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Abstract: The construction of a reasonable and reliable deformation prediction model is of great prac-
tical significance for dam safety assessment and risk decision-making. Traditional dam deformation
prediction models are susceptible to interference from redundant features, weak generalization ability,
and a lack of model interpretation. Based on this, a deformation prediction model that considers the
lag effect of environmental quantities is proposed. The model first constructs a new deformation lag
influence factor based on the plain HST model through the lag quantization algorithm. Secondly,
the attention and memory capacity of the model is improved by introducing a multi-head attention
mechanism to the features of the long-time domain deformation influence factor, and finally, the
extracted dynamic features are transferred to the ConvLSTM model for learning, training, and predic-
tion. The results of the simulation tests based on the measured deformation data of an active dam
show that the introduction of the deformation lag factor not only improves the interpretation of the
prediction model for deformation but also makes the prediction of deformation more accurate, and
it can improve the evaluation indexes such as RMSE by 50%, the nMAPE by 40%, and R2 by 10%
compared with the traditional prediction model. The combined prediction model is more capable
of mining the hidden features of the data and has a deeper picture of the overall peak and local
extremes of the deformation data, which provides a new way of thinking for the dam deformation
prediction model.

Keywords: hysteresis; ConvLSTM; attention mechanism; prediction model; dam deformation

1. Introduction

In recent years, a global slowdown in water and hydropower construction has led
countries to pay attention to the management of existing water and hydropower facilities [1],
so the effective development of water “four pres” technology has become a key engineering
problem in the field of dam safety monitoring [2–4].

Dams are subjected to a variety of factors such as the nature of the dam foundation
engineering, temperature conditions, structural design, and their own loading during
their complex and variable service, and their properties will gradually deteriorate with
increasing service life [5–7]. This deterioration may lead to an increase in the probability of
accidents in dams, which in turn may cause serious property damage and casualties in the
surrounding towns [8–10]. Therefore, the focus of research has shifted to how to reasonably
and effectively construct dam deformation early warning and forecasting models. Among
them, it is of great practical importance to rely on actual dam measurement data to study
the nonlinear relationship between dam deformation and each deformation characteristic
factor, to establish a reliable dam deformation monitoring model, to accurately predict
the deformation of dams, and to comprehensively understand their operational status to
ensure the long-term safety of dam projects [11].
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As the analysis of deformation monitoring information has developed toward a
more in-depth field, many scholars have proposed some new methods and techniques
to monitor the deformation of dams. Among them, optimization combination models,
digital filtering, and principal component regression are widely used in the field of dam
safety monitoring [12–14]. At present, in practical engineering, deformation monitoring
models can be divided into three main categories, including statistical models, deterministic
models, and machine learning models [15,16].

Statistical models are based on statistical analysis and the modeling of large amounts
of deformation monitoring data to derive probability distributions and trend predictions
of the deformation behavior of dams [17]. Typical statistical models are the hydrostatic-
thermal-time (HTT) model [18] and the hydrostatic-season-time (HST) model [19]. Among
them, the HTT model is applicable when the temperature measurement points of the dam
body and foundation can fully describe the variation in its temperature field, and the
measured values of each temperature measurement point are used as the temperature
components [18]. The HST model, on the other hand, uses harmonic factors to describe
the temperature components when the temperature monitoring data inside the dam are
lacking or insufficient, and they usually coincide with the deformation of the dam in most
cases [19].

Deterministic models are physical models based on the structural properties, material
properties, and loads of a dam. By modeling and analyzing the mechanical behavior of a
dam, its deformation response and safety conditions can be predicted [20]. Deterministic
models usually use numerical computational methods, such as finite element analysis [21].
However, traditional deterministic modeling methods have several limitations and chal-
lenges. First, the implementation of the method may require significant time and effort
because of the need to build complex models and perform detailed numerical calculations.
Second, some assumptions and simplifications are often required for the geometry and
boundary conditions of the dam, which may negatively affect the accuracy of the predic-
tions [22,23]. In addition, the lack of long-term monitoring data makes it difficult for these
models to accurately consider the long-term deformation behavior of dams [24].

With the continuous progress of machine learning technology, its application in dam
deformation prediction and analysis has become a hot spot for research. Compared with
traditional mathematical models, machine learning models can better handle complex
nonlinear relationships and learn the patterns and laws between deformation and various
influencing factors from a large amount of measured data [25,26].

Stojanovic et al. [27] developed a neural-network-based dam deformation modeling
system that can adapt to the dynamic changes in the dam observation data by updating
the algorithm parameters in real time and effectively improving the adaptive nature of
the model. This can reduce the influence of artificial parameters on model accuracy while
ensuring the timeliness of parameter selection. Zhu et al. [28] used adaptive theory to
optimize the artificial bee colony algorithm and combined it with a back propagation (BP)
neural network model to accurately predict the deformation sequences of high arch dams
and provide a safety state analysis of dam structures with Gourine’s [29] combined singular
spectrum analysis and ANNs to study the influencing factors of dam displacement, and they
achieved good results. Wei et al. [30] considered the influence that complex nonlinearities
in the residual sequence would have on the prediction accuracy in the modeling process of
deformation prediction, and they proposed a combined prediction model, which integrated
wavelet decomposition, neural networks, and integrated moving average autonomy on
the basis of traditional statistical models. Barzaghi [31] used a GNSS to analyze the
deformation of the Eleonora DArborea dam and demonstrated that GNSS technology
could reflect the displacement of the dam in both time and space. For the highly nonlinear
problem of temperature factor, based on the deformation prediction model constructed
using radial basis neural network technology, the kernel principal component analysis
method was introduced to reduce the dimensionality of the temperature effect quantity,
and the effectiveness of the model was verified in engineering applications.
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However, neural network methods are prone to fall into local optimal solutions
in the prediction process due to the gradient-descent-based training [32,33], and their
generalization ability still needs to be improved. For this reason, Kang et al. [34], Li
et al. [35], and Fan et al. [36] applied the extreme learning machine (ELM) model to the
dam deformation prediction. The ELM model uses the least squares method for the model
solution, which avoids the impact of iterative computation on network accuracy. The
effectiveness and superiority of the extreme learning machine model were demonstrated
by comparing it with statistical models and conventional artificial neural network methods
and by validating it in engineering examples [37,38].

In summary, a combined MHA-ConvLSTM (Multi-Head Attention-ConvLSTM) model
that takes the environmental volume lag into account is suggested. By including lag vari-
ables to strengthen the explanation of the prediction model and by merging the attention
mechanism and convolution technique, they seek to boost the performance of the pre-
diction model in memorization, depiction, and mining features. Finally, by comparing
and assessing the prediction effect with other models or benchmark models for actual
engineering data, the viability of introducing the lag component and the efficacy of the
combined prediction model are confirmed.

The remainder of this essay is structured as follows. The deformation hysteresis quan-
tification algorithm’s fundamental principles and implementation procedure are covered in
Section 2. The proposed hybrid prediction model for dam deformation, MHA-ConvLSTM,
is also provided along with its creation method. Section 3 gives a full examination of the
findings from each of the three validation procedures for the model, including the feasibility
validation of the hysteresis factor addition, the ablation validation, and the validity and
generalization validation. Section 4 concludes the entire essay and presents a plan for
more research.

2. Methodology
2.1. Deformation Hysteresis Quantification Algorithm

In order to quantify the deformation lag time, which is primarily influenced by envi-
ronmental quantities, this paper proposes a deformation lag quantification algorithm by
analyzing the fluctuations and phase differences between the environmental quantities
(water level, temperature, etc.) and the measured data of the effect quantity (dam deforma-
tion). This approach only considers the water level (H) and dam deformation (δ), as this
paper employs HST (hydrostatic-season-time) as the basis model. Due to the water level
variation factor, the dam deformation data and water level data are similar, but there is a
slight phase difference between the two.

Therefore, the fundamental concept behind the lag quantification approach is to first
employ data decomposition and reconstruction techniques to minimize the negative effects
of irregular terms on the phase computation and then to compute the phase cross-entropy
of both to determine the lag time. These are the precise stages in this algorithm:

Step 1: Data pre-processing. The monitoring data were normalized to reduce the order-
of-magnitude differences between different physical quantities, and the normalization
equation was expressed as Equation (1). To reduce the problem of the inability to perform
cross-entropy calculations due to low data density, the hot card filling method [39] was
used for the monitoring data to make full use of the contextual linkage of the monitoring
data for the regression interpolation of missing values, so that the monitoring data have a
first-order continuous type.

Xnorm
i =

Xi − Xmin

Xmax − Xmin
(1)

In the above equation, Xnorm
i is the normalized data, Xi is the pre-normalized data,

and Xmax and Xmin are the maximum and minimum values of the monitored data.
Step 2: Breaking down and rebuilding monitoring data. VMD decomposition was used

to decompose the monitoring data, and the high-frequency information obtained from the
decomposition was retained and fused, reducing the detrimental effects of low-frequency
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information on the subsequent calculation of phase cross-entropy. The specific steps of the
VMD decomposition reconstruction technique are described in the literature. [40].

Step 3: Hysteresis quantization calculation. For the reconstructed monitoring informa-
tion, firstly, one set of data was transformed to the frequency of another set of data by using
discrete Fourier transform (DFT) [41–45]. Next, the lag was calculated using the phase
cross-entropy calculation method. The formula for calculating the phase cross-entropy CE
is shown in Equation (2)

CE = −∑[P(i, j)× log(P(i, j))] (2)

where P(i, j) is the probability of simultaneous occurrence of the time series i and j with
a phase difference of j. CE denotes the phase cross-entropy between the time series i and
j. The phase difference between the time series i and j can be obtained by calculating the
phase cross-entropy of the time series. If the phase difference is zero, they are synchronized.
If the phase difference is positive, it means that the time series i is lagging behind the time
series j. If the phase difference is negative, then the time series is lagging behind the time
series ji.

2.2. MHA-ConvLSTM Combined Prediction Model
2.2.1. Multi-Head Attention Mechanism (Multi-Head Attention)

Traditional recurrent neural networks (RNNs) struggle to capture long-range depen-
dencies in sequences when working with extended time domain temporal data. The
model’s performance can be enhanced by using the attention technique to assist the model
in more accurately capturing these dependencies. The fundamental goal of the attention
mechanism is to direct attention to the information that is most important for the current
task among a great amount of incoming data while reducing or even removing attention
to other aspects. By addressing the issue of information overload, this strategy increases
the task processing’s effectiveness and precision. The operations for the typical attention
mechanism module are query (Q), key (K), and value (V). In order to get the overall weights
and outputs, the attention weights must first be determined using Q and K, and then they
must be applied to V. According to Equation (3), the output vector is specifically calculated
for the input matrices Q, K, and V.

Attention(Q, K, V) = So f t max
(

QKT
√

dk

)
V (3)

Equation (3) in Q ∈ Rn×dk , K ∈ Rm×dk , V ∈ Rm×dv.
The multi-head attention mechanism is optimized and improved from multiple par-

allel attention mechanisms, which not only improves the computational speed but also
enables the network to adaptively select important data features to train the network model,
increasing the diversity of extracted features; the collaboration between multiple heads
helps the network to learn deeper data features, while the collaboration between multiple
heads also improves the accuracy of the model prediction. The mathematical expression of
the multi-head attention mechanism as Equation (4) is:

MultiHead(Q, K, V) = Concat(head1, · · · , headk, · · · , headn)WO (4)

In Equation (4), Concat(·) denotes the vertical stitching operation of the matrix and
WO denotes the weight matrix WO ∈ Rdv×dm .

2.2.2. Convolutional Long- and Short-Term Memory Neural Network (ConvLSTM)

LSTM and CNN are two commonly used neural network models; each of them is good
at extracting different types of features. LSTM is mainly used to extract features between
adjacent sequence data, so it is effective in dealing with time series prediction problems.
CNN, on the other hand, is able to extract effective bias features as feature vectors and
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obtain more structural information. In order to fully utilize the advantages of both models,
a new model, ConvLSTM, is proposed.

ConvLSTM combines the advantages of LSTM and CNN and is able to extract spatio-
temporal features simultaneously instead of a single temporal feature. Unlike the traditional
single-step spatio-temporal prediction, ConvLSTM uses a multi-step spatio-temporal pre-
diction and can predict future data trends more accurately. Therefore, this paper adopts the
ConvLSTM model to mine the hidden local features and spatio-temporal features of the
data. The specific formula of ConvLSTM is shown in the following Equations (5)–(9):

Zt,l = σ

(
∼
W

l

XZ ∗ Xt,l +
∼
W

l

HZ ∗ H
t−1,l

+
∼
W

l

CZ ◦ Ct−1,l +
∼
bl

Z

)
(5)

rt,l = σ

(
∼
W

l

XR ∗ Xt,l +
∼
W

l

HR ∗ H
t−1,l

+
∼
W

l

CR ◦ Ct−1,l +
∼
bl

R

)
(6)

Ct,l = zt,l ◦ tanh

(
∼
W

l

XC ∗ Xt,l +
∼
W

l

HC ∗ H
t−1,l

+
∼
bl

C

)
+ rt,l ◦ Ct−1,l (7)

ot,l = σ

(
∼
W

l

XO ∗ Xt,l +
∼
W

l

HO ∗ H
t−1,l

+
∼
W

l

CO ◦ Ct,l +
∼
bl

O

)
(8)

Ht,l = ot,l ◦ tanh
(

Ct,l
)

(9)

where ∗ denotes the convolution operator, ◦ denotes the Hadmard function, and σ denotes

the Sigmoid function, where
∼
W

l

XZ,
∼
W

l

HZ,
∼
W

l

CZ,
∼
W

l

XR,
∼
W

l

HR,
∼
W

l

CR,
∼
W

l

XC,
∼
W

l

HC,
∼
W

l

XO,
∼
W

l

HO,

and
∼
W

l

CO are the bias parameters of the convolutional long- and short-term neural network
in the l layer.

2.2.3. Combined Prediction Model

The combined prediction model based on MHA-ConvLSTM is intended to solve the
problems of poor feature extraction ability, insufficient local detail portrayal ability, and
low prediction accuracy of traditional prediction models for longer time domain data.

The specific steps are as follows:
Step 1: Input the water level data and deformation data into the hysteresis quantization

algorithm to calculate the hysteresis.
Step 2: Generate a new impact factor dataset by constructing lagging factors based on

the quantification results.
Step 3: Feature extraction of the input impact factor dataset via the multi-headed

attention mechanism.
Step 4: The extracted data features are trained and predicted by using ConvLSTM.
Step 5: The evaluation of predicted effects.
The specific flow of the hybrid prediction model based on MHA-ConvLSTM is shown

in Figure 1.
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Figure 1. Flow chart of MHA-ConvLSTM model.

2.3. Predictive Performance Quantifiers

This study suggests choosing RMSE (root mean square error), nMAPE (normal-ized
mean absolute percentage error), and R2 (coefficient of determination) as quantitative
indicators of prediction performance in order to assess the prediction performance of the
prediction algorithm at various levels. In Equations (10)–(12), the precise formulas for the
aforementioned metrics are displayed.

RMSE =

√
1
n

n

∑
i=1

(
yi

m − yi
p

)2
(10)

nMAPE =
1
n

n

∑
i=1

∣∣∣∣∣
(

yi
m − yi

p∣∣yi
m
∣∣
max

)∣∣∣∣∣ (11)

R2 = 1−

n
∑

i=1

(
yi

m − yi
p

)2

n
∑

i=1

(
yi

m −
−
ym

)2 (12)

In the above equation, n is the total number of data samples, yi
m and yi

p are the

measured and predicted values of i, and
−

ym is the average of ym. In these metrics, RMSE is
the square root of the mean of the squared difference between the measured and predicted
values. The smaller the RMSE, the closer the prediction result is to the actual value and
the more accurate the prediction algorithm is. nMAPE, as an improvement of MAPE, is
guaranteed that the denominator is not zero. For nMAPE, the smaller it is, the better the
prediction performance is represented. Additionally, R2 indicates how well the predicted
value fits the actual value. The closer R2 is to 1, the better the predicted value fits the
actual value.

3. Case Studies
3.1. Experimental Data Sources

The real measurement dataset of an operating dam is chosen as the case study basis
for an in-depth investigation and model analysis in order to confirm the viability and
generalizability of the suggested method. The project is situated in the Chinese region of
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Xinjiang Uygur Autonomous Region. The project’s principal development task is power
generation while taking into account the needs for downstream flood control. The total
storage capacity is 125 million m3, the regulating storage capacity is 72.4 million m3, the
normal storage level is 1649 m, and the maximum dam height is 110 m. An automated
safety inspection system, consisting of several instruments measuring temperature, water
level, seepage pressure, deforestation, etc., is deployed on the surface and inside the dam
to guarantee that it operates normally during its service life. The system, which consists of
a variety of sensors for measuring temperature, water level, seepage pressure, deformation,
and other variables, realizes the integrated function of automatic monitoring, computation,
transmission, and storage, which enables data-driven forecasting and the early warning
modeling of dam property changes.

As the test case for this study, the EX1–2, EX1–3, EX2–3, EX2–4, and water level data
within the elevation range of 1451.52–1470 m in the left 0 + 045 dam section of this dam
were chosen. The monitoring data were obtained from the period of 1 January 2015 to
1 January 2020. According to the actual engineering requirements, the data collection
frequency of these monitoring instruments is once per day. The horizontal displacement
monitoring device employed in this dam is called EX. Figure 2 displays the location details
of each measurement point, Figure 3 displays the time course curve of each measurement
site’s deformation data, and Figure 4 displays the time course curve of the water level data.

Figure 2. Basic information about the study dam.

Figure 3. Time course curve of deformation data.
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Figure 4. Time course curve of water level data.

3.2. Feasibility Validation of Hysteresis Factor Addition

The hydrostatic-season-time (HST) model, a classical and well-accepted mathematical
model for dam deformation prediction, predicts the deformation of dams by considering
the hydrostatic pressure, seasonal factors, and time dependence of the dam. The HST
model provides an alternative method to infer the dam temperature variation and correlate
it with dam deformation behavior when temperature monitoring information in the dam
is not sufficient. The key to the HST model is the application of the harmonic factor.
The harmonic factor is a mathematical technique used to characterize the periodicity of
temperature variables. By performing spectral analysis and harmonic decomposition on
temperature data, different harmonic components that reflect the seasonal and periodic
patterns of temperature variation can be identified. By correlating these harmonic factors
with the dam deformation data, a quantitative relationship between the dam deformation
and temperature variation can be established. In most cases, the predictions of the HST
model coincide with the dam deformation.

According to the HST model described, the deformation of any point of the dam (δ)
can be decomposed into a water pressure component (δH), a temperature component (δT),
and an aging component (δθ). The specific equation is shown in Equation (13)

δ = δH + δT + δθ = a0 +
n

∑
i=1

ai Hi +
m

∑
i=1

(
b1i sin

2Πit
365

+ b2i cos
2Πit
365

)
+ c1θ + c2 ln θ (13)

where a0 is the constant term, ai is the regression coefficient of the water pressure com-
ponent, b1i and b2i are the regression coefficients of the temperature component, c1 and
c2 are the regression coefficients of the time-dependent component, n is the regression
coefficient of the gravity dam (n is 3 depending on the dam type), H is the reservoir level,
m is 2 or 3 depending on the temperature at the project site (this paper takes 2), and θ
is the cumulative number of days from the day of observation to the starting date di-
vided by 100. In summary, the influence factor of the initial HST model in this paper is
H, H2, H3, sin 2Πt

365 , sin 4Πt
365 , cos 2Πt

365 , cos 4Πt
365 , θ, ln θ.

To verify the effect of adding the lag factor, the lag quantification in Section 2.1 was
performed with EX1-2 as an example. The case of EX1-2 with water level decomposed via
VMD is shown in Figure 5. The reconstructed case is shown in Figure 6.
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Figure 5. (a) Information of EX1-2 deformation data decomposition. (b) Water level data decomposi-
tion information.

Figure 6. Time course curves of reconstructed deformation and water level data.
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The lag between the EX1–2 and the water level after reconstructing the data according
to Equation (2) in Section 2.1 can be calculated, and EX1–2 deformation lags 11 days behind
the water level. Therefore, a new lag factor is introduced with reference to Equation (13),
i.e., H11, H2

11, H3
11, to form a combination of impact factors for the HST model considering

lag, i.e., H, H2, H3, sin 2Πt
365 , sin 4Πt

365 , cos 2Πt
365 , cos 4Πt

365 , θ, ln θ, H11, H2
11, H3

11.
To verify the feasibility of the addition of the lag factor, the plain LSTM model was

used to predict the HST model for the above two combinations. Following the principle
of selecting 80% of the data as the training set and 20% as the validation set, the data
from 1 January 2015 to 1 January 2019 were chosen as the training set, and the data from
1 January 2019 to 1 January 2020 were chosen as the test set. The prediction results are
shown in Figure 7 below, the box line plot of the prediction residuals is shown in Figure 8,
and the details of the evaluation indexes are shown in Table 1.

Figure 7. Prediction with and without lag factor model.

Figure 8. Distribution of predicted residuals.

Table 1. Comparison of prediction evaluation indicators with and without lag factor models.

Models nMAPE RMSE R2

HST-LSTM 0.0101 0.0154 0.9741
NewHST-LSTM 0.0086 0.0121 0.9853

From the analysis of the above results, it is clear that the HST model with lag quanti-
zation can more perfectly capture the lag effect of environmental quantities for the EX1–2
time series compared with the HST model without lag quantization. The prediction curves
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under the plain HST model, although smooth, are poorly fitted to the real data and do not
portray the local fluctuations of the measured values, especially in the time period when
the prediction starts (1 January 2019–1 April 2019). The contrast between the two is more
obvious because the input variables of the plain HST model do not contain enough infor-
mation to feed back the nonlinear characteristics of the deformation, thus leading to some
apparent deviation from the measured data and a local distortion. Meanwhile, the box plot
of residuals in Figure 8 shows that the median and mean of the residuals are smaller and
the distribution of residuals is denser for the HST model with lags considered compared
with the HST model without lag quantification, which further verifies the feasibility of
introducing lag factors in the HST model.

3.3. Ablation Verification

Because the multi-headed attention mechanism and CovLSTM are both included in
this hybrid model, we compared the prediction performance of the plain LSTM, plain
LSTM + multi-headed attention mechanism, and plain LSTM + CovLSTM considering lags
using the EX1–3 time series as an example to confirm the improvement performance of the
hybrid model over the plain model.

Figure 9 below depicts the prediction effect, Figure 10 depicts the prediction residual
box line plot, Figure 11 depicts the evaluation index effect plot, and Table 2 depicts the
improvement level of each model over plain LSTM.

Figure 9. Prediction with and without lag factor model.

Figure 10. Distribution of predicted residuals.
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Figure 11. Comparison of evaluation indexes of each prediction model.

Table 2. The lifting degree of each model compared with plain LSTM.

Elevation nMAPE RMSE R2

ConvLSTM 19.1% 47.7% 1.1%
LSTM + MHA 35.7% 58.4% 1.6%

MHA-ConvLSTM 57.5% 72.5% 2.5%

The results demonstrate that the addition of the attention mechanism significantly
enhances the ability of the LSTM model to remember and utilize features, which greatly
improves the prediction accuracy of the model with at least a 50% improvement in RMSE.
This is in contrast to the plain LSTM model, which is more sensitive to redundant informa-
tion when facing long-time domain data. The findings also demonstrate that for neural
network models, a more effective feature learning model can raise the model’s predictive
accuracy. The fit of the model to the periodic changes and lagging characteristics of the dam
deformation data is improved, and the R2 is improved by at least 1.5%, further proving the
viability of combining the multi-headed attention mechanism with ConvLSTM. ConvLSTM
is better at feature learning than LSTM and can more effectively use the important features
fed with the attention mechanism.

3.4. Validation of Prediction Model Validity and Generalization

It is proposed to take EX2–3 and EX2–4 as examples to fully verify the effectiveness
and generalization of this prediction model by comparing the prediction results with the
current mainstream prediction models (BP, Ridge, XGBoost).

The EX2–3 prediction effect is shown in Figure 12a below, the prediction residual
box line diagram is shown in Figure 12b, the evaluation index effect diagram is shown
in Figure 13, and the improvement degree of each model compared with BP is shown in
Table 3.

Table 3. Lifting degree of each model compared with BP.

Elevation nMAPE RMSE R2

Ridge −1.3% −0.7% −0.2%
XGBoost 62.3% 58.3% 9.4%

MHA-ConvLSTM 69.6% 66.4% 10.1%
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Figure 12. (a) Forecast of different forecasting models. (b) Distribution of residuals for each
model prediction.

Figure 13. Comparison of evaluation indexes of each prediction model.

The effect of EX2–4 prediction is shown in Figure 14a below, the residual box line
of prediction is shown in Figure 14b, and the effect of the evaluation index is shown in
Figure 15.
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Figure 14. (a) Forecast of different forecasting models. (b) Distribution of residuals for each
model prediction.

Figure 15. Comparison of evaluation indexes of each prediction model.

The combined results demonstrate that, in terms of performance for fitting the nonlin-
ear dam deformation data, the combined MHA-LSTM model greatly surpasses the other
widely used models. Among them, BP and Ridge showed model distortion in the early
stages of the prediction process for EX2–3 and EX2–4, and the predicted values significantly
deviated from the measured values. However, in the middle and later stages of the pre-
diction, the predicted values gradually fit with the measured values, and this situation
was tentatively considered to be a poor acceptance of the base model for the information
feedback from the attention mechanism. In contrast, the current model may exhibit great
fitting effects for each peak, further demonstrating that it can successfully concentrate on
the hidden state of the deformation data in the time dimension and then identify their true
properties. The prediction performance is stable and excellent in EX2–3 and EX2–4, which
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verifies the effectiveness and generalization of the model. Table 4 displays the improvement
degree of each model compared with BP. The nMAPE and RMSE are more than 50% better
than the plain LSTM model in this set of tests, and the prediction performance is stable and
excellent in EX2–3 and EX2–4.

Table 4. Lifting degree of each model compared with BP.

Elevation nMAPE RMSE R2

Ridge 43.3% 45.2% 2.2%
XGBoost 45.5% 47.6% 4.5%

MHA-ConvLSTM 60.8% 63.1% 35.8%

4. Conclusions

This paper presents a hybrid prediction model, MHA-ConvLSTM, for dam deforma-
tion that takes into account the lag between environmental factors and deformation. The
model builds upon the traditional LSTM for time series prediction by incorporating a multi-
headed attention mechanism and convolution technique. Through simulation comparison
tests using an active dam as an example, we demonstrated the feasibility of incorporating
the lag factor and validated the generalization and effectiveness of the MHA-ConvLSTM
model. The main conclusions are as follows:

(1) A hysteresis quantification algorithm is proposed to introduce a new hysteresis
factor based on the influence factor of the traditional HST model, aiming to simulate the
hysteresis effect of water level on deformation. The experimental results demonstrate that
the model with the introduction of the hysteresis factor shows a significant improvement
in the prediction accuracy compared with the traditional model;

(2) Compared with the plain LSTM, the MHA-ConvLSTM model is more sensitive to
the hidden features of long-time domain deformation data, more sensitive to the temporal
features, and more robust compared with other models. This is reflected in the fact that the
predicted values fit the measured values more closely and maintain stable performance in
the prediction of multiple sets of experimental data, and the evaluation indexes such as
RMSE can be improved by more than 50% compared with the traditional model;

(3) The experimental findings demonstrate the applicability of the MHA-ConvLSTM
model put forward in this paper for real-world engineering. The hysteresis effect of water
level and temperature on deformation can simultaneously be considered in later study, as
can hyperparameter optimization.
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