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Abstract: With the aim of promoting energy conservation and emission reduction, electric vehicles
(EVs) have gained significant attention as a strategic industry in many countries. However, the
insufficiency of accessible charging infrastructure remains a challenge, hindering the widespread
adoption of EVs. To address this issue, we propose a novel approach to optimize the placement of
charging stations within a road network, known as the charging station location problem (CSLP).
Our method considers multiple factors, including fairness in charging station distribution, benefits
associated with their placement, and drivers’ discomfort. Fairness is quantified by the balance in
charging station coverage across the network, while driver comfort is measured by the total time
spent during the charging process. Then, the CSLP is formulated as a reinforcement learning problem,
and we introduce a novel model called PPO-Attention. This model incorporates an attention layer
into the Proximal Policy Optimization (PPO) algorithm, enhancing the algorithm’s capacity to identify
and understand the intricate interdependencies between different nodes in the network. We have
conducted extensive tests on urban road networks in Europe, North America, and Asia. The results
demonstrate the superior performance of our approach compared to existing baseline algorithms. On
average, our method achieves a profit increase of 258.04% and reduces waiting time by 73.40%, travel
time by 18.46%, and charging time by 40.10%.

Keywords: location selection; reinforcement learning; attention mechanism; proximal policy
optimization

1. Introduction

In many countries, electric vehicles (EVs) have emerged as a vital strategic industry
to promote energy conservation and emission reduction [1–3]. To enable the widespread
adoption of electric vehicles and alleviate range anxiety (i.e., concerns about insufficient
energy storage for a trip), the provision of accessible charging infrastructure is crucial [3–5].
While the number of charging stations has increased, it remains insufficient to meet the
growing charging demands. Optimizing the location and deployment of charging stations,
known as the charging station location problem (CSLP) [6], is a critical approach to address
this challenge. The CSLP is an application of the facility location problem, aiming to select
suitable locations from a candidate set to optimize various objectives. Numerous studies
have focused on the CSLP as a long-standing problem [7].

However, the optimal placement of charging stations in road networks is not without
its challenges. Influenced by a myriad of factors, including road network topology, existing
charging infrastructure, traffic patterns, and charging duration, determining appropriate
placements is complex [6]. Additionally, existing methods often neglect practical constraints,
such as the need for fairness in charging station distribution and the requirement for
automated decision making in identifying viable new charging station locations. Traditional
regional optimization methods, which predominantly consider isolated junctions or parking
lots, are insufficient in the face of widespread charging demands across the road network [7].
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Moreover, prevalent greedy algorithms fail to account for the intricate spatiotemporal
relationships between the road network and charging demand [8].

In our research, we address these challenges head-on. Our approach emphasizes
coverage and fairness in the objective function for determining charging station locations,
while also considering the benefits of station placement and driver comfort. We assess the
benefits of charging station placement by considering the coverage of charging stations
and network nodes, while driver comfort is quantified by the total time spent by drivers
during the charging process. Fairness is achieved by balancing the average coverage
of charging stations across the network. We reformulate the CSLP as a reinforcement
learning problem, introducing a novel algorithm, PPO-Attention, that extends the Proximal
Policy Optimization algorithm [9] by integrating a policy network with a multi-head
attention layer.

In summary, our contributions are as follows:

• We propose an optimal model for the placement of charging infrastructure that balances
coverage and fairness of charging station locations while considering driver comfort.

• We formulate the CS placement problem as a reinforcement learning problem and
introduce a novel reinforcement learning model, PPO-Attention. This model enhances
the policy network of the Proximal Policy Optimization algorithm by incorporating
an attention layer with two attention heads.

• We collect data from multiple cities and regions worldwide and evaluate the perfor-
mance of our algorithm using these datasets. The results demonstrate the effectiveness
and efficiency of our method, surpassing existing baseline algorithms.

2. Related Works
2.1. Charging Station Location Problem

In recent years, the charging station location problem (CSLP) has garnered consid-
erable attention from researchers, leading to a multitude of studies exploring different
aspects and perspectives [4,6,10–22]. Notable contributions include a deployment frame-
work proposed by Zhao et al. [16], which considers existing competitors in the planning of
PEV fast-charging stations. Xie et al. [18] introduced a two-stage data-driven method for
determining CS station locations on highways.

Researchers have also focused on optimizing the objectives in CSLP. Liu et al. [14]
adopted a model to minimize drivers’ discomfort, while Liu et al. [15] designed a model to
minimize CO2 emissions. Other considerations, such as brand preferences [20] and the total
number of charging stations [23], have also been taken into account. However, the existing
studies primarily focus on optimizing the location of charging stations, while overlooking
the number of chargers at each station and the fairness of their distribution among users.

Various algorithms have been applied to address CSLP. Choi et al. [21] proposed
a large-scale charging station concept solved using the K-means algorithm. Genetic
algorithms [13,22], Bayesian optimization [20], and greedy algorithms [5] have also been
utilized for determining optimal charging station locations. Given that CSLP is an NP-hard
problem, many approximation algorithms have been employed. However, as problem size
and constraints increase, computational efficiency becomes a significant limitation for these
methods. Von Bahr et al. [6] presented a reinforcement learning approach to address CSLP,
demonstrating its potential advantages in scalability and computational efficiency.

However, in the implemented studies, the fairness issue in charging station loca-
tion planning has been scarcely addressed. Furthermore, reinforcement learning, as a
promising approach for solving optimization problems, still has ample room for explo-
ration in the context of CSLP. This paper aims to consider elements overlooked in previous
research and explore the potential for problem solving using advanced reinforcement
learning algorithms.



Appl. Sci. 2023, 13, 8473 3 of 18

2.2. Reinforcement Learning and Attention Mechanism

Reinforcement learning (RL) is a domain of artificial intelligence concentrating on how
an intelligent agent should behave in an environment to maximize cumulative reward. In re-
cent years, a substantial amount of research has been dedicated to exploiting RL to tackle
complex optimization problems [24,25]. The intrinsic flexibility of RL, its capacity to handle
high-dimensional and continuous spaces, and its proficiency in balancing exploration and
exploitation render it a unique advantage in solving optimization challenges [26–28]. RL
algorithms, such as Q-Learning, Deep Q-Network (DQN), and Proximal Policy Optimiza-
tion (PPO) [9], have found applications in logistics, supply chain management, resource
allocation, and other optimization-intensive areas [24,26,29].

The attention mechanism, an essential cognitive function in humans, has recently been
integrated into computer vision research.

In the machine learning community, attention mechanism has emerged as a powerful
technique in neural network models, particularly in sequence modeling [30]. This archi-
tecture enables neural networks to discover interdependencies and correlations within
variable numbers of inputs.

Consequently, the attention mechanism has become a common component of neural
architectures and finds applications in various tasks, such as image caption generation,
text classification, machine translation, action recognition, image-based analysis, speech
recognition, and recommendation systems [31]. Apart from performance improvements,
attention mechanism also provides interpretability, addressing the lack of interpretability
faced by deep learning, which has practical and ethical implications. While the extent to
which attention mechanism can reliably explain deep networks remains a subject of debate,
it offers intuitive explanations to some degree [30].

In recent years, the attention mechanism has been successfully applied to reinforce-
ment learning [32,33], yielding promising results. However, whether this approach can be
effectively employed in optimization problems remains an open question and a subject
worthy of further exploration and discussion. This paper aims to investigate the perfor-
mance of a reinforcement learning method combined with an attention mechanism in the
context of optimizing the layout of charging stations.

3. Preliminaries

This section introduces some basic concepts for the problem, including three parts:
charging station, reinforcement learning algorithm, and attention mechanism.

3.1. The Charging Station Location Problem

The distribution of electric vehicle (EV) charging stations on real-world networks
necessitates the introduction of a definition for the road network. In this context, we
consider a directed graph as the representation of the city’s road network. Let G = (V, E)
represent the entire road network, where V denotes the set of vertices and E represents the
set of edges. The vertices and edges correspond to Points of Interest (POIs), such as road
junctions or charging stations, and the roads that connect these nodes in V, respectively.
The coordinates of a vertex v are denoted by τ(v).

This study takes into account the scenario where multiple charger plugs are available
in a single charging station. An EV charging station is denoted as s, and its location is
specified as v(s). The status of chargers with different types in a station is recorded as
t(s) = (t1, t2, . . . , tm), where m represents the number of charger plug types and ti denotes
the number of chargers of the i-th type. The set of all EV charging stations is denoted as S.

A charging plan is defined as p = {s1, s2, . . . , sn}, which is a combination of selected
charging stations. The collection of all possible charging plans is denoted as P. The objective
of this study is to find the optimal plan p∗ from P that maximizes benefits or minimizes
costs in the real-world context.
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3.2. The Markov Decision Process and Reinforcement Learning

Reinforcement learning is a general framework for sequential decision making under
uncertainty. The reinforcement learning problem is often represented by a Markov Decision
Process (MDP). A standard MDP is defined as follows:

• State space S;
• Action space A;
• Initial observation distribution ρ : S → R;
• Transition distribution p : ρ : S ×A × S → R;
• Reward function r : S ×A → R.

The agent makes decisions and takes actions according to the policy π and the current
observation. The goal of the agent is to find the optimal policy π∗ maximizing expected
γ-discounted cumulative reward, called the value function Vπ . Thus, we have:

Vπ(s) def
=== E[

∞

∑
t=0

γtR(st, at)|s0 = s, at ∼ π(at|st), st+1 ∼ P(st+1, at)] (1)

Qπ(s, a) def
=== R(s, a) + γEs′∼P(s′ |s,a)V

π(s′) (2)

The optimal action-value function Q∗ = maxπ Qπ(s) satisfies the Bellman Optimality
Equation:

Q∗(s, a) def
=== Es′∼P(s′ |s,a) max

a′∈A
[R(s, a) + γQ∗(s′, a′)] (3)

In our experimental investigations, we adopt Proximal Policy Optimization (PPO) [9],
a policy gradient method for reinforcement learning. PPO demonstrates superior efficiency
and reliability compared to Trust Region Policy Optimization (TRPO) due to its utilization
of first-order optimization techniques exclusively. Within the PPO framework, two primary
variants exist: PPO-Penalty and PPO-Clip. PPO-Penalty approximates a KL-constrained
update, akin to TRPO, but introduces a penalty term in the objective function to address the
KL-divergence without imposing a hard constraint. Additionally, the penalty coefficient
is automatically adjusted during training to ensure proper scaling. In contrast, PPO-Clip
takes a different approach by omitting the KL-divergence term from the objective function
and dispensing with explicit constraints. Instead, it relies on specialized clipping methods
within the objective function to discourage substantial deviations between the new and
old policies.

For the current project, we employ PPO-Clip, as it offers convenience and ease of
implementation, making it a more feasible choice compared to PPO-Penalty. The central
concept behind PPO-Clip is the clipping surrogate objective, defined as follows:

LPPO(θ) = Et[min(rt(θ)At, clip(rt(θ), 1− ε, 1 + ε)At)] (4)

where ε is a hyperparameter. The first term inside the min is LPPO. The second term,
clip(rt(θ), 1− ε, 1 + ε)At, modifies the surrogate objective by clipping the probability ratio,
which removes the incentive for moving it outside of the interval [1− ε, 1 + ε].

The PPO-Clip is described in Algorithm 1.
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Algorithm 1: PPO-Clip
Input: Initial policy parameters θ0, initial value function parameters φi

1 for k=0,1,2,· · · do
2 Collect set of trajectories Dk = {τi} by running policy πk = π(θk) in the

environment. Compute rewards-to-go R̂t
3 Compute advantage estimates, Ât (using any method of advantage estimation)

based on the current value function Vφk

4 Update the policy by maximizing the PPO-Clip objective: θk+1 =

arg maxθ
1
|Dk |T ∑τ∈Dk ∑T

t=0 min
(

πθ(at |st)
πθk

(at |st)
Aπθk (at, st), g

(
ε, Aπθk (at, st)

))
,

typically via stochastic gradient ascent with Adam.
5 Fit value function by regression on mean-squared error:

φk+1 = arg minφ
1
|Dk |T ∑τ∈Dk ∑T

t=0 min
(

Vφ(st)− R̂t

)2
, typically via some

gradient descent algorithm
6 end

3.3. The Attention Mechanism

The attention mechanism, drawing inspiration from the selective concentration ob-
served in human cognition [30], functions as a weighted message-passing algorithm among
nodes in a graph. It has demonstrated impressive performance in the domain of Natural
Language Processing (NLP) and Transformer Models. Figure 1 illustrates the fundamental
principle of the attention mechanism. It involves the mapping of a query q and a collection
of key-value (k-v) pairs, which results in an output obtained through a weighted sum-
mation of the values. These weights not only represent the similarity between the query
and the corresponding key, but also serve as the weights assigned to the message value v
received by a node from its neighboring nodes.

Figure 1. Schematic diagram of the multi-head attention mechanism.

To be more specific, we define the query qi ∈ Rdk , key ki ∈ Rdk , and value vi ∈ Rdv ,
where dk denotes the dimensionality of the query qi and key ki, and dv represents the
dimensionality of the value vi. These values are computed by projecting the embedding hi
using the following equations:

qi = WQhi (5)

ki = WKhi (6)

vi = WVhi (7)

where WQ, WK, and WV are matrices of dimensions dk × dh, dk × dh, and dv × dh, respectively.
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Subsequently, the compatibility uij ∈ R is calculated through dot product [30]
as follows:

uij =


qT

i kj√
dk

if i is adjacent to j

−∞, otherwise
(8)

The attention weights aij are obtained by applying a softmax function:

aij =
euij

∑′j euij′
(9)

Consequently, the message node i receives, denoted as h′i, is the convex combination
of the message values vj:

h′j = ∑
j

sijvj (10)

Multi-head Attention: In scenarios involving large and complex datasets, multi-head
attention has been observed to deliver improved performance [30]. This approach allows
each node in the graph to receive different types of messages from different neighbors.
Let M denote the number of attention heads, and h′im denote the resultant vectors for
m ∈ 1, . . . , M. These vectors are then projected back to a single dh-dimensional vector using
parameter matrices WO

m of dimensions dh × dv. Therefore, the final multi-head attention
value for node i is a function of h1, . . . , hn through h′im:

MHAi(h1, . . . , hm) =
M

∑
m=1

WO
m h′im (11)

4. Problem Definition and Modeling

This section presents a detailed introduction to the programming model of CSLP,
encompassing the objective function and constraints.

The problem of charging station location can be framed as an optimization problem,
where the objective function gain(p) is defined to identify the optimal plan p∗ that best
fulfills our expectations. The objective function gain(p) in our study comprises three com-
ponents: the profit term pro f it(p), the cost term cost(p), and the fairness term f airness(p).
Each term within the objective function will be discussed in detail below.

4.1. Profit Function

For a station s with m charger types, let ci denote the available charging power of the
charger ti, and C(s) is the whole capacity of the charging station s. C(s) is computed as:
C(s) = ∑m

i=1 tici.
Intuitively, a charging station with a larger capacity should serve more electric vehicles

and have a wider range of influence. Hence, the influential radius r(s) is defined to indicate
the distance within which the charging station attracts electric vehicles. The decay of
influence with increasing distance is described using a Gaussian function:

r(s) = rmaxe−C(s)/2 (12)

where rmax is the maximal influential radius of the charging station s.
The service scope for CS s scope(s) and the coverage for the vertex v cov(v) are defined

as follows:
scope(s) = |{vs. ∈ V|d(v, s) ≤ r(s)}| (13)

cov(v) = |{s ∈ S|d(v, s) ≤ r(s)}| (14)

where d(v, s) represents the Euclidean distance between charging station s and vertex v.
The value of scope(s) for charging station s corresponds to the number of vertices within
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the scope of station s. Similarly, the coverage cov(v) for vertex v indicates the number of
charging stations within the influential radius of vertex v.

When the number of charging stations is not infinite, we anticipate that the limited
number of charging stations can provide services to a greater number of electric vehi-
cles. Additionally, for a single vertex v, having more choices is considered advantageous.
Consequently, the profit function is defined as:

pro f it(p) =
( 1
|V| ∑

v∈V
cov(v) +

1
|S| ∑

s∈S
scope(s)

)
(15)

4.2. Cost Function

In our study, we define the cost of a charging station plan, denoted as p, in terms
of the overall time expended during the charging process for drivers. This comprises
three key components: travel time (t1), charging time (t2), and waiting time (t3). Travel
time encapsulates the cumulative duration required for all electric vehicles within the
road network to reach a charging station. Charging time, on the other hand, refers to the
aggregate time spent by all electric vehicles during the charging process itself. Finally,
waiting time represents the collective duration that electric vehicles are queued for charging.
We employ the sum total of these times as a proxy for drivers’ comfort in our analysis.
The implication here is that a reduction in total time correlates with an enhancement in
driver comfort.

Let demand(v) represent the charging demand of the junction v; then, which charging
station the vehicles at the junction v are heading to need to be determined. Thus, the
function of attraction for CS s and junction v fatt(v, s) is defined as follows:

fatt(v, s) =
w1

dis(v, s)
+ w2C(s) (16)

where w1 and w2 are the weight coefficients.
For a given junction v and all the possible CS s, the larger fatt(v, s) is, the more likely

the EVs in the junction v going to s. Furthermore, we use the softmax function to calculate
the possibility of going one CS for junction v:

att(v, sk) =
e fatt(v,sk)

∑s′∈S e fatt(v,s′) (17)

σ(v, s) is used to record whether EVs at junction v are heading to s:

σ(v, s) =

{
1 i f d(v, s) ≤ r(s) and s = args′∈S max att(v, s′)
0, otherwise

(18)

Then, for the junction v, the total travel time of all EVs t1 induced by a plan p on the
road network is:

t1 = ∑
v∈V

∑
s∈p

σ(v, s)demand(v)dis(v, s)
V̄

(19)

where V̄ is a constant, representing the average speed the EV drive on the road.
Then, the charging time t2 is modeled and calculated. The total capacity of CSs is C(S),

and the expected charging time of all CSs is 1
C(S) . Thus, the charging time for all EVs is:

t2 = ∑
s∈p

∑
v∈V

σ(v, s)demand(v)
C(s)

(20)

For waiting time t3, it is first modeled as an M/D/1 queue [34], where M denotes the
coming event of EV follows a Poisson process, D denotes the service time is a deterministic
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function, and “1” means only one queue for a station. Then, the expected waiting time t3
can be calculated using the Pollaczek–Khintchine formula [34] as follows:

t3 = ∑
s∈p

W(s)D(s) (21)

where W(s) = ρ(s)
2µ(s)(1−ρ(s)) ,ρ(s) = D(s)

µ(s) < 1, and D(s) = σ(v, s) ∗ demand(v).
Finally, the total time cost is calculated as follows:

cost(p) = t1 + t2 + t3 (22)

4.3. Fairness Function

In this subsection, we design a fairness function. We believe that in any given area of
the urban road network, the average service that each electric vehicle (EV) receives should
be approximately balanced. Therefore, we define the average number of charging stations
matched at each intersection as the evaluation benchmark, and employ the Mean Square
Error (MSE) to quantify fairness. The average number of charging stations matched at a
single vertex is represented as:

scopeave(V) =
1
|V| ∑

v∈V
scope(v) (23)

Furthermore, the fairness of the plan p is measured as follows:

f airness(p) =
1
|V| ∑

v∈V
(scope(v)− scopeave(V))2 (24)

Finally, we obtain the objective function gain(p):

gain(p) = c1 pro f it(p)− c2cost(p) + c3 f airness(p) (25)

where c1, c2, and c3 represent the weight coefficients assigned to different terms, satisfying
c1 ≥ 0, c2 ≥ 0, c3 ≥ 0, and c1 + c2 + c3 = 1.

4.4. Problem Definition

Having formulated the objective function, the problem is then defined as a constrained
non-linear integer optimization problem to find the optimal plan p∗. The entire model can
be described by Equations (27)–(29):

p∗ = argp∈P max gain(p) (26)

s.t.
∑
s∈p

f (s) ≤ B (27)

∑
s∈p

σ(v, s) ≤ 1, ∀vs. ∈ V (28)

ρ(s) ≤ 1, ∀s ∈ p (29)

Equation (27) denotes that the limitation of the financial cost by a fixed budget B,
Equation (28) ensures one node just chooses one charging station, and Equation (29) is
used to make the waiting time well-defined. f (s) is the total cost of installing one new
charging station.

5. PPO-Attention Algorithm

In this section, the attention model architecture and PPO algorithm we use are discussed.
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5.1. Reinforcement Learning Problem Formulation

In this subsection, the problem of charging station placement is modeled as a re-
inforcement learning problem with a single agent. In the reinforcement problem, state
representation, action representation, and reward function design are introduced in detail.
The attention-based policy network we propose will be introduced in the next subsection.

5.1.1. State Representation

The state of the agent contains four components: si = {scp, scoor, sdem, sprice}, where
scp,scoor,sdem, and sprice represent the current charging plan p, the latitude and longitude
coordinate, charging demand deman(v), and the installation cost for each node v ∈ V at
episode i, respectively. For episode i, the state si ∈ P×R|V|2 ×R|V| ×R|V|.

For episode i, the information of every vertex v is represented by a vector
−→v = [plan(vi), xv, yv, demand(v), price(v)], where plan(v) denotes whether vertex vi is
set as the charging station, plan(vi) = 1 meaning yes, 0 meaning otherwise, xv,yv are the
coordinate of the vertex v, and demand(v),price(v) are the charging demand at vertex v
and installation cost if v is set as charging station.

5.1.2. Action Representation

In this problem, discrete actions are denoted by the set of indices A = {0, 1, 2, 3, 4, 5, 6},
representing “Create by benefit”, “Create by demand”, “Create by fairness”, “Increase by
benefit”, “Increase by demand”, “Increase by fairness”, and “Relocate”. The agent’s action
selection follows a sampling process from A.

To create a new charging station (CS), three greedy strategies determine its posi-
tion in the road network. “Create by benefit” selects the node with the lowest profit
(cov(v) + scope(v)) to enhance node coverage. “Create by demand” chooses the node
with the highest demand (dem(v)). A lookup table is created to determine charger con-
figurations for feasible capacity demands, selecting the cheapest configuration for each
demand. “Create by fairness” maximizes the fairness of the current plan ( f airness(p)).
Similarly, for increasing chargers, the same greedy strategies select a CS s ∈ P, adding one
charger if the station has fewer than K chargers. In terms of charger relocation, the charging
station sold with the lowest benefit is identified. One of its chargers is then relocated to the
charging station within the current plan pi that exhibits the highest waiting and charging
time. If sold becomes empty, it is removed from pi. This relocation strategy ensures the
availability of charging services in situations where the supply falls short of the demand,
without considering the costs associated with the relocation process.

5.1.3. Reward Function Design

The reward for the charging plan at the ith episode is computed using the proposed
objective function gain(pi). Initially, the reward is set to 0 when i = 0, thus yielding:

rewardi = gain(pi) (30)

5.2. Attention Model Architecture

In the proposed approach, we utilize an attention model architecture to improve
the algorithm’s capacity to capture interdependencies between network nodes. This sec-
tion provides a detailed description of the attention model, including the encoder and
decoder components.

For the road network G = (V, E), where each vertex v is represented by the vector −→v ,
the desired charging plan p is a permutation of the vertices denoted as π = (π1, . . . , πn) in
the reinforcement learning (RL) problem. A stochastic policy po(π|si) is defined to select a
solution π based on the state si. Typically, po(π|si) is parameterized by θ as follows:

poθ(π|si) =
n

∏
t=1

poθ(πt|si, π1:t−1) (31)



Appl. Sci. 2023, 13, 8473 10 of 18

When dealing with a continuous state space S, a neural network is commonly used
to approximate the policy function po(π|si), such as the Deep Q-Network (DQN), which
outperforms previous methods such as Q-Learning. To achieve better performance and
faster convergence, we propose a novel policy network based on the Encoder-Decoder
Framework. The structure of the policy network is illustrated in Figure 2, which consists of
two parts: the encoder and the decoder.

Encoder Decoder

MHA FF MLPEmbedding

x1

x2

x3

x4

… Action 𝒶𝒶

h1
ℓ−1

h2ℓ−1

h3ℓ−1

h4ℓ−1

h1
ℓ

h2ℓ

h3ℓ

h4ℓ

h1
′

h2′

h3′

h4′

Figure 2. The encoder–decoder framework of our model.

5.2.1. Encoder

The encoder comprises two parts: the linear layer and the attention layer. The linear
projection serves as the initial layer to embed all the original vertices, while the attention
layer is responsible for passing weighted messages. Unlike the encoder in the Transformer
Model [30], the encoder in our model does not include a positional encoding module.

First, for all the input vertices with dx-dimensional representation, the linear layer
embeds each node from dx-dimensional to dh-dimensional:

h0
i = WXxi + bX (32)

Next, the embedded information is passed to the attention layer, which may consist of
N layers. Each attention layer consists of two sublayers: a multi-head attention (MHA) layer
for exchanging weighted messages between vertices and a fully connected feed-forward
(FF) layer. Empirical tricks such as skip-connection [35] and batch normalization (BN)[36]
are utilized. Let hli denote the vertex embedding result produced by layer l ∈ {1, . . . , N}.
Therefore, we have:

ĥl = BNl(hl−1i + MHAl
i (h

l−1
1 , . . . , hl−1n )) (33)

hli = BNl(ĥl + FFl(hi)) (34)

These equations describe the forward pass through the attention layer, where hl−1i is
the input to the layer, ĥl is the intermediate result after the MHA layer, and hli represents
the output after applying the FF layer. By stacking multiple attention layers, the encoder
captures the dependencies and interactions between vertices in the road network.

5.2.2. Decoder

The decoder component employs a Multiple Layer Perceptron (MLP) to decode the
information from the encoder. It consists of two linear layers. The final output of the
decoder represents the policy network’s output, which is a seven-dimensional vector −→v
indicating the probabilities of different actions in the action set for the road network.
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The decoder takes the encoded vertex information hN
i from the encoder and processes

it through the MLP layers to obtain the final action probabilities. The output−→v is computed
as follows:

−→v = MLP(hN
i ) (35)

The final action to be selected for each vertex is the one with the highest probability.

5.3. Incorporation of an Attention-Based Policy Network into the PPO Algorithm

We have integrated the attention-based policy network into the Proximal Policy Opti-
mization (PPO) algorithm, resulting in our PPO-Attention algorithm.

As described in Section 3.2, PPO is a highly regarded policy optimization method in the
field of RL, known for its remarkable performance across diverse RL tasks. It utilizes policy
gradient methods to update the parameters of the policy network based on advantage
estimation and trust region constraints.

In our PPO-Attention algorithm, we exploit the attention mechanism to enhance the
policy network’s ability to capture the interdependencies among nodes in a road network.
Specifically, the attention layer incorporated in the encoder section of the policy network
assigns distinct weights to vertices, taking into account their significance and relevance for
the charging station placement task. By doing so, the model becomes adept at identifying
critical nodes and making informed decisions that incorporate the broader context of the
road network.

The PPO-Attention algorithm follows the core framework of PPO while substituting
the conventional policy network with the attention-based policy network described above.
During the training process, the algorithm gathers trajectories through interactions with the
environment and computes advantage estimates for each state–action pair. Subsequently,
the policy network is updated based on these advantage estimates and a trust region
constraint, which ensures that the policy updates remain within predefined bounds, thus
preserving stability.

By incorporating attention mechanisms and reinforcement learning into the PPO-
Attention algorithm, we can effectively optimize the placement of charging stations in
road networks, considering various factors and capturing the interdependencies between
network nodes.

6. Experiment and Analysis

In this section, we first introduce the datasets used for algorithm training and evalua-
tion, the baseline algorithms employed for algorithm evaluation, and the evaluation criteria.
We then provide a detailed analysis of the algorithm’s performance on different datasets.

6.1. Dataset

To substantiate the efficacy of our approach in road networks, characterized by varying
scales and geographical regions, we meticulously selected five distinct areas for algorithm
training and evaluation: Stanford, California, United States; Queenstown, Central Region,
Singapore; Cambridge, United Kingdom; Rouen, France; and Culver City, California,
United States, which are shown in Figure 3. These datasets were used for algorithm
training and evaluation.

• Road network data: The road network data for the aforementioned areas were obtained
through Open Street Map [37]. We acquired information such as the coordinates
(Xs, Ys), road types (Ts), and number of lanes (Ns) for each node in the road network.

• Charging station data: Existing charging infrastructure data for these road networks
were obtained from the Open Charge Map [38]. These data include the location
(Xc, Yc), type (Tc), number of chargers (Nc), charging capacity (Cac), charging cost
(Coc), and charger prices. In our calculations, publicly available charging station price
data were used to estimate the costs associated with building new charging stations.
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The scale of the road networks, the number of nodes, and the number of charging
stations in each city are presented in Table 1. It can be observed that the Stanford road
network has the fewest nodes (534), while the Cambridge, UK area has the largest coverage
with 3233 nodes and 7121 edges. Culver City, California, United States, possesses the
highest number of existing charging station infrastructure (113). The selection of road
network data of varying scales allows for comprehensive evaluation of the algorithm’s
robustness and applicability.

During the data preprocessing stage, we matched the road network nodes with the charg-
ing station information for each area. Each charging station was assigned to the nearest road
network node to simplify the problem-solving process. Additionally, we calculated the offline
values of r(s), scope(s), and cov(s) for each road node s ∈ S based on Equations (12)–(14) to
facilitate subsequent calculations. As described in Section 5.1.1, we considered all the nodes
V in the road network, their topological relationships E, the charging demands Demv of all
nodes, and the cost information Pricev associated with building new charging stations as
inputs to establish the observation space for reinforcement learning.

(a) Stanford , California, 
United States

(b) Queenstown,Central, Singapore

(d) Rouen,France

(c) Cambridge, UK

(e) Culver City, California, United States

Figure 3. The five road networks we selected for testing.

Table 1. Number of nodes and edges, and existing charging stations in different city road networks.

City Nodes Edges Existing Charging
Stations

Stanford 534 1178 13
Queenstown, Central,

Singapore 1001 1008 3

Cambridge, UK 3233 7121 30
Rouen, France 2273 4824 29

Culver City,
California, United

States
863 2086 113
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6.2. Baseline Algorithms

To assess the performance of our method meticulously, we conduct a comparative
analysis against several established baseline algorithms:

• Benefit-first greedy algorithm: This algorithm employs a greedy approach that itera-
tively selects locally optimal solutions in the pursuit of a globally optimal solution.
At each step of the solution process, the baseline algorithm focuses exclusively on
maximizing the profit function when determining the charging station sites.

• Demand-first greedy algorithm: In contrast to the aforementioned Benefit-first Greedy
Algorithm, this approach prioritizes charging demand when selecting charging station
locations, employing a greedy strategy to achieve optimal solutions.

• Genetic algorithm: Widely recognized as a heuristic algorithm, the genetic algorithm
emulates the natural evolutionary process to search for optimal solutions [39]. In our
study, we enhance the traditional genetic algorithm and devised a Multi-Layer Percep-
tron (MLP) network for population encoding to address the problem at hand.

6.3. Implementation Details

For the entire optimization problem, we set the following parameters: m = 3, B = 106,
rmax = 1 km. To balance the profit term, loss term, and fairness term, we set c1 = c2 = c3 = 1

3 .
In our proposed PPO-Attention algorithm, we utilize the following parameters:

Update Steps = 512, Batch Size = 128, Learning Rate = 0.002, and γ = 0.8. More-
over, the encoder MLP and decoder MLP both have a size of 64× 64. The attention layer
incorporates two heads, with dk = 32. The total training timesteps for all three algorithms
are set to 105.

For the genetic algorithm employed as a baseline, we encode and perform crossover op-
erations on the population using an MLP with three linear layers, each consisting of 64 units.
The parameters used in the genetic algorithm are as follows: Number o f Generations = 20,
Population Size = 100, Crossover Rate = 0.8, Mutation Rate = 0.01, Mutation Factor =
0.001, and Maximum Global Steps = 5× 104. The parameters for the profit-based greedy
algorithm and demand-based greedy algorithm remain consistent with those of the PPO-
Attention algorithm, except for the differences in policy selection.

All experiments were conducted on a platform equipped with an Intel Core i7-12700
CPU, NVIDIA GeForce RTX 3070 Ti GPU, and 32GB memory.

Meanwhile, a few indicators are used to evaluate the performance of the algorithm:

• The objective function gain(p). The value of gain(p) denotes the overall performance
of the model. The higher the score is, the better.

• Benefit of the gain(p): the sum of the profit term pro f it(p) and fairness term f airness(p)
in the objective function, which represents the positive impact of the current solution.
Higher values indicate better performance.

• Time cost cost(p). cost(p) contains following parts: travel time, which is the sum of
travel times within the road network, charging time, which is the sum of the charging
times within the road network, and waiting time, which is the sum of the waiting
times occurring at all CS in the road network. Additionally, we calculated the longest
travel time and longest queuing time throughout the entire process. For all the time
terms, a lower score is better.

6.4. Performance Evaluation

In the conducted evaluation experiments, we undertake a comprehensive reconfigura-
tion of the charging infrastructure by leveraging real-world charging station data while
considering various constraints, including budgetary limitations. As the benchmark, we
employ the existing layout of charging facilities, with all performance indicators normal-
ized to 100%. Tables 2 and 3 present the performance outcomes of our PPO-Attention
algorithm in comparison to several baseline algorithms across diverse urban road networks.
Specifically, Table 2 showcases the results obtained for Stanford, California, United States;
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Queenstown, Central Region, Singapore; and Cambridge, United Kingdom, while Table 3
encompasses the outcomes for Rouen, France, and Culver City, California, United States.

Table 2. Results are presented for the Stanford, Queenstown, and Cambridge datasets from the United
Kingdom. Evaluation metrics favoring higher values are indicated with ↑, while those favoring lower
values are labeled with ↓. The best scores are highlighted in bold.

Algorithm

Score ↑ Cost ↓

Gain Benefit Wait Travel Charging Travel
Max [min]

Wait Max
[min]

Stanford

Existing Charging 100.00 100.00 100.00 100.00 100.00 4.02 15.47
GA 228.09 142.71 57.06 77.93 72.33 3.20 8.77
Greedy_Benefit_first 329.98 183.08 35.84 64.76 66.41 2.37 7.17
Greedy_Demand_first 200.70 136.21 67.68 97.73 79.89 4.03 15.47
PPO-Attention (Ours) 426.38 223.10 19.19 58.43 62.46 2.16 1.98

Queenstown, Central, Singapore

Existing Charging 100.00 100.00 100.00 100.00 100.00 8.35 -
GA 225.86 144.17 44.04 75.65 99.37 7.73 -
Greedy_Benefit_first 192.42 132.39 60.02 88.01 94.28 8.32 -
Greedy_Demand_first 192.42 132.39 60.02 88.01 94.28 8.32 -
PPO-Attention (Ours) 253.10 133.87 14.85 97.97 13.45 8.29 19.47

Cambridge, UK

Existing Charging 100.00 100.00 100.00 100.00 100.00 5.18 819.75
GA 104.63 102.41 100.11 100.00 101.17 5.18 819.76
Greedy_Benefit_first 106.60 101.91 96.97 98.26 98.33 4.71 819.76
Greedy_Demand_first 106.60 101.87 96.90 98.31 98.18 4.70 819.76
PPO-Attention (Ours) 141.00 113.84 84.34 89.34 96.31 4.17 796.26

Table 2 reveals compelling findings for the Stanford region, wherein our algorithm
achieves an astounding 426.38% increase in profit when contrasted with the established
baseline configuration. This remarkable improvement markedly surpasses the outcomes
attained by the other three baseline algorithms, which record profit increases of 228.09%,
329.98%, and 200.70%, respectively. Moreover, our devised solution effectively diminishes
waiting time, travel time, and charging time by 80.81%, 41.57%, and 37.54%, respectively.
Similarly, for the Queenstown, Central Region, Singapore area, our algorithm yields a
remarkable profit escalation of 253.10% compared to the existing baseline, thus surpassing
the performance of the other three baseline algorithms, which attain profit increments of
225.86%, 192.42%, and 192.42%, respectively. Furthermore, our proposed solution consider-
ably reduces waiting time, travel time, and charging time by 85.15%, 2.03%, and 86.55%,
respectively. Notably, it is evident that in this specific region, the genetic algorithm displays
superior performance in terms of travel time and longest travel time, while our algorithm
exhibits remarkable excellence across various other evaluation metrics. In the Cambridge,
United Kingdom area, our algorithm’s planning solution achieves a noteworthy compre-
hensive profit increase of 141.00%, surpassing the outcomes attained by the alternative
baseline algorithms.

Analogously, Table 3 showcases the impressive results for the Rouen, France and
Culver City, California, United States regions, where our algorithm accomplishes compre-
hensive profit improvements of 248.67% and 221.04%, respectively, thereby outperforming
the other baseline algorithms in each respective region.

Furthermore, Table 4 consolidates the average outcomes obtained across all datasets.
Remarkably, the PPO-Attention algorithm, rooted in real-world charging station layouts,
achieves a remarkable average profit increase of 258.04%, while concurrently reducing the
average waiting time by 73.40%, travel time by 18.47%, and charging time by 40.10%. When
juxtaposed with the alternative baseline algorithms, our PPO-Attention algorithm emerges
as the definitive frontrunner across all evaluation metrics. To enhance comprehension,
Figure 4 provides visual representations of the planning outcomes derived from our PPO-
Attention algorithm for diverse urban charging station layouts. These visuals underscore
the algorithm’s ability to achieve a harmonious equilibrium by effectively considering
various factors such as the prevailing distribution of charging stations, charging demand
patterns, and budgetary constraints inherent to distinct urban road networks.
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Table 3. Results on the Rouen, France, and Culver City, California, United States datasets. Evaluation
metrics favoring higher values are indicated with ↑, while those favoring lower values are labeled
with ↓. The best scores are highlighted in bold.

Algorithm

Score ↑ Cost ↓

Gain Benefit Wait Travel Charging Travel
Max [min]

Wait Max
[min]

Rouen, France

Existing Charging 100.00 100.00 100.00 100.00 100.00 7.74 -
GA 141.00 108.70 59.00 80.88 101.58 5.34 -
Greedy_Benefit_first 135.20 107.39 65.12 96.83 91.81 7.80 -
Greedy_Demand_first 113.19 104.85 100.00 100.27 93.29 7.74 -
PPO-Attention (Ours) 248.67 139.55 8.29 78.03 65.48 6.81 147.60

Culver City, California, United States

Existing Charging 100.00 100.00 100.00 100.00 100.00 2.91 217.19
GA 117.17 108.41 100.36 100.00 101.62 2.91 217.19
Greedy_Benefit_first 134.20 105.09 53.28 96.52 94.67 2.88 93.60
Greedy_Demand_first 112.55 102.57 88.94 98.49 95.63 2.91 205.64
PPO-Attention (Ours) 221.04 130.53 19.13 83.91 61.82 2.18 28.61

(c) Cambridge, UK

(e) Culver City, California, United States(d) Rouen,France

(a) Stanford , California, 
United States

(b) Queenstown,Central, Singapore

Figure 4. The planning results for five cities from the PPO-Attention algorithm.

Table 4. Average results for all datasets. The best scores are highlighted in bold.

Algorithm Gain Score Benefit Score Waiting Time Travel Time Charging Time

Existing Charging 100 100 100 100 100
GA 163.35 121.28 72.11 86.89 95.21

Greedy_Benefit_first 179.68 125.97 62.25 88.88 89.10
Greedy_Demand_first 145.09 115.58 82.71 96.56 92.25
PPO-Attention (Ours) 258.04 148.18 26.60 81.53 59.90

6.5. Advantages and Disadvantages of RL in CSLP

In this section, we aim to provide a balanced discussion on the advantages and
disadvantages of deploying RL in the CSLP. Understanding the strengths and limitations
of RL in this context is crucial to its effective application and continual development.

The advantages of RL in the CSLP are primarily characterized by its adaptability,
scalability, and ability to balance between exploration and exploitation. RL’s adaptability
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allows for continual learning and adaptation to changing environments, such as variable
EV adoption rates or alterations in road network complexity. This adaptability enables the
model to optimize charging station placement as conditions change. Furthermore, RL algo-
rithms demonstrate excellent scalability, being well-suited to managing large and complex
road networks. As the size and complexity of the problem scale, RL algorithms can still find
optimal solutions, making them a powerful tool for CSLP. Finally, RL’s ability to balance
between exploration (searching new possible charging station locations) and exploitation
(leveraging knowledge of locations that are already known to be effective) results in a
robust solution that can discover and capitalize on optimal charging station locations.

However, RL application in the CSLP also presents challenges related to data require-
ments, interpretability, and computational expense. RL algorithms often require substantial
data for training. In the context of CSLP, obtaining sufficient and accurate data on traf-
fic patterns, EV adoption rates, and driver behavior can be challenging. Additionally,
the decision-making process of RL algorithms can be opaque, presenting difficulties in
interpreting why certain locations were chosen for charging stations over others. Finally,
RL, especially when combined with deep-learning structures, can be computationally ex-
pensive. This cost can be exacerbated by the complexity of the road networks and the
continuous state and action spaces in the CSLP.

In conclusion, while RL poses certain challenges in its application to the CSLP, its
advantages, particularly adaptability and scalability, render it a valuable tool in this context.
With careful consideration and application of appropriate techniques, the disadvantages of
RL can be effectively managed, affirming RL’s potential as a promising approach to address
the CSLP.

7. Conclusions

Efficient planning and layout of charging stations play a crucial role in improving
charging efficiency, infrastructure utilization, and overall social benefits. In this study, we
have addressed the charging station location problem by considering various factors, such
as the benefits of the layout, driver waiting time, fairness of the distribution, and other
constraints. By formulating the problem as a reinforcement learning task and leveraging
the Proximal Policy Optimization (PPO) algorithm along with the attention mechanism,
we have developed the PPO-Attention algorithm. Real-world data have been utilized for
training and testing the proposed algorithm. Our experimental results demonstrate that the
algorithm surpasses other baseline methods, and the novel charging station layout scheme
leads to a significant improvement in overall social income.

It is important to note that certain parameters, such as actual installation cost, charging
pile cost, and government budget, were unavailable through internet sources, which
necessitated certain simplifications in the processing. This may introduce a degree of
impact on the authenticity of the final results. In future research, we aim to enhance
the model and algorithm, taking into account more realistic constraints and conducting
extensive testing and application on diverse road networks.

Moreover, employing reinforcement learning algorithms to tackle optimization prob-
lems offers substantial advantages in terms of efficiency, scalability, and flexibility compared
to conventional algorithms. In our future work, we will focus on further improving the com-
putational efficiency and scalability of the algorithm for optimizing charging station layouts
across various scales. Additionally, we plan to extend the application of this approach to
address similar optimization problems related to baseline configuration layouts.
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