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Abstract: The nature of the fracture and fragmentation processes in concrete medium under blast
loading is the transformation of the medium from continuum to discontinuity. Coupled with the
significant rate correlation of concrete medium, its mechanical behavior presents a high degree of
complexity. When tackling this problem, the finite element method (FEM) frequently encounters
problems such as grid distortion and even negative volume, whereas the material point method
(MPM) can efficiently avoid these problems. Furthermore, the original Holmquist-Johnson-Cook
(HJC) model does not take the segmented characteristics of the calculation function for the dynamic
increasing factor into consideration. As a result, in this article, first, the calculation function for
the dynamic increasing factor in the HJC model was modified by the Split-Hopkinson Pressure
Bar (SHPB) experiment, and an improved HJC model was proposed; second, an MPM simulation
program was developed, and the improved HJC concrete model was embedded into the simulation
program; and finally, the simulation program was verified by numerical examples, and the results
show that the developed simulation program can better simulate the fracture and fragmentation
process of the concrete medium under blast loading, especially the pulverization characteristics of
the medium in the near zone of the load.

Keywords: blast loading; concrete medium; rate sensitivity; improved HJC model; MPM

1. Introduction

The mechanical performance characteristics of concrete medium are: when external
forces reach a certain limit, the concrete medium will undergo abrupt failure without
prior warning; it has significant strength asymmetry, with compressive strength far greater
than tensile strength; the failure is random and is a typical disordered medium, with
an extremely small ultimate strain value during failure; and it exhibits significant rate
sensitivity under blast loading. In addition, the process of concrete medium failure under
blast loading exhibits significant progressive (dynamic evolution process of failure), grading
(scale of fragments), and zoning (mechanical response differences at different distances
from the load source) characteristics: the medium in the near zone undergoes violent
deformation and shows characteristics of crushing failure; the medium in the middle zone
undergoes elastic-plastic deformation, and the degree of fragmentation is relatively larger
compared to the medium in the near zone; the medium in the far zone undergoes elastic
vibration. Therefore, the mechanical behavior of concrete medium under blast loading is
highly complex.
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Numerical simulation studies of the concrete medium under blast loading mainly
include: the finite element method (FEM), the discontinuous deformation analysis method
(DDA), the discrete element method (DEM), the material point method (MPM), etc.

As a relatively mature numerical simulation method, FEM is widely used. Anas et al.
discussed the failure modes of concrete under different working conditions by reviewing
numerical/analytical studies on air blast loading [1]. Kristoffersen et al. studied the re-
sponse of tubular concrete under blast loading [2]. Jeong et al. simulated the dynamic
fracturing and crack propagation processes of brittle materials under blast loading [3].
Rokhy et al. simulated the explosion characteristics of a hydrogen-air mixture near a con-
crete barrier [4]. Wang et al. proposed an Arbitrary Lagrangian Eulerian-FEM-smoothed
particle hydrodynamics (ALE-FEM-SPH) coupling method and predicted the damage
process of reinforced concrete slabs under explosive loads [5]. Augusto et al. predicted
the fracture mode of reinforced concrete slabs under explosive loads [6]. Karmakar et al.
conducted numerical research on the response of reinforced concrete slabs under explosive
loads through a hybrid discretization combining FEM and smoothed particle hydrody-
namics (SPH) [7]. Temsah et al. predicted the dynamic response of blast-loaded reinforced
concrete beams and derive the Iso-Damage curve of a reinforced concrete beam exposed to a
blast wave [8,9]. To solve discontinuous mechanical problems and overcome the limitations
of the finite element method, the extended finite element method has been developed in
recent years. Baietto et al. analyzed the two-dimensional and three-dimensional contact-
type crack expansion based on contact fatigue tests and empirical formulas for friction-type
cracks [10,11]. However, the FEM often encounters grid distortion or even negative volume
problems when solving this problem, resulting in abnormal termination of calculations.

The DDA is a numerical model proposed by Shi for analyzing the motion and deforma-
tion of block systems [12]. DDA is capable of solving problems such as large displacements,
large deformations, and discontinuous movements such as slipping, cracking, and rotating.
In recent years, scholars have started using this method to simulate the failure process
of reinforced concrete structures and have achieved good results [13,14]. However, this
method is currently limited to simulating two-dimensional problems and is still a certain
distance away from simulating three-dimensional problems.

The DEM was first proposed by Cundall in 1971 in the United States and is suitable
for solving large displacement and nonlinear problems [15]. Zhang et al. used a two-
dimensional discrete element model to study the failure process of concrete [16]. Hentz
et al. used a three-dimensional discrete element model to study the dynamic behavior of
concrete and verified the rate effect of concrete through dynamic tensile tests [17]. Qin et al.
used the discrete element method to establish a two-dimensional concrete model; they
further simulated the Brazilian splitting test of concrete and obtained a significant rate effect
on the tensile strength of concrete [18]. Haeri et al. studied the failure process and failure
patterns of concrete samples by numerical simulation (particle flow code 2D) [19]. Wu et al.
studied the crack propagation modes and the relationship between kinetic energy and strain
energy under different strain rates [20-22]. However, the DEM simulates through iterative
calculations, which requires a huge amount of computational resources; additionally, this
method only uses cohesion to reflect the strength characteristics of the research object
when simulating the damage of concrete medium, which is quite different from the actual
situation.

Harlow and his Computational Fluid Dynamics (CFD) group at the Los Alamos Na-
tional Laboratory (LANL) in the United States proposed the Particle-In-Cell (PIC) method
in 1955 [23]. The PIC method uses a dual description, where the fluid is discretized into
particles (Lagrangian description), while the computational grid still uses the Eulerian grid.
The particles migrate between the Eulerian grid, describing the movement of the fluid.
This method can solve a large number of problems that cannot be solved by using only
the Lagrangian or Eulerian methods. The MPM evolved from the PIC method. Unlike the
numerical simulation methods described above, the MPM combines the advantages of both
Lagrangian and Eulerian methods, allowing the material points to move on the background
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grid and solving the motion equations on the background grid to avoid mesh distortion.
It is especially suited to solving large deformation and material fracture problems [24,25].
Hu et al. investigated the synergistic effects of blast and fragmentation on structural failure
based on the MPM [26]. Lei et al. developed a hybrid staggered grid finite element material
point method (HSGFEMP), which was verified by numerical examples [27].

To enhance the accuracy of simulating concrete medium damage under blast loading,
this study employed the MPM due to its superiority in simulating large deformation and
material fracture problems. Firstly, an MPM simulation program was developed based
on the MPM theory using the C++ programming language. Next, the Split-Hopkinson
Pressure Bar (SHPB) experimental device was utilized to subject concrete specimens to both
compression and splitting loads. By varying the loading rate, the concrete specimens were
induced into different destructive states. Subsequently, the yield strength of the concrete
specimens was analyzed under varying strain rate conditions. Based on these findings, an
improved approach to the HJC model was proposed. Finally, the improved HJC model
was embedded into the simulation program, and its effectiveness was further investigated
through a case study involving a contact explosion on a plain concrete slab.

2. Basic Theory of the MPM

The MPM discretizes the continuum into a series of material points; each material
point represents a material region and carries all the material information of that region,
such as mass, velocity, stress, and strain. The collection of all material points represents the
entire material area. Therefore, the density of the continuum can be approximated as:

p
p(xi) = Y mpd(x; — xip) 1)
p=1

In the equation, 1, represents the total number of material points, m,, is the mass of
the material point, J is the Dirac Delta function, and x;, represents the coordinates of the
material point.

Similar to the FEM, the solution format of the MPM is also based on the weak form.
The solution format of the MPM is as follows:

/pi'tl-éuidV—i—/pafjéui,jdV—/pbiéuidV—/pff(SuidA =0 ()
Q 0 0 I,

In the equation, p is the density, u; is the acceleration, b; is the force acting on the unit
mass of the object, (1 is the solving area, I't is the given surface force boundary, afj =05i/p

is the comparing stress, and ; = f;/p is the comparing boundary surface force.
Substituting Equation (1) into Equation (2), it can be obtained:

p p p p
- s 5 -1 _
2 Mpliy6uy + 2 mp(rijpéul-p,j— 2 mpbiydu;, — 2 m,,tiph Sujp =0 3)
p=1 p=1 p=1 p=1

In the equation, u;, = u;(xp), dujp; = Oujj(xy), Ty = 0 (xp), biy = bi(xp),
ffp =t (xp), h is used to introduce a hypothetical boundary layer thickness in order to
convert the final term of the left-hand side boundary integral in Equation (2) into a volume
integral. As shown in Equation (3), the material point method converts the integrals in
Equation (2) into the product of the value of the integrand at each material point and the
volume represented by the material point, which is a form of point integration.

The MPM arranges a background grid for the material domain and approximately
solves the momentum equation using the virtual work principle. Within one computational
time step, the mass and momentum of the material points are first mapped to the nodes
of the background grid using shape functions to calculate the mass and momentum of
the background grid nodes. Furthermore, the momentum equation is integrated at the
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background grid nodes, and the change in velocity and position of the background grid
nodes is mapped back to the material points using shape functions to update their velocity
and position. Finally, the deformed background grid is discarded, and the regular back-
ground grid is used again in the next time step. The solution process of the MPM within
one computational time step is shown in Figure 1, and the MPM calculation algorithm is
shown in Figure 2.

| Domain of solution m Background grid node

D Background grid Material point

I
I

Figure 1. Solution process of the MPM within one computational time step.
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3. An Improved HJC Model Considering the Segmentation of the DIF Function
3.1. H]C Model

The HJC model was proposed by Holmquist et al. [28]. This model proposes corre-
sponding state equations and yield functions for concrete under high confinement pressure
and large deformation at high strain, which can effectively simulate the mechanical be-
havior of concrete materials under high-speed impact while reasonably considering the
damage and failure of concrete during this process. The equation of the yield surface
is shown in Figure 3, ¢* is the normalized yield stress, T* is the normalized maximum
hydrostatic tensile stress, p* is the normalized pressure, ¢ = £/¢ is the dimensionless
equivalent strain rate (¢p = 157! is the reference strain rate).
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Figure 3. Equation of the yield surface [28].
The yield stress of the HJC model is:
o — [A(1-D)+ Bp*"|DIF p*>0 @)
Y [A(1 =D+ p*/T*)|DIF p* <0

In the equation, DIF = 1+ CIn¢" is the dynamic increasing factor, oy =0oy/ fl is the
normalized yield stress, 0y, is the yield stress, f{ is the unconfined compressive strength, D
is the damage factor (0 < D < 1), A is the normalized cohesive material strength, B is the
normalized pressure hardening coefficient, n is the pressure hardening index, and C is the
strain rate coefficient.

The HJC model comprehensively considers the hydrostatic pressure effect and strain
rate effect of concrete materials, as well as damage evolution caused by plastic strain and
plastic volumetric strain. However, the HJC model itself still has certain shortcomings:
(1) The model cannot well describe the failure mode dominated by tensile failure; (2) The
influence of the third deviatoric stress invariant on the strength surface has not been
considered; and (3) The strain hardening behavior of concrete materials has not been taken
into account.

In response to these deficiencies, researchers have made some improvements to the
HJC model to improve its calculation accuracy under different loading conditions. Polanco-
Loria et al. modified the HJC model by considering the hydrostatic pressure effect, the
third deviatoric stress invariant, and the tensile-compression-shear composite damage.
They used the improved HJC model to calculate uniaxial compression, biaxial compression,
strain softening, and projectile penetration effects on concrete targets and compared the
results with other experimental results as well as the original HJC model calculation
results [29]. Islam et al. mainly modified the strain rate effect part of the HJC model based
on the experimental results of the dynamic increasing factor (DIF) of concrete material
strength growth. At the same time, they considered the temperature effect in the HJC
model, used the improved HJC model to calculate an example of projectile penetration into
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a concrete target, and compared it with the original HJC model [30]. Zhang et al. corrected
the deficiency of the tension damage model in the HJC model and verified the improved
model through a 2-D program [31].

3.2. The Improved Method of the H]C Model

In addition to the above shortcomings, a large number of research results have shown
that the HJC model can well reflect the influence of low strain rates on the dynamic strength
of concrete but cannot accurately describe the significant enhancement effect of concrete
dynamic strength under high strain rate conditions. That is, the dynamic strength calculated
by the DIF function in the HJC model under high strain rate conditions deviates greatly
from experimental results.

Therefore, based on the Hopkinson bar, this article carried out dynamic uniaxial
compression and dynamic split tension experiments on concrete to obtain the dynamic
compressive and tensile strengths of concrete under high strain rates and improved the
DIF function in the HJC model in combination with experimental data, making it have
segmentation. That is, there is a critical strain rate. When the strain rate is lower than the
critical strain rate, the strain rate effect on the strength of concrete is not obvious, but when
the strain rate is higher than the critical strain rate, the degree to which the strength of
concrete increases with the strain rate is significantly improved.

The SHPB experiment is the primary method of studying the mechanical properties of
materials at high strain rates (102~10* s~1). A modern conventional SHPB consists of a gas
gun (cannon or launching device), a bullet, an incident bar, a transmission bar, an energy
absorption device, and a data acquisition system (as shown in Figure 4).

Axle pressure

sy stem
T [
i' (RN |
i - | | - |
— - R, B -
iy il
Launch chamber Incident bar Concrete specimen Transmission bar |
Special-shaped . . Axle pressure
peciai=siape Strain gauge Strain gauge i€ pressure

Cannon gun

punch head

system
Figure 4. Conventional Hopkinson bar experiment system.

Large cubic concrete samples were cast for core drilling. At the end of the 28-day curing
period, the mass concrete specimens were sent to a professional processing plant, where
they were cored, cut to size, and ground. It was then processed into ®50 mm x 25 mm
disc-shaped specimens (as shown in Figure 5). The two loading sections of the processed
specimens are smooth enough and have parallelism within the tolerance range of 0.01 mm.
The dynamic compression and dynamic Brazilian splitting experiments were carried out
by the SHPB experimental device.

Throughout the experiment, it is required that the cross-sectional area of the specimen
always be smaller than or equal to that of the rod. In addition, the incident rod must be
long enough (more than twice the length of the bullet) to avoid overlapping of incident
and reflected waves, and the material must remain within the elastic range during the
experiment. To improve the accuracy of the test, it is also required that the contact surface
between the rod and the specimen remain flat and parallel to each other throughout the
experiment.
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Figure 5. Concrete specimen.

The concrete specimen is loaded between the incident and transmission bars. The
bullet is propelled by high-pressure gas and is fired from the launching device at a certain
velocity, striking the incident bar and generating a pressure pulse in the incident bar known
as the incident wave (measured by the resistance strain gauge attached to the incident
bar). The pressure pulse propagates forward in the incident bar, and when it reaches the
interface between the incident bar and the specimen, the entire specimen is compressed due
to the inertial effect of the specimen and the transmission bar. Meanwhile, due to the wave
impedance difference between the bar and specimen, the incident wave is partially reflected
as a reflected wave back to the incident bar, and the other part passes through the specimen
as a transmission wave and enters the transmission bar. The reflected wave is also measured
by the resistance strain gauge attached to the incident bar, and the transmission wave is
measured by the resistance strain gauge attached to the transmission bar. By processing
the measured incident wave, reflected wave, and transmission wave, the deformation
and failure of the material can be obtained, as can the dynamic performance data of the
material.

To comprehensively consider the effect of strain rate on the dynamic compressive
strength and dynamic tensile strength, the compression dynamic increasing factor and
the tensile dynamic increasing factor were separately defined. The compression dynamic
increasing factor (DIF.;) was defined as:

DIFc:fcd/fc/ ®)

The tensile dynamic increasing factor (DIF;) was defined as
DIF; = fu/ fi ©)

In the equation, f,; is the dynamic uniaxial compressive strength, f! is the quasi-static
uniaxial compressive strength, f; is the dynamic uniaxial tensile strength, and f/ is the
quasi-static uniaxial tensile strength.

3.2.1. Calculation Expression of the DIF,

At the end of the dynamic compression experiments, the dynamic compressive
strength under different strain rate conditions was plotted as a scatter plot according
to the experimental results, as shown in Figure 6a. The data were then fitted to the experi-
mental results using a variety of function forms in the Origin software with 9.1 version,
such as the linear function, the Boxlucasl function, the Explp1 function, the Parabola
function, and the PWL2 function, and the expressions for each function form are shown in
Table 1. Where A, B, C, D, and E are the fitting coefficients. Note that before fitting the data,
it is necessary to eliminate some of the large scatter of “bad data points”. The results of
fitting the coefficients for increasing dynamic compressive strength to different functional
forms are shown in Figure 6b—f.
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Table 1. The expressions of each function curve.

Function Form Curve Expression

Linear curve y=Ax+B
Boxlucasl curve y = A(1—ePY)
Boxlucas2 curve y = g (B —emA¥)

Explpl curve y=e4

Parabola curve y=A+Bx+ Cx?

PWL2 curve y = A+ Bx x<E
C+D(x—E) x>E

It can be seen that the Boxlucasl function has the highest goodness of fit compared
to the other functional forms when the goodness of fit of the different functional forms
is analyzed and compared. Therefore, to describe the compression dynamic increasing
factor with greater accuracy, the Boxlucasl function is used. Meanwhile, it is not difficult
to see that the dynamic compressive strength of concrete is significantly enhanced under
blast loading when analyzing the dynamic compressive strength scatter plots and various
types of data fitting plots. Here, we define this property as the “strain rate segmentation
characteristic” of the dynamic compressive strength of concrete.

Based on the consideration of the “strain rate segmentation characteristic”, the expres-
sion of the compression dynamic increasing factor is proposed as follows:

DIF e<10%!
DIFe =19 _0.07892 x {1 _ l1:28491xlog (é*)}} £> 1021 @

In the equation, DIF = 1+ Cln¢" is the formula for calculating the dynamic increasing
factor in the HJC model, ¢ is the strain rate, and ¢ = /¢ is the dimensionless equivalent
strain rate (¢g = 15! is reference strain rate).

3.2.2. Calculation Expression of the DIF;

At the end of the Brazilian dynamic splitting experiments, the dynamic tensile strength
under different strain rate conditions was plotted as a scatter plot by the experimental
results, as shown in Figure 7a. Several functional forms, including the linear function, the
Boxlucas2 function, the Explp1 function, the parabola function, and the PWL2 function,
were fitted to the experimental results, and the expressions for each function form are
shown in Table 1. Figure 7b—f shows the results of fitting the tensile dynamic increasing
factor for different functional forms.

It can be seen that the Boxlucas2 function has the highest goodness of fit compared
to the other functional forms when analyzing and comparing the goodness of fit of the
different functional forms. The Boxlucas2 function is therefore a more accurate description
of the tensile dynamic increasing factor. In addition, analysis of the dynamic tension plot
and various data fitting plots shows that the dynamic tension of concrete, like dynamic
compression, also exhibits the “strain rate segmentation property”.

Based on the consideration of the “strain rate segmentation characteristics”, the ex-
pression of the tensile dynamic increasing factor is proposed as follows:

OIF DIF £ <10%7! @
t= 0.11132 1.45258log (£ —0.11132log (¢" : 2.1 8
0.TT132+1.45258 (6 ) —e o5 (¢ )) &> 10°%
In the equation, DIF = 1+ Cln¢" is the formula for calculating the dynamic increasing
factor in the HJC model, ¢ is the strain rate, and ¢ = £/ is the dimensionless equivalent
strain rate (¢g = 1s~! is reference strain rate).
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Figure 7. Fitting results of the tensile dynamic increasing factor: (a) the scatter plot of the experiment

result, (b) Linear curve fit result, (c) Boxlucas2 curve fit result, (d) Explp1 curve fit result, (e) Parabola

curve fit result, (f) PWL2 curve fit result.

Based on this research, the HJC model has been improved, and an improved expression
for yield stress has been obtained as follows:

f

[A(1 — D) + Bp*"|DIF,
A(1- D+ p*/T*)|DIF,

p* >0

2o ©)
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In the equation, T* is the normalized maximum static tensile stress, and the other
symbols are explained in the previous text.

4. Numerical Example

The improved HJC model was embedded into the MPM simulation program, and
its effectiveness was investigated through a numerical example. The numerical example
is a contact explosion experiment on a plain concrete slab carried out by Dua et al. [32].
The dimension of the concrete slab is 750 mm x 750 mm x 75 mm. The concrete slab was
reinforced with 12-mm-diameter rebar mesh spaced at 100 mmc/c each way at the top
and bottom with a 30-mm cover. The concrete slab was supported on a 900-mm-high steel
frame without edge fixity. Experimental tests were performed to investigate both failure
modes by subjecting the concrete slab to the contact explosion effects of 500 g of TNT. The
experiment result is shown in Figure 8.

75mmI

750%

Figure 8. Response of the concrete slab to the contact explosion effect [32].

The numerical model was established first before using the program to solve this
problem. The material points were used to discretize the charge and concrete slab, and a
background grid was generated. The spacing between material points of the charge was
set to 0.005 m, resulting in a total of 2184 material points. The spacing between material
points of the concrete slab was also set to 0.005 m, producing a total of 339,684 material
points. The range of the background grid was set to X: 0.0 m~0.75 m, Y: 0.0 m~0.75 m,
and Z: —0.8 m~0.3 m, with a spacing of 0.01 m. Boundary conditions were applied to the
concrete slab using the background grid, with the length and width being fixed and the
thickness being free. The explosive calculation model in contact with the concrete slab is
shown in Figure 9.

(a) (b)

Figure 9. Calculation model for the contact explosion of the concrete slab. (a) Geometric model;
(b) Numerical model.



Appl. Sci. 2023,13, 8533

12 0f 18

The improved HJC model was used for the plain concrete slab, and the high-energy
explosive model and JWL state equation were used for the charge. The model parameter
values are shown in Tables 2—6.

Table 2. Parameters of the high-energy explosives model.

p (kg/m3) D (m/s)
1630 6930.0

Table 3. Parameters of the JWL equation of state.

A (Pa) B (Pa) Ry Ry w Eo (J/m3)
3.712 x 1011 3.23 x 10° 415 0.95 0.30 7.0 x 10°

Table 4. Parameters of the improved HJC state equation.

Perysh (MPa) Hcrush Piock (Mpu) Mlock Ki (MPu) K> (MPu) K3 (MPa)
16 0.001 800 0.10 85 x 10% —171 x 10° 208 x 10°

Table 5. Parameters of the improved HJC strength model.

G (MPa) A B C n f. (MPa) T(MPa) ..
14.86 x 10° 0.79 1.6 0.007 0.1 48.0 4.0 7.0

Table 6. Parameters of the improved HJC damage model.

e

min Dl D2
0.01 0.04 1.0

The equivalent plastic strain of the slab under explosive contact is shown in Figure 10.
From the figure, it can be seen that the failure mode of the concrete slab under explosive
contact is mainly local crushing, cutting damage, bottom collapse, and peeling damage.
After the charge is detonated, the high-pressure shock wave generated will directly act on
the blast surface of the concrete slab, the pressure amplitude reached 9 GPa and then rapidly
attenuated (as shown in Figure 11), and this pressure is often higher than the compressive
strength of the concrete, causing a crushed area to appear on the slab facing the explosion,
that is, the appearance of a blast pit; after the shock wave pressure propagates to the inside
of the concrete slab, it will spread to the bottom in the form of a compression wave, and the
tensile wave formed by reflection on the bottom surface will cause a collapse and peeling
area on the bottom surface, while a penetrating hole will be formed at the center of the slab.

The ultimate damage distribution of the slab under explosive contact is shown in
Figure 12. From the figure, it can be seen that under explosive contact, the compressive
stress waves generated by the explosion shock wave cause damage to the front explosive
surface of the slab, which propagates to the back explosive surface of the slab and forms
a strong tensile wave, causing layer cracking and collapse of the concrete on the back
explosive surface. In the central area of the slab, multiple circular and radial cracks appear,
which have the characteristics of bi-directional bending and cracking of the corner. The
slab is severely damaged in the tensile zone, and multiple transverse cracks appear in the
middle of the back explosive surface of the slab.
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Figure 10. The equivalent plastic strain of the slab.
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Figure 11. Blast pressure time curve.

Figure 12. The ultimate damage distribution of the slab. (a) The front explosive surface; (b) The back
explosive surface.

When the damage value of a certain material point inside the slab exceeds 1.0, it is
considered that the material point has failed, as shown in Figure 13. From the figure, it
can be seen that after the detonation of the charge, the first damage caused is the crushing
damage to the front explosive surface, followed by the formation of a through-hole at the
center of the slab, and finally the tensile damage to the back explosive surface, with the
damaged area on the back of the slab being significantly larger than that on the front. The
diameter of the damaged area on the front of the slab calculated by this method is 315 mm,
with an error rate of 10% compared to the experimental results, indicating that this method
can accurately simulate the process of the concrete medium under blast loading.
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Figure 13. Failed area of the slab. (a) The XY plane of the slab; (b) The YZ plane of the slab; (c) The
whole slab.

Figure 14 depicts the process of changing system energy over time. When the charge
explodes, a massive amount of energy is released in an instant. Compression and tensile
failure occur in the concrete slab. As the explosive burns completely, its internal energy
progressively changes into the system’s kinetic energy. However, the entire energy of the
system is conserved both before and after the explosive detonation, which indirectly reflects
the method’s accuracy.

This numerical example demonstrates that, compared to other continuum mechanics
methods such as the FEM, the MPM can accurately simulate material fracture problems,
whereas the FEM frequently generates grid distortion and distorted calculation results
when solving those problems. However, the MPM is less accurate than the FEM when
calculating tiny deformation problems.
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Figure 14. System energy time curve.

5. Conclusions

The mechanical behavior of concrete medium under blast loading is highly complex.
In this study, an improved HJC model was proposed based on the SHPB experiment, which
is the main innovative work of this article. In the improved HJC model, the calculation
expressions of the compression dynamic increasing factor and tensile dynamic increasing
factor of concrete were given separately, considering the segmented characteristics of the
dynamic strength enhancement factor. It can better reflect the strengthening effect of
medium and high strain rates on the dynamic strength of the concrete medium.

Furthermore, an MPM simulation program was developed, and the improved HJC
model was embedded into this program. This program was verified through numerical
examples, and the results have an error rate of 10% compared to the experimental results,
showing that this program can accurately simulate the fracture and fragmentation process
of the concrete medium under blast loading, particularly the pulverization characteristics
of the medium in the near zone of the load.

Compared with other continuum mechanics methods such as the FEM, the MPM is
particularly suitable for solving material failure problems. However, the MPM itself also
has some issues, such as the continuity of background grid shape functions and the stability
of integration algorithms. In future research, corresponding improvements can be made to
the MPM to enhance its computational accuracy and efficiency.
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