the equivalent demand probability function, including the influence of all
generators in the system; a loss of load occurs when the equivalent demand exceeds the
system installed capacity, ICP.

3. Methodology

Unlike the conventional LDC convolution method, in which generator failure is
considered the result of equivalent demand, the proposed method considers the availability
of generators as the reduction in unserved demand and updates the equivalent demand.

Considering that the generator has multiple states, such as ON/OFF and derated or
partial failure, the generator model is expressed as follows:

Gk(x) =
Sk

∑
i=1

Pk,i δ(x + Xk,i), (8)

where Gk(x) indicates the availability probability distribution in the kth generator; Sk is the
number of states that appear in the kth generator; and Pk,i is the probability that the kth
generators produce the Xk,i capacity. According to the definition of probability, the sum of
Pk,i for all i is equal to 1. By substituting (8) into (5), ELDC can be expressed as follows:

ELDCk(x) = (Gk ∗ ELDCk−1)(x), (9)

where ∗ is the convolution operator that performs the sum operation of random vari-
ables. The proposed generator model makes the recurrent process faster than the LDC
conventional method because it does not increase the length of the ELDC.

A system element with a negative availability (or positive demand) should be modeled
as a load model. The load model and load duration curve are defined as (10) and (11),
respectively:

Lt(x) = δ(x− Dt), (10)

LDC(x) =
1
T

T

∑
t=1

(
1−

∫ x

−∞
Lt
(
x′
)
dx′
)

, (11)

where Lt(x) and Dt refer to demand distribution and system demand at time t, and LDC(x)
is the load duration curve expressed as (9) regarding the plan period T. Considering the
chronological characteristics of the generation availability, the extended generator model
and equivalent load model are expressed as follows:

Gk,t(x) =
Sk

∑
i=1

Pk,i,t δ(x + Xk,i,t), (12)

ELt,k(x) =
(

Gt,k ∗ · · · ∗
(

1−
∫ x

−∞
Lt
(
x′
)
dx′
))

, (13)
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where ELt,k(x) is the equivalent demand distribution at time t considering the availability
of generator 1 to k. By substituting (13) with (9), the ELDC is expressed as the sum of the
equivalent loads in (14):

ELDCk(x) =
1
T

T

∑
t=1

ELk,t(x). (14)

The equivalent load model is the unserved demand distribution. A loss of load occurs
when the unserved demand is more than zero. Consequently, LOLP is formulated as
follows:

LOLP = ELDCN(0). (15)

The proposed method is expressed as (16) with an expression of the existing method:

ELDCN,proposed(x) = ELDCN,existing(x + ICP), (16)

Equation (16) shows that (15) and (7) are mathematically equivalent.

4. Case Study

In the case study, the proposed method was verified by evaluating the reliability of
IEEE RTS 2020 and analyzing the effect of chronological characteristics on power system
reliability. An adequate installed capacity reserve was determined using the proposed
method for an actual Korean power system.

4.1. IEEE RTS 2020
4.1.1. System Data

IEEE RTS 2020 is a power system with a peak demand of 8192 MW, a generation
mix of 8076 MW, and a renewable energy value of 6224 MW [32,33]. Table 1 lists the dis-
patchable generation mix. The renewable energy value consists of 1000 MW hydroelectric,
2507.9 MW wind, 1554.5 MW solar, and 1161.4 MW rooftop solar energy.

Table 1. IEEE RTS 2020 generation mix.

Group Type Pmax
[MW]

Number of
Generators

FOR
[%]

U12 Oil/Steam 12 7 2.0
U20 Oil/CT 20 12 10.0
U55 Gas/CT 55 27 3.1
U76 Coal/Steam 76 7 2.0

U155 Coal/Steam 155 7 4.0
U350 Coal/Steam 350 2 8.0
U355 Gas/CC 355 10 3.1
U400 Nuclear 400 1 12.0

4.1.2. Proposed Method Verification

This section assumes the same environment as the previous study that evaluated the
reliability of RTS 2020 using the COPT method to verify the proposed method [32]. Preven-
tive maintenance and load uncertainty were not considered, and rounding was performed
to represent 1 MW units. The definitions of reliability indices used for verification, LOLH
and EUE, are as follows:

LOLH =
T

∑
t=1

ELt,N(0), (17)

EUE =
T

∑
t=1

(∫ ∞

0
ELt,N(x)dx

)
, (18)

where LOLH is the expected loss of load hour, the sum of the hourly LOLP, and EUE is the
expected unserved energy, the sum of the hourly unserved energy. Three methods were
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simulated for verification: (1) the COPT method, which is used in [23]; (2) the proposed
method; and (3) the traditional method, which updates the ELDCs, increasing their length.
Table 2 lists the reliability indices determined by each method.

Table 2. IEEE RTS 2020 reliability indices results.

Method LOLH
(Hour/Year)

EUE
(MWh/Year)

Time
(s)

COPT method 0.001898 0.233808 0.60
Proposed method 0.001898 0.233808 9.81

Traditional method 0.001898 0.233808 47.23

The simulations were performed in an environment with an AMD Ryzen 7 3700X
8-Core Processor CPU @ 3.59 GHz with 32 GB RAM. MATLAB source code on GitHub
was used to measure the runtime of the COPT method, and the remaining methods were
implemented using MATLAB 2021a [33]. Three methods were mathematically equivalent,
representing the same reliability indices. The proposed method was approximately five
times faster than the traditional method. Although the proposed method takes slightly
less computation time than the COPT method, it is competitive because it can apply
chronological characteristics.

4.2. Effect of Chronological Characteristic on the Power System Reliability
4.2.1. Load Uncertainty

Generally, the forecasted demand has an error. Therefore, several scholars believe that
system demand has a probability distribution. By expanding (10), the generalized load
model can be expressed as follows:

Lt(x) =
U

∑
i=1

Pi δ(x− Di,t), (19)

where U refers to the number of cases of demand, and Pi is the probability that the system
demand is Di,t. This section assumes that the load uncertainty follows a discrete normal
distribution with seven intervals, with a standard deviation of 5% for the predicted de-
mand [10]. Table 3 lists the reliability indices of RTS 2020 according to the load uncertainty
of 0–15%.

Table 3. IEEE RTS 2020 reliability indices results considering the load uncertainty.

Indices
Uncertainty (%)

0 2 5 10 15

LOLH
(hour/year) 0.001898 0.003347 0.032086 1.189605 8.549189

EUE
(MWh) 0.234 0.438 5.123 319.870 3615.958

Reliability indices increase as uncertainty increases. Although overpredicted and
underpredicted demands have the same probability; overpredicted demand affects the
system reliability more significantly than underpredicted demand. Therefore, a loss of load
occurs more often in a more unpredictable system.

4.2.2. Preventive Maintenance Schedule

Preventive maintenance changes the availability of a generator for a temporal period.
Because generators under maintenance cannot contribute to the system, the generalized
generator model is expressed as follows:
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Gk,t(x) =
Sk

∑
i=1

Pk,i,t(1− uk,t)δ(x + Xk,i,t), (20)

where uk,t is a binary value indicating whether the kth generator is under maintenance at
time t. An optimization problem was solved to establish the maintenance schedule, which
minimizes the weekly supply ratio variance. Table 4 lists the established schedule. Figure 1
shows the optimized availability capacity and netload profile. Table 5 lists the reliability
indices of the base case, which neglects the influence of maintenance, the optimized case,
which applies the optimized maintenance schedule, and the derated case, which uses the
derated capacity listed in Table 4 [18].
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Table 4. Maintenance schedule of generators.

Group Generator
Index

Maintenance
Start Week

Maintenance
Period (Weeks)

Derated Capacity
(MW)

U12
g1–g6 1

2 11g7 12

U20

g8–g16 1

2 19
g17 7
g18 12
g19 15

U55

g20 1

1 54

g21–g26 4
g27–g29 12

g30 13
g31–g34 16
g35–g36 46
g37–g41 48
g42–g46 50

U76
g47–g48 6

3 72g49 7
g50–g53 44

U155

g54 7

4 143
g55–g57 10
g58–g59 15

g60 42

U350
g61 4

5 317g62 44
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Table 4. Cont.

Group Generator
Index

Maintenance
Start Week

Maintenance
Period (Weeks)

Derated Capacity
(MW)

U355

g63–g64 1

1 348
g65–g68 4
g69–g70 15

g71 45
g72 48

U400 g73 12 6 354

Table 5. Results for IEEE RTS 2020 reliability indices considering maintenance.

Indices Base Case Optimized Case Derated Case

LOLH
(hour/year) 0.001898 0.001898 0.011447

EUE
(MWh/year) 0.23380 0.23380 1.510155

The reliability indices were similar in the optimized case and the base case. This result
was analyzed because the maintenance period of gas turbines (U55, U355), corresponding
to 62% of the total capacity of the system, was low, and the optimization was effective.
On the other hand, reliability indices changed significantly in the derated case. This was
because the derated capacity affects availability even during high-demand periods when
maintenance is not usually performed. Therefore, considering the influence of maintenance
indirectly without dealing with the maintenance schedule may not adequately evaluate
reliability.

4.2.3. Temperature

The availability of gas turbines depends on temperature sensitivity. A reliability
evaluation was performed by considering the change in availability according to the
temperature of G55 and G355 in RTS 2020 to confirm its influence. The data in Table 6 show
that the gas turbine has a 100% output at 15 ◦C and changes by 0.6% per 1 ◦C [34]. The
temperature was referenced in Washington, D.C., and provided by WWIS [35].

Table 6. Monthly capacity of gas turbines according to temperature.

Month Temperature
(◦C) Change (%) G55 (MW) G355 (MW)

1 0.65 +8.6 59 385
2 2.35 +7.6 59 382
3 6.80 +4.9 57 372
4 12.45 +1.5 55 360
5 17.30 −1.4 54 350
6 22.45 −4.5 52 339
7 24.85 −5.9 51 334
8 24.10 −5.5 52 335
9 19.90 −2.9 53 344
10 13.35 +1.0 55 358
11 8.00 +4.2 57 369
12 2.55 +7.5 59 381

Table 7 presents the reliability indices considering temperature. A significant change
in the reliability indices was noted because G55 and G355 accounted for a large proportion
of RTS 2020. These changes were observed because the monthly system availability varies
dramatically. Overall, a reliability evaluation considering temperature may be required
depending on the generation mix.
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Table 7. IEEE RTS 2020 reliability indices considering the temperature.

Indices Base Case Temp-Considered Case Change (%)

LOLH
(hour/year) 0.001898 0.011176 +488.8

EUE
(MWh/year) 0.23380 1.47222 +529.7

4.2.4. Renewable Energy Uncertainty

Renewable energy (RE) output that depends on weather has considerable uncertainty.
Sometimes, the output of RE is presumed, like RTS 2020, but generally, it should be
predicted.

For an analysis of RE uncertainty, as shown in Figure 2, it was assumed that the output
of RE has a monthly and hourly average output, and the uncertainty follows a normal
distribution [36]. The RE models are calculated as follows:

REk,t(x) = mk,t +
Rk,t

∑
i=1

Pk,i,tδ(x + Yk,i,t)

=
Rk
∑

i=1
Pk,i,t δ(x + Xk,i,t),

(21)

where mk,t and Rk,t are the monthly hourly average and the number of cases of the output
of RE k, respectively, at time t. Yk,i,t is the term for uncertainty, and (21) can be expressed as
similar to (12). Therefore, RE can be regarded as a generator with many states and does not
require maintenance.
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Table 8 lists the reliability indices according to the uncertainty of RE. In the 0 uncer-
tainty case, the reliability indices appear to be improved because the contribution of RE
has increased during the high-demand period compared to the existing system. As with
load uncertainty, the reliability indices increase as the uncertainty increases. Hence, the
contribution of RE to the system reliability decreases when their output is highly variable
and unpredictable because of climate or geographic factors.

Table 8. IEEE RTS 2020 reliability indices results considering the RE uncertainty.

Indices
Uncertainty (%)

0 2 5 10 15

LOLH
(hour/year) 0.000966 0.000974 0.001018 0.001180 0.001506

EUE
(MWh) 0.118651 0.119550 0.125131 0.147038 0.191325

4.3. Korean Power System
4.3.1. System Data

This section evaluates the reliability of the 2022 Korean power system, and the ade-
quate installed capacity reserve is calculated. The 2022 Korean power system comprised
a generation mix of 134.27 GW, including RE, and the peak demand of the system is
86.72 GW [37] (Table 9).

Table 9. The 2022 Korean power system generation mix.

Fuel Dispatchable Total Capacity
(GW)

Number of
Generators

% of Total
(%)

Oil Y 0.86 14 0.6
LNG Y 41.20 96 30.7
Coal Y 36.14 58 26.9

Nuclear Y 23.25 24 17.3
Pump Y 4.70 16 3.5

RE N 26.30 - 19.6
etc. N 1.82 - 1.4

4.3.2. Adequate Installed Capacity Reserve

The Korean electricity market stipulates a reliability standard as a loss of load expecta-
tion (LOLE) of 0.3 days/year. An adequate installed capacity reserve (AICR) refers to the
ratio of supply capacity to peak demand in the LOLE 0.3 condition. The AICR has profound
financial relevance because it is linked to the settlement amount of the market participants.
Therefore, in deriving the AICR, reproducibility and accuracy must be confirmed using a
deterministic method, such as the proposed method in this study. The formulation of AICR
is as follows:

AICR =
ICP + DRcp + NDtr − HVDCcp

Dpeak

∣∣∣
LOLE=0.3

, (22)

where DRcp is the contracted capacity for the demand response resources; NDtr is the
transaction volume of non-dispatchable resources at peak demand; HVDCcp is the capacity
of the HVDC, which transfers power from the main system to the sub-grid. The pump was
assumed to be dispatchable regardless of the reservoir level. The output of non-dispatchable
resources was considered to be the chronological patterns. The preventive maintenance
schedule referred to the shutdown plan registered in the Generator Outage Management
System (g-OMS) and the neglected temperature and load. Figure 3 presents a flow chart for
determining an adequate installed reserve margin by adjusting the demand.
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Table 10 lists the iterative process for adjusting the demand to meet the LOLE 0.3
condition. The demand was adjusted in each iteration, and the LOLE was calculated. As
Iteration 15, LOLE satisfies 0.3, the reliability standard of the Korea Power System, and
the adequate installed capacity reserve was calculated as 14.41%. A simulation time of
approximately 1300 s occurred in the series of processes, and the results were determined
within a reasonable time frame.

Table 10. Process for calculating the adequate installed capacity reserve.

Iteration Peak Demand
(MW)

LOLE
(Day/Year)

Reserve Margin
(%)

1 86,719 0.0000 31.31
2 89,202 0.0000 27.66
3 91,478 0.0001 24.48
4 93,579 0.0021 21.69
5 95,516 0.0173 19.22
6 97,232 0.0746 17.12
7 98,515 0.1740 15.59
8 99,190 0.2522 14.80
9 99,432 0.2850 14.53
10 99,504 0.2952 14.44
11 99,525 0.2984 14.42
12 99,532 0.2994 14.41
13 99,535 0.2998 14.41
14 99,536 0.2999 14.41
15 99,536 0.3000 14.41

5. Conclusions

Many power systems have prescribed probabilistic reliability standards to ensure the
stability of a system. As the system becomes increasingly complex, a reliability evaluation
method that adequately reflects the features of a power system should be developed.

This paper proposed a deterministic reliability evaluation method considering chrono-
logical patterns by evaluating hourly reliability via LDC decomposition. In the proposed
method, the hourly demand distributions reflect the characteristics of time-dependent
generators in reliability evaluation. The resolution of the demand distribution is not limited
to the “hour” and can be extended to arbitrary resolutions, which can accommodate time-
varying generation resources with various frequencies. The proposed method reduced the
computational load on the convolution operation to improve performance.

The proposed method was validated by its application in the IEEE Reliability Test
System 2020. The proposed method has accurate results, and this efficient convolution
made the proposed method faster. This paper analyzed the effects of various chronological
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patterns, such as maintenance schedules and temperature. The reliability evaluation
showed that chronological patterns significantly affect the reliability. In particular, the
influence according to the maintenance modeling was outstanding. These results suggest
that a reliability evaluation without considering chronological patterns may be unreliable.

The proposed method was applied to determine the adequate installed capacity
reserve in the Korean power system. This method can determine the AICR because it
shows consistent results. The acceptable computational speed of the proposed method
makes it competitive for use in the reliability evaluation of an actual large-scale system.

Moreover, because the proposed method presents consistent reliability indices, the
proposed method may be useful for policymakers who prefer accurate and consistent
results. Hence, the method can be used to validate reliability evaluation algorithms using
stochastic approaches.

Although this study considers chronological patterns, it has the limitation of treating
the pump as a traditional generator resource. Future research will consider the dynamic
scheduling of a pump and ESS with fuel quantity (e.g., reservoir level and SOC) constraints
in the reliability evaluation.
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