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Abstract: Individual choices and preferences are important factors that impact decision making.
Artificial intelligence can predict decisions by objectively detecting individual choices and prefer-
ences using natural language processing, computer vision, and machine learning. Brain–computer
interfaces can measure emotional reactions and identify brain activity changes linked to positive
or negative emotions, enabling more accurate prediction models. This research aims to build an
individual choice prediction system using electroencephalography (EEG) signals from the Shanghai
Jiao Tong University emotion and EEG dataset (SEED). Using EEG, we built different deep learning
models, such as a convolutional neural network, long short-term memory (LSTM), and a hybrid
model to predict choices driven by emotional stimuli. We also compared their performance with
different classical classifiers, such as k-nearest neighbors, support vector machines, and logistic
regression. We also utilized ensemble classifiers such as random forest, adaptive boosting, and
extreme gradient boosting. We evaluated our proposed models and compared them with previous
studies on SEED. Our proposed LSTM model achieved good results, with an accuracy of 96%.

Keywords: artificial intelligence; BCI; electroencephalography; EEG signals; deep learning

1. Introduction

The decision-making process is highly intricate and involves cognitive and emotional
aspects [1]. Before making a choice, the brain evaluates various options and their potential
outcomes. However, in an unpredictable world, the brain also owns the capacity to cancel
impending actions. Past experiences, emotions, social context, and personal values are
among factors that influence decision making [1,2].

Neuroscientists use electroencephalography (EEG) to measure brain activity and find
the neural correlates of the decision-making process. EEG can be used by researchers to
examine how the brain reacts to various options and pinpoint the variables that affect
decision making. EEG-based brain–computer interfaces (BCIs) can be used to measure
how people react emotionally to various stimuli, such as pictures or videos. Decision-
making BCIs have various benefits, including faster response times, improved correction of
mistakes, and enhanced independent learning [3].

BCI can be classified as active or passive in terms of human control over the machine.
The active BCI devices collect users’ brain signals activated intentionally with user con-
sciousness to provide human control over equipment using event-related potentials (ERP),
for example, using collaborative BCI for better-coordinated group decisions in a Go/NoGo
task using EEG [4]. Passive BCI devices, on the other hand, collect users’ brain signals
triggered unintentionally and without the users’ consciousness to study users’ emotions
outputted involuntarily as a result of the effect of a surrounding environment [5]. This can
be used to identify the true choices and obtain hidden information in users’ brains about
their actual thoughts, choices, and decisions.
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During the decision-making procedure, the human brain gathers and incorporates
all sources of previous evidence and values to yield a choice. Based on such information,
the decision maker gains an assessment of the probability of the decision being correct
i.e., confidence. BCI can be used to predict the decision confidence from EEG using two
classes ‘confident’ and ‘non-confident’ [6]. BCIs are able to identify alterations in brain
activity linked to either positive or negative emotions, giving them insight into a person’s
preferences [7].

Artificial intelligence (AI) research can develop more accurate prediction models of
individuals’ behavior and preferences by understanding the neural mechanisms underlying
decision making and emotional responses. By utilizing AI and deep learning (DL) models,
it is possible to extract meaningful patterns and insights from large datasets, which can
then be used to enhance services and applications in different contexts.

This research aims to build an individual choice prediction system using EEG signals.
The SJTU emotion and EEG dataset (SEED) is a benchmark dataset used in this research
to investigate individuals’ hidden information about actual choices using EEG signals [8].
EEG is a practical, flexible, and affordable technique. It provides a high temporal but
low spatial resolution measurement of brain activity [9], which has been widely used for
various purposes, including the analysis of reactions to emotional stimuli.

In this paper, we build different DL models, such as a convolutional neural network
(CNN), long short-term memory (LSTM), and a hybrid model. We also compared their
performance with different classical classifiers, such as k-nearest neighbors (KNN), support
vector machine (SVM), and logistic regression (LR). We also utilized ensemble classifiers,
such as random forest (RF), adaptive boosting (AdaBoost), and extreme gradient boosting
(XGBoost). We evaluated our proposed models and compared them with previous studies
using SEED.

This paper is organized as follows: Section 2 presents the background; Section 3
illustrates the literature review; Section 4 explains the research methods and BCI framework;
Section 5 explains the experiment implementation; Section 6 discusses the results and the
comparison of classical classifiers with related studies; and Section 7 presents the conclusion
and future works.

2. Background

In this section, we first explain the techniques used in signal processing, followed by
a description of the classification algorithms used. Finally, related works that used the
benchmark dataset are discussed.

2.1. Signal Processing

Signal processing is an essential step for choice classification, which includes two
steps: signal preprocessing and feature extraction.

First, EEG signals are preprocessed to remove artifacts from the recorded signals
and enhance the ratio of the signal power to the noise power. EEG artifacts result from
either physiological or technical factors. Physiological artifacts are the signals generated by
movements of the physical parts of the body, such as the head, face, neck, and eyes. The
technical artifacts are related to powerline noises and electrode resistance variations. Since
the EEG signals are noninvasive and the power lines cannot meet with the signals being
collected, this generates a low signal-to-noise ratio [10].

Next, feature extraction is applied after the preprocessing to reduce the high dimen-
sionality of the EEG data [10]. EEG signals can be analyzed in terms of two domains:
frequency and time [11]. To extract relevant features for choice prediction, frequency do-
main analysis was employed in this study since it is the most commonly used approach in
neuromarketing studies [12].
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2.2. Classification Algorithms

In computer science, DL is one of the machine learning (ML) methods that is based on
the artificial neural network (ANN). ANN, otherwise known as a neural network (NN),
can be used for supervised ML and is one of the recommended models because it can
recognize patterns and handle common problems by reflecting the behavior of the human
brain consisting of its simplest architecture (perceptron).

However, DL architecture, sometimes called a deep neural network (DNN), uses more
than two hidden NN layers consisting of multi-layered perceptrons. DL has a strong ability
to solve image recognition, speech recognition, natural language processing problems [13],
image reconstruction [14,15], and biomedical imaging [16]. It has also been effectively
employed in the field of BCI for classifying EEG motor imagery signals and detecting
emotions through EEG [5].

One of the main DL models is the CNN, which is derived from the visual cortex of
animals. The data input to a CNN model is first divided into different neural fields to be
fed into one- (ID) or two-dimensional convulsion layers [17,18].

Another DL model is the recurrent neural network (RNN), which is characterized by
its “memory.” It takes the information from previous inputs to influence the current input
and output. While traditional DNN assumes that inputs and outputs are independent of
each other, the output of the RNN depends on the sequence of prior elements [19].

The LSTM model is a subtype of the RNN. It has a feature through which it can
memorize the sequence of the data. Thus, it is capable of learning long-term dependencies,
which overcomes the issue of gradient disappearance. It is also useful for eliminating
unused information. The LSTM network is parametrized by weight matrices from the
input and the previous state for each of the gates [19].

A hybrid model combining CNN and LSTM is an approach where the strengths of both
architectures are utilized in solving complex problems. Such a model offers the advantages
of CNN’s capability to learn spatial hierarchies and capture local features, along with
LSTM’s capacity to learn long-range temporal dependencies and manage sequences. The
hybrid model architecture can vary depending on the specific problem being addressed.
The choice between starting with CNN followed by LSTM or LSTM followed by CNN
mainly depends on the task and the nature of the input data.

The KNN algorithm is a simple, easy-to-implement supervised ML algorithm that
can be used to solve both classification and regression problems. It works by classifying
instances based on the similarity between them to locate the nearest neighbor. The new
labeled sample will be put up against the benchmark data for comparison by the choice
classification. Based on the class that the majority of KNNs belong to, the voting formula
will decide where the new labeled sample will be allocated [10].

SVM is also among the most widely used supervised ML algorithms for both classifi-
cation and regression problems. The fundamental concept behind SVM is to use a kernel
transfer function to project incoming data onto a higher-dimensional feature space that is
simpler to separate than the initial feature space [20].

LR is a supervised ML that has been widely employed in ML for EEG signal process-
ing [21]. We employed LR, whose output value corresponds to the probability of belonging
to a choice class.

Ensemble models can combine many weak learners into a strong learner. RF is an
ensemble-learning algorithm that uses a collection of random decision trees trained via the
bagging method [22,23]. It works by adding randomness to the tree training process and
merging the results of various randomized trees into a singular classifier. The final result is
a tree with decisional nodes and leaf nodes that indicate the choice class.

In addition, two more ensemble-learning algorithms have been utilized in this study
via the boosting method. We used AdaBoost, which is an adaptive enhancement algorithm
for binary classification. The new predictor in AdaBoost pays a little more attention to the
training instances where the predecessor is misclassified [24].
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The last ensemble in this study is XGBoost, which is an optimized implementation
of gradient boosting available in the Python library [25]. It is based on the iterative fitting
of residuals resulting from the subsequent training and predictions generated by weak
learner algorithms [25,26]. The final choice class with a higher probability result from the
ensemble of decision trees that meets on small residuals or when the maximum number of
trees is reached.

3. Related Works

In recent years, there has been an increasing interest in utilizing EEG signals for emo-
tion recognition and prediction for human reactions based on their responses to emotional
stimuli. Several studies have explored the use of DL models to develop accurate emotion
recognition systems using EEG signals.

One such study by Zheng and Lu [8] introduced the use of deep belief networks
(DBNs) for constructing EEG-based emotion recognition models from 62 channels for
three types of emotions: positive, neutral, and negative. They extracted five features:
power spectral density (PSD), differential entropy (DE), differential asymmetry, rational
asymmetry, and the differences between the DE features of 23 pairs of frontal–posterior
electrodes. A comparison between DBN and the shallow models (SVM, LR, and KNN)
was conducted, with the average accuracies being 86.08%, 83.99%, 82.70%, and 72.60%,
respectively. They also proposed a DBN-based method for selecting critical channels and
frequency bands using the weight distributions of the trained DBNs. Among the different
electrode sets, 12 channels with SVM achieved the highest accuracy (86.65%) and lowest
standard deviation (8.62%), surpassing the accuracy of the 62 channels with SVM (83.99%)
and DBNs (86.08%).

Asghar et al. [27] extracted features using the discrete wavelet transformation method
and the AlexNet model from 62 channels in SEED. They used the bag of deep features as a
dimensionality reduction and attained 93.8% accuracy with the SVM classifier.

Lu et al. [28] extracted features using dynamic sample entropy measures from all
channels over time. They utilized SVM and achieved an average accuracy of 85.11% for
identifying negative and positive emotions. Bai et al. [29] chose eight channels to classify
positive and negative emotional states. They used the wavelet transform (WT) approach
to decompose and extract the frequency band and calculate the sample entropy. They
proposed LSTM and achieved a final accuracy rate of 90.12%.

4. Methods

The main objective of this research is to provide a framework and build a system for
detecting individuals’ preferences and choices based on the options presented to them
using EEG-based BCI. The motivation for our research work lies in the fact that decision
making has an unconscious and direct component that may drive or affect overt preferences
and actual choices.

Consequently, we aim to identify the main relevant features in the EEG signals of
individuals and determine the attributes that contribute to a better understanding of how
individuals perceive images and videos that affect their decisions. In this section, we explain
the general BCI framework and discuss the neural correlates of choices in EEG signals.

4.1. General BCI Framework

We measured EEG signals using a BCI device, which is human–machine communica-
tion. Thus, the generic BCI framework (Figure 1) is based on the three core components: the
signal acquisition stage, the pattern recognition stage, and the application interface stage.

1. In the signal acquisition stage, brain signals are measured using a specific type of
sensing modality (EEG, fNIRS, MEG, etc.). Then, the recorded signals are fed into the
signal processing stage for ML and pattern recognition.

2. The pattern recognition stage includes three steps: preprocessing, feature extraction,
and classification:
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a. In the signal preprocessing stage, any noise from the signals is filtered and
removed to best digitize them for the computer.

b. Relevant characteristics of the signals are extracted in the feature extrac-
tion stage.

c. In the classification stage, extracted features are analyzed and translated to an
output using ML.

3. The application interface stage presents the classification results to the user and
performs the proper action based on the BCI application.
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4.2. Neural Correlations of Choices

We designed and developed our choice detection system based on the four main choice
indices found in the literature [30]: approach–withdrawal (AW) index, valence index, effort
index, and choice index.

The AW index is the frontal asymmetry between the left and right hemispheres. The
left hemisphere indicates higher activation of positive emotions, while the right hemisphere
indicates higher activation of negative emotions. The frontal asymmetry theory of brain
activity is found in [11].

The valence index is based on the Russell emotional model for the valence dimen-
sion [31]. A high valence represents a “like” choice state, whereas a low valence represents
a “dislike” choice state. Research has proven the relationship between the asymmetry of
frontal activation and the valence of a person’s emotions.

The effort index computes the difference in the theta frequency band in both the left
and right frontal hemispheres, with a larger value representing a greater load and effort in
the working memory [32].

The choice index measures the alteration of the beta and gamma frequency bands in
both frontal hemispheres, with a higher value representing a greater possibility of making
a choice [33].

5. Experiment Implementation

In this paper, we build the choice prediction model using the SEED benchmark dataset.
Therefore, a description of SEED is provided. Our proposed EEG-based BCI system for
individual choice detection consists of four key modules: preprocessing, feature extrac-
tion, feature calculation, and choice classification using DL. Each module is detailed in
Sections 5.2–5.5.

For model evaluation, we assessed our choice classification model in terms of three
measures: accuracy, precision, and recall. We also compared its performance with different
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classical classifiers such as KNN, SVM, and LR. We also utilized ensemble classifiers such
as RF, AdaBoost, and XGBoost.

For the system implementation, we used an open-source programming language,
i.e., Python, and the Scikit-Learn toolbox for ML, along with SciPy for EEG filtering and
preprocessing, MNE for EEG-specific signal processing, and the Keras library for DL. We
subscribed to Google Colab Pro+ in order to have high memory for running our DL model.

5.1. Dataset Description

One of our main challenges in this research was the lack of EEG emotional benchmark
datasets. However, there are some publicly available EEG emotional benchmark datasets
used in neuromarketing research, such as the DEAP dataset [34], the neuromarketing
dataset [35], and SEED [36].

In this paper, we used SEED to train the model of the proposed system. EEG datasets
were provided by the brain-like computing and machine intelligence laboratory, Shanghai
Jiao Tong University. The SEED dataset has been used to conduct multiple studies and
has been proven to be well-suited for testing new algorithms [8,27–29]. These studies
have demonstrated the effectiveness of various ML techniques, including deep learning
approaches, in classifying emotional states using the SEED dataset. Table 1 summarizes
some information about SEED.

Table 1. SEED Description.

Affective Model Valence dimensional emotion model

Participants 15 Chinese participants (7 males and 8 females)

Stimuli Type 15 Chinese film clips each elicits a single target emotion: positive
(1), neutral (0), or negative (−1)

Stimuli Duration Each film clip lasts about 4 min

Stimuli
Arrangement

No consecutive trials (film clips) triggering the same
emotional type

Trials 675 trials: 3 sessions for each subject; each experiment session
contained 15 trials (film clips)

Experiment
Protocol

• Participants completed the experiment in three sessions,
one week apart to ensure the stability of reading signals.

• Each session had 15 video clips presented in an
emotion-alternating order.

• Each video clip had a 5 s hint at the start, followed by a
4 min video clip presentation with a 45 s
self-assessment questionnaire.

• A 15 s rest followed afterward.

EEG Device 62-channel ESI NeuroScan System

Electrodes

Active AgCl electrodes: FP1, FPZ, FP2, AF3, AF4, F7, F5, F3, F1,
FZ, F2, F4, F6, F8, FT7, CFC5, FC3, FC1, FCZ, FC2, FC4, FC6, FT8,
T7, C5, C3, C1, CZ, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPZ, CP2,
CP4, CP6, TP8, P7, P5, P3, P1, PZ, P2, P4, P6, P8, PO7, PO5, PO3,
POZ, PO4, PO6, PO8, CB1, O1, OZ, O2, CB2

Preprocessing EEG Signals

• Downsampled to 200 Hz
• EMG and EOG were removed manually
• Bandpass frequency filter between 0.5 Hz and 75 Hz
• EEG signal was divided into 1s long data segments

without overlap

SEED contains EEG signal recordings of 15 Chinese participants (7 males and 8 females)
that were collected with 62 channels. Their emotions during the recording were triggered
using 15 Chinese film clips containing positive, neutral, and negative emotions. The video
clips (stimuli) were selected with specific criteria: (1) each video clip includes only one
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targeted emotion; (2) the video content is clear and can be understood without descriptions;
and (3) each experiment has an appropriate duration to avoid subjects experiencing fatigue.

In SEED, each participant completed the experiment through three different sessions
with a time interval of about one week to ensure the stability of reading signals. Each
session contained fifteen different video clips, and their presentations were ordered in such
a way that two clips did not trigger the same emotion consecutively. There was a 5 s hint
at the start before each video clip, followed by the 4 min video clip presentation and a
45 s self-assessment questionnaire to report the immediate emotional reactions to each
video clip. A 15 s rest is provided afterward. Each video clip was linked into one emotion:
positive, negative, and neutral labeled as 1, −1, and 0, respectively.

5.2. Preprocessing

Preprocessing techniques were applied to SEED to improve the quality of the EEG
signals. Electromyography (EMG) and electrooculographic (EOG) artifacts were removed
manually.

The signals were downsampled to 200 Hz, and a bandpass frequency filter was applied
between 0.5 Hz and 75 Hz, which contains the EEG information and discards the noise
from the signals.

In addition, we applied more preprocessing steps, which are discussed below. Figure 2
represents some of the EEG data before and after preprocessing.
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(1) Since frontal brain areas are correlated with an individual’s choice state [37], we
picked 12 related channels for detecting induced choices. The 12 channels were
selected based on the guidelines provided in reference [37], which recommends the
selection of channels that have been shown to be reliable and informative in previous
studies. Specifically, these channels were chosen based on their relevance to measuring
emotional responses and have been used in previous studies on emotion recognition
using EEG signals. The selected channels include FP1, FPZ, FP2, AF3, AF4, FZ, F3, F4,
F8, F7, F5, and F6.

(2) Because emotions may not be triggered at the beginning of each trial, we discarded
the first 60 s and cropped the time to obtain 1 min long EEG data.

(3) We further applied a bandpass filter between 1 Hz and 50 Hz.
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5.3. Feature Extraction

First, we divided the EEG signals into a fixed length of 1 s using the Hanning window
without overlapping. Then, we extracted the EEG features using frequency-based analysis,
the PSD, and the DE.

The PSD technique is based on the Shannon entropy of the power spectrum and the
Welch method. We used PSD to extract the average power features into four frequency
bands ranging between 4 and 45 Hz: theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and
gamma (30–50 Hz). These four bands were used to extract the choice indices.

In addition to the PSD, we extracted features with DE using the multitaper method to
have all five frequency bands for each channel, including the delta band (1–4 Hz). The DE
technique was applied to each channel over a specific period. In a fixed duration of the EEG
signal, the DE of each band is equal to the logarithmic PSD of that band [38]. Researchers
used DE and proved its effectiveness in recognizing emotions and preferences (choice state)
from the EEG signals.

The reason for using different entropy methods is to capture different informative
features that may be derived from EEG signals in choice states. The number of extracted
features for each sample is 39,767. Figure 3 shows the features extracted to compute the
user choices.
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5.4. Feature Calculation

To predict individuals’ choices, we used the extracted PSD values to calculate the
choice indices [30] for the AW index, effort index, choice index, and valence index. However,
the equations used in our study were adapted for different channels.

The AW index calculates the variance of the alpha frequency band in the right and left
frontal hemispheres of the cortex, which represents a wish and an interest [37].

Touchett_AWindex =
alpha_F4, F6, F8 − alpha_F3, F5, F7
alpha_F4, F6, F8 + alpha_F3, F5, F7

(1)

AWindex = alphaAF4, F4, F6, F8 − alpha_AF3, F3, F5, F7 (2)
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The effort index calculates the variance of the theta frequency band in both frontal
hemispheres where a higher value represents a working memory load and effort [32].

e f f ortindex1 =
theta_F4, F6, F8 − theta_F3, F5, F7
theta_F4, F6, F8 + theta_F3, F5, F7

(3)

e f f ortindex2 = theta_AF4, F4, F6, F8 − theta_AF3, F3, F5, F7 (4)

The choice index calculates the inconstancy of the beta and gamma frequency bands
in both frontal hemispheres where a higher value represents more likelihood for making a
decision [33].

choiceindexGamma =
log(gamma_AF3, F3, F5, F7)− log(gamma_AF4, F4, F6, F8)
log(gamma_AF3, F3, F5, F7) + log(gamma_AF4, F4, F6, F8)

(5)

choiceindexBeta =
log(beta_ AF3, F3, F5, F7)− log(beta_AF4, F4, F6, F8)
log(beta_ AF3, F3, F5, F7) + log(beta_ AF4, F4, F6, F8)

(6)

The valence index calculates the variance of the alpha and beta frequency bands of the
cortex’s frontal hemispheres, which represents the direction of the emotional states (positive
or negative). Valence indicates positive (like), neutral, or negative (dislike) emotions toward
a decision. The left hemisphere indicates a higher activation of emotions of positive valence,
while the right hemisphere indicates a higher activation of emotions of negative valence [39].

valencevamv_Index =
beta_AF3, F3, F5, F7

alpha_AF3, F3, F5, F7
− beta_AF4, F4, F6, F8

alpha_AF4, F4, F6, F8
(7)

valencekirk_Index = log(alphaF3, F5, F7)− log(alpha_F4, F6, F8) (8)

valenceram12_Index = alphaF4, F6, F8 − beta_F3, F5, F7 (9)

valenceram15_Index =
alpha_F4, F6, F8
beta_F4, F6, F8

− alpha_F3, F5, F7
beta_F3, F5, F7

(10)

5.5. Choice Classification with DL

In this paper, we propose DL models to predict choice states and compare the results
with those of other classic classifiers. Different ML classifiers were used for choice predic-
tion tasks, such as SVM, RF, and KNN. DL methods were also investigated in previous
research [4,29]. Recently, DL has gained prominence because of its ability to handle nonlin-
ear data and extract meaningful relationships from only important features of raw data to
solve complex problems [7].

In our study, we predicted two choice states (like and dislike). There are three labels in
SEED; therefore, we considered both neutral and dislike labels as the dislike state for choice
prediction. In addition, we performed SMOTE (an over-sampling technique), which is a
resampling technique [31], to balance the data. The data had 675 instances (450 likes and
225 dislikes) before sampling and 900 instances (450 likes and 450 dislikes) after resampling.

To start building our classification models, we divided our data into 80% for training
and 20% for testing. We used the train_test_split function with the random split available in
Scikit-Learn. We performed experiments on SEED twice: before and after resampling. We
investigated the ability of different DL algorithms to detect the choice in the tested dataset
after resampling.

We constructed CNN, LSTM, and a hybrid model that combined both. We illustrate
their architecture in the next subsections. We also compared their performance with various
classical classifiers.
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5.5.1. CNN Architecture

The CNN architecture employed in this work is shown in Figure 4. The CNN model
consists of two convolutional (conv1d) blocks, both with 32 filters. Then, a 0.3 dropout
regularization is used to improve the performance of the model via a modest regularization
effect, followed by a third conv1d layer with 64 filters. The kernel size of all conv1d filters
is 3 × 3, with zero padding and stride, and we used the Rectified Linear Units (Relu) as
the activation function due to its unity gradient, where the maximum amount of error is
passed during backpropagation.
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Next, a maximum subsampling layer (max pooling layer) of a 2 × 2 subwindow was
applied, followed by a flattening layer. Then, a fully connected dense layer with 128 units
was applied to have nonlinearity properties, followed by a 0.3 dropout regularization. The
network ends with a connected dense layer fed with a sigmoid activation function for
binary classification.

5.5.2. LSTM Architecture

We used the standard formulation of LSTMs with the logistic function (σ) on the
gates and the hyperbolic tangent on the activations. The model has two LSTM layers with
dropouts in between, followed by a flattening layer. Then, the output is passed to the fully
connected network. The Relu activation function is used to predict the final output. The
block diagram of the LSTM architecture is shown in Figure 5.
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5.5.3. Hybrid Architecture

To build our hybrid architecture, we performed design experiments in various ways.
For example, we tested whether to best start the hybrid cascade model with the CNN
followed by the LSTM or vice versa. We also tested a different number of layers and filters.
The final hybrid architecture used is illustrated in Figure 6.
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This architecture starts with the CNN model consisting of two conv1d blocks, both
with 128 filters. Then, a 0.3 dropout regularization is used to improve the performance
of the model via a modest regularization effect, followed by a third conv1d layer with
128 filters.

The kernel size of all conv1d filters is 3 × 3 with zero padding and stride, and the
activation function employed is the hyperbolic tangent function (Tanh) because it is a differ-
entiable function with smooth and continuous derivatives. This helps propagate gradients
through the network during the backpropagation process, which makes training more
stable. Then, a maximum subsampling layer (max pooling layer) of a 2 × 2 subwindow
was applied, followed by a flatten layer.

Next, this architecture is passed through the LSTM model with the logistic function
on the gates and the hyperbolic tangent on the activations. The model has one LSTM layer
with a 0.25 dropout, followed by a flattening layer. The output is then passed to the fully
connected network with the Relu activation function and 32 filters. The network ends with
a connected dense layer fed with the sigmoid activation function for binary classification.

6. Results and Discussion

For model evaluation, we discuss the results of the proposed models themselves and
compare their performance with existing methods and previous studies that used SEED.

First, we assessed the predictive performance of our proposed models (CNN, LSTM,
and the hybrid model) using commonly used ML metrics: accuracy, precision, and recall
(Table 2). We also used the confusion matrix and the learning curves of accuracy, training
loss of 80%, and validation loss of 20% over epochs.

Table 2. Performance measurements of the proposed models.

Dataset Classifier Accuracy Precision Recall

Without
Resampling

CNN 75% 68% 54%
LSTM 71% 83% 21%

Hybrid 76% 72% 54%

With
Resampling

CNN 88% 83% 93%
LSTM 96% 95% 95%

Hybrid 91% 95% 86%

Accuracy is the percentage of the total number of correct predictions that actually
occurred. Precision is the percentage of properly identified positive cases. Recall is the
percentage of real positive cases that were properly identified [40].

We achieved the highest performance in classification choice through our proposed
LSTM model after resampling the dataset with 96% accuracy and 95% for both precision
and recall. The hybrid model came in second with 91% accuracy, followed by CNN with
88% accuracy.
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In our study, we considered all three evaluation measures because the ML model
needs to truly identify and not miss the like states as positive emotions and not misclassify
the actual dislike states as like states. The confusion matrix is used to understand what
type of mistakes (like or dislike) our proposed models made during the training and testing
phases. Figure 7 shows the number of actual choice states versus the predicted choice states
for our proposed models, CNN and LSTM.
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The error rate (misclassification rate) of the LSTM model was 0.4. It predicted two
wrong like states (false positive) and two wrong dislike states (false negative). In contrast,
the error rate of the CNN model increased to 0.11. It predicted eight false like states (false
positive) and three false dislike states (false negative).

To ensure that our proposed model has no over- or under-fitting problems, learning
curves are used to display the change in training accuracy versus validation accuracy over
epochs and the training loss versus validation loss over epochs. Figure 8 depicts the CNN
model’s accuracy and loss during the training and validation phases. As shown in the plots,
the model converged slowly over epochs, and the convergence stopped after epoch 10.
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Figure 9 depicts the LSTM model’s accuracy and loss during the training and validation
phases. As can be observed from the graph, the model converged over epochs faster than
the CNN model, and it is normally fitted with the highest accuracy and the least loss.
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6.1. Comparison with Classical Classifiers

We used different existing classic ML classifiers such as KNN, SVM, RF, LG, AdaBoost,
and XGBoost to compare their performance with the proposed DL models. Our extracted
features are fed into these classifiers, and we investigated several parameters for each one.
We evaluated the performance of each classifier in the same dataset twice (before and after
resampling) using the three evaluation metrics: accuracy, precision, and recall. Table 3
shows the hyperparameters used in the classical classifiers as follows:

• For KNN, we used 10 for the number of neighbors using all processors.
• For SVM, we used the polynomial kernel function and a cost of 10.
• For LR, we used the liblinear solver with a 100 regularization strength.
• For RF, we built 500 decision trees during the training and produced the class that

represents the mode of the choice.
• For XGBoost, we used binary logistics.

Table 3. Classifier Parameters.

Classifier Parameters

KNN n_neighbors = 10, n_jobs = −1

SVM Kernel = ‘rbf’, C = 10)

LR solver = ‘liblinear’, C = 100

RF n_estimators = 500, max_features = ‘auto’, n_jobs = −1

AdaBoost Random_state = 0

XGBoost Seed = 0, objective = ‘binary:logistic’

Figure 10 shows that for the dataset before resampling, the performance of all classifiers
was similar in terms of accuracy (about 70%). However, for the dataset after resampling,
the performance of all classifiers, except for KNN, increased significantly. The KNN
performance decreased after resampling to about 55% because of the enlarged number of
samples, and KNN performs better with the smallest datasets. The highest performance



Appl. Sci. 2023, 13, 8469 14 of 17

was reached with LSTM (96%), followed by CNN (88%), XGBoost (86%), SVM (83%), LR
and RF (82%), and AdaBoost (78%).
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Figure 10. Accuracy of classifiers used before and after resampling.

Figure 11 shows the comparison of the performance measurements (accuracy, preci-
sion, and recall) of the models after resampling. The proposed LSTM achieved the best
accuracy at 96% over the hybrid model (91%), whereas the KNN achieved the lowest at 55%.
AdaBoost achieved a higher accuracy of 78% compared with KNN. The performance of the
three classifiers, SVM, LR, and RF, was very similar at 83%, 82%, and 82%, respectively. Of
all classical classifiers, XGBoost had the best performance (86%), which is close to that of
our proposed CNN (88%).
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Figure 11. Performance measurements of different classifiers.

6.2. Comparison with Previous Studies

We assessed our proposed models and compared their results with those of previous
studies that used SEED with different extracted features and various classification methods.
The comparison in Table 4 shows that our LSTM model provided promising results.
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Table 4. Comparison of previous methodologies used in the benchmark SEED.

Ref. Class Labels # of Selected
Channels

Extracted
Features

# of
Features Classifier Accuracy

[8]
Positive,

negative, neutral

62
PSD, DE, DASM,
RASM, DCAU

__

DBN 86.08%

SVM 83.99%

LR 82.70%

KNN 72.60%

12 (FT7, FT8, T7, T8, C5,
C6, TP7, TP 8, CP5, CP6,

P7, P8)
DE __ SVM 86.65%

[27] Positive,
negative, neutral 62 DWT-BODF __ SVM 93.8%

KNN 91.4

[28] Positive, negative 62 DySampEns 1798 SVM 85.11%.

[29] Positive, negative 8 (AF3, AF4, F3, F4, F7, F8,
T7, T8)

WT and
Sample entropy __ LSTM 90.12%

Our
Work

Positive, negative
12 (FP1, FPZ, FP2, AF3,
AF4, FZ, F3, F4, F8, F7,

F5, F6)

DE, choice indices,
PSD, average

power
39,767

LSTM 96%

Hybrid 91%

XGBoost 86%

CNN 88%

In this paper, we achieved similar results to [18], with the hybrid model and CNN
reaching accuracies of 93.46% and 89.53%, respectively. Our work also achieves sim-
ilar results to [29], which achieved 90.12% accuracy using RNN with LSTM for eight
channels. Further, the accuracies reached by our SVM and LR are 83% and 82%, respec-
tively, corresponding to researchers’ work [8] for SVM and LR, which were 83.99% and
82.70%, respectively.

Based the feature extraction techniques, we notice that LSTM performs better with
PSD and DE at 96% compared to WT that achieved 90.12% [29]. The reasons behind the
improved accuracy, including the ability of spectral features to capture frequency-specific
information and the complementary nature of statistical features.

To summarize, in the SEED dataset, the emotional stimuli were task-relevant, as partic-
ipants were required to recognize an image, which likely contributed to the manifestation
of the emotional response in the EEG signals. Instead of 62 channels, we used 12 channels
to extract features that were fed to our models. This reduces computation time and can
be more useful for EEG datasets recorded using devices with fewer channels. Unlike
other research, we combined multiple extracted features to indicate choice states, such as
choice indices and DE. We achieved good results with our proposed LSTM model, with
96% accuracy. Compared with previous studies that used SEED, our work used the least
number of electrodes and more different feature sets and classifiers.

7. Conclusions

Neuroscientists use EEG-based BCI to measure brain activity and find the neural
correlates of decision-making processes, which involve both cognitive and emotional
factors. By employing AI and DL, it becomes feasible to make more accurate predictions
regarding the outcomes of decisions and individuals’ behavior and choices [28].

This research has demonstrated the potential of utilizing DL models and EEG signals
to build an accurate individual choice prediction system. The proposed LSTM model
achieved a high accuracy rate of 96%, which outperformed classical classifiers and the
results of previous studies that used SEED.

The use of fewer channels for feature extraction reduced computation time and in-
creased the practicality of the model for EEG datasets recorded using devices with fewer
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channels. Overall, this study provides valuable insights into the development of accurate
prediction models for individual choices and behavior using EEG signals.

For future work, we plan to investigate the role of feature selection of the extracted
features to improve the performance of detecting the choice states in the SEED dataset.

Author Contributions: A.K. researched the literature, analyzed and interpreted the data, and drafted
the manuscript. M.A. and A.K. implemented the experiment. M.A. and A.A.-N. designed and
supervised the analysis, reviewed and edited the manuscript, and contributed to the discussion. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported and funded by the Deanship of Scientific Research at Imam
Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RG23079).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
Center for Brain-like Computing and Machine Intelligence Laboratory. “https://bcmi.sjtu.edu.cn/
home/seed/index.html” (accessed on 20 January 2023).

Acknowledgments: The authors would like to thank the Deanship of Scientific Research at Imam
Mohammad Ibn Saud Islamic University (IMSIU) for funding and supporting this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rangel, A.; Camerer, C.; Montague, P.R. A framework for studying the neurobiology of value-based decision making. Nat. Rev.

Neurosci. 2008, 9, 545–556. [CrossRef]
2. Mirabella, G. Should I stay or should I go? Conceptual underpinnings of goal-directed actions. Front. Syst. Neurosci. 2014, 8, 206.

[CrossRef]
3. Mirabella, G.; Lebedev, M. Interfacing to the brain’s motor decisions. J. Neurophysiol. 2017, 117, 1305–1319. [CrossRef] [PubMed]
4. Yuan, P.; Wang, Y.; Gao, X.; Jung, T.-P.; Gao, S. A Collaborative Brain-Computer Interface for Accelerating Human Decision

Making. Proceeding of the Universal Access in Human-Computer Interaction. Design Methods, Tools, and Interaction Techniques
for eInclusion, Las Vegas, NV, USA, 21–26 July 2013; Stephanidis, C., Antona, M., Eds.; Lecture Notes in Computer Science.
Springer: Berlin/Heidelberg, Germany, 2013; Volume 8009, pp. 672–681. [CrossRef]

5. Al-Nafjan, A.; Hosny, M.; Al-Ohali, Y.; Al-Wabil, A. Review and Classification of Emotion Recognition Based on EEG Brain-
Computer Interface System Research: A Systematic Review. Appl. Sci. 2017, 7, 1239. [CrossRef]

6. Tremmel, C.; Fernandez-Vargas, J.; Stamos, D.; Cinel, C.; Pontil, M.; Citi, L.; Poli, R. A meta-learning BCI for estimating decision
confidence. J. Neural Eng. 2022, 19, 046009. [CrossRef]

7. Doborjeh, Z.; Hemmington, N.; Doborjeh, M.; Kasabov, N. Artificial intelligence: A systematic review of methods and applications
in hospitality and tourism. Int. J. Contemp. Hosp. Manag. 2021, 34, 1154–1176. [CrossRef]

8. Zheng, W.-L.; Lu, B.-L. Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep
Neural Networks. IEEE Trans. Auton. Ment. Dev. 2015, 7, 162–175. [CrossRef]

9. Burle, B.; Spieser, L.; Roger, C.; Casini, L.; Hasbroucq, T.; Vidal, F. Spatial and temporal resolutions of EEG: Is it really black and
white? A scalp current density view. Int. J. Psychophysiol. 2015, 97, 210–220. [CrossRef] [PubMed]

10. Abdulkader, S.N.; Atia, A.; Mostafa, M.-S.M. Brain computer interfacing: Applications and challenges. Egypt. Inform. J. 2015,
16, 213–230. [CrossRef]

11. Li, S.; Lyu, T.; Chen, M.; Zhang, P. The Prospects of Using EEG in Tourism and Hospitality Research. J. Hosp. Tour. Res. 2022,
46, 189–211. [CrossRef]

12. Aldayel, M.; Ykhlef, M.; Al-Nafjan, A. Recognition of Consumer Preference by Analysis and Classification EEG Signals. Front. Hum.
Neurosci. 2021, 14, 604639. [CrossRef] [PubMed]

13. Al-Nafjan, A.; Hosny, M.; Al-Wabil, A.; Al-Ohali, Y. Classification of Human Emotions from Electroencephalogram (EEG) Signal
using Deep Neural Network. Ijacsa 2017, 8, 419–425. [CrossRef]

14. Lan, H.; Gong, J.; Gao, F. Deep learning adapted acceleration for limited-view photoacoustic image reconstruction. Opt. Lett.
2022, 47, 1911. [CrossRef] [PubMed]

15. Shah, Z.H.; Müller, M.; Wang, T.-C.; Scheidig, P.M.; Schneider, A.; Schüttpelz, M.; Huser, T.; Schenck, W. Deep-learning based
denoising and reconstruction of super-resolution structured illumination microscopy images. Photon. Res. 2021, 9, B168.
[CrossRef]

16. Li, C.; Rai, M.R.; Ghashghaei, H.T.; Greenbaum, A. Illumination angle correction during image acquisition in light-sheet
fluorescence microscopy using deep learning. Biomed. Opt. Express 2022, 13, 888. [CrossRef]

https://bcmi.sjtu.edu.cn/home/seed/index.html
https://bcmi.sjtu.edu.cn/home/seed/index.html
https://doi.org/10.1038/nrn2357
https://doi.org/10.3389/fnsys.2014.00206
https://doi.org/10.1152/jn.00051.2016
https://www.ncbi.nlm.nih.gov/pubmed/28003406
https://doi.org/10.1007/978-3-642-39188-0_72
https://doi.org/10.3390/app7121239
https://doi.org/10.1088/1741-2552/ac7ba8
https://doi.org/10.1108/IJCHM-06-2021-0767
https://doi.org/10.1109/TAMD.2015.2431497
https://doi.org/10.1016/j.ijpsycho.2015.05.004
https://www.ncbi.nlm.nih.gov/pubmed/25979156
https://doi.org/10.1016/j.eij.2015.06.002
https://doi.org/10.1177/1096348021996439
https://doi.org/10.3389/fnhum.2020.604639
https://www.ncbi.nlm.nih.gov/pubmed/33519402
https://doi.org/10.14569/IJACSA.2017.080955
https://doi.org/10.1364/OL.450860
https://www.ncbi.nlm.nih.gov/pubmed/35363767
https://doi.org/10.1364/PRJ.416437
https://doi.org/10.1364/BOE.447392


Appl. Sci. 2023, 13, 8469 17 of 17

17. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;
Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021,
8, 53. [CrossRef]

18. Lindsay, G.W. Convolutional Neural Networks as a Model of the Visual System: Past, Present, and Future. J. Cogn. Neurosci. 2021,
33, 2017–2031. [CrossRef]

19. Fang, W.; Chen, Y.; Xue, Q. Survey on Research of RNN-Based Spatio-Temporal Sequence Prediction Algorithms. J. Big Data 2021,
3, 97–110. [CrossRef]

20. Soroush, M.Z.; Maghooli, K.; Setarehdan, S.K.; Nasrabadi, A.M. A Review on EEG Signals Based Emotion Recognition. Int. Clin.
Neurosci. J. 2017, 4, 118–129. [CrossRef]

21. Pan, C.; Shi, C.; Mu, H.; Li, J.; Gao, X. EEG-Based Emotion Recognition Using Logistic Regression with Gaussian Kernel and
Laplacian Prior and Investigation of Critical Frequency Bands. Appl. Sci. 2020, 10, 1619. [CrossRef]

22. Ackermann, P.; Kohlschein, C.; Bitsch, J.A.; Wehrle, K.; Jeschke, S. EEG-based automatic emotion recognition: Feature extraction,
selection and classification methods. In Proceedings of the 2016 IEEE 18th International Conference on e-Health Networking,
Applications and Services (Healthcom), Munich, Germany, 14–16 September 2016; pp. 1–6. [CrossRef]

23. Pane, E.; Hendrawan, M.A.; Wibawa, A.; Purnomo, M.H. Identifying Rules for Electroencephalograph (EEG) Emotion Recognition
and Classification. In Proceedings of the 5th International Conference on Instrumentation, Communications, Information
Technology, and Biomedical Engineering (ICICI-BME), Bandung, Indonesia, 6–7 November 2017; pp. 167–172. [CrossRef]

24. Chen, Y.; Chang, R.; Guo, J. Emotion Recognition of EEG Signals Based on the Ensemble Learning Method: AdaBoost. Math. Probl.
Eng. 2021, 2021, e8896062. [CrossRef]

25. Tung, K.; Liu, P.-K.; Chuang, Y.-C.; Wang, S.-H.; Wu, A.-Y. Entropy-Assisted Multi-Modal Emotion Recognition Framework Based
on Physiological Signals. arXiv 2018, arXiv:1809.08410.

26. Chatterjee, S.; Byun, Y.-C. EEG-Based Emotion Classification Using Stacking Ensemble Approach. Sensors 2022, 22, 8550.
[CrossRef]

27. Asghar, M.A.; Khan, M.J.; Fawad; Amin, Y.; Rizwan, M.; Rahman, M.; Badnava, S.; Mirjavadi, S.S. EEG-Based Multi-Modal
Emotion Recognition using Bag of Deep Features: An Optimal Feature Selection Approach. Sensors 2019, 19, 5218. [CrossRef]
[PubMed]

28. Lu, Y.; Wang, M.; Wu, W.; Han, Y.; Zhang, Q.; Chen, S. Dynamic entropy-based pattern learning to identify emotions from EEG
signals across individuals. Measurement 2020, 150, 107003. [CrossRef]

29. Bai, L.; Guo, J.; Xu, T.; Yang, M. Emotional Monitoring of Learners Based on EEG Signal Recognition. Procedia Comput. Sci. 2020,
174, 364–368. [CrossRef]

30. Al-Nafjan, A. Feature selection of EEG signals in neuromarketing. PeerJ Comput. Sci. 2022, 8, e944. [CrossRef]
31. Posner, J.; Russell, J.A.; Peterson, B.S. The circumplex model of affect: An integrative approach to affective neuroscience, cognitive

development, and psychopathology. Dev. Psychopathol. 2005, 17, 715–734. [CrossRef] [PubMed]
32. Modica, E.; Cartocci, G.; Rossi, D.; Martinez Levy, A.C.; Cherubino, P.; Maglione, A.G.; Di Flumeri, G.; Mancini, M.; Montanari, M.;

Perrotta, D.; et al. Neurophysiological Responses to Different Product Experiences. Comput. Intell. Neurosci. 2018, 2018, e9616301.
[CrossRef]

33. Ramsøy, T.Z.; Michael, N.; Michael, I. A Consumer Neuroscience Study of Conscious and Subconscious Destination Preference.
Sci. Rep. 2019, 9, 15102. [CrossRef]

34. Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.-S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A Database for
Emotion Analysis; Using Physiological Signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [CrossRef]

35. Yadava, M.; Kumar, P.; Saini, R.; Roy, P.P.; Dogra, D.P. Analysis of EEG signals and its application to neuromarketing. Multimed. Tools
Appl. 2017, 76, 19087–19111. [CrossRef]

36. Zheng, W.-L.; Liu, W.; Lu, Y.; Lu, B.-L.; Cichocki, A. EmotionMeter: A Multimodal Framework for Recognizing Human Emotions.
IEEE Trans. Cybern. 2019, 49, 1110–1122. [CrossRef] [PubMed]

37. Aldayel, M.; Ykhlef, M.; Al-Nafjan, A. Deep Learning for EEG-Based Preference Classification in Neuromarketing. Appl. Sci.
2020, 10, 1525. [CrossRef]

38. Zheng, W.-L.; Zhu, J.-Y.; Lu, B.-L. Identifying Stable Patterns over Time for Emotion Recognition from EEG. IEEE Trans. Affect.
Comput. 2019, 10, 417–429. [CrossRef]

39. Aldayel, M.; Ykhlef, M.; Al-Nafjan, A. Consumers’ Preference Recognition Based on Brain–Computer Interfaces: Advances,
Trends, and Applications. Arab. J. Sci. Eng. 2021, 46, 8983–8997. [CrossRef]

40. Zhou, J.; Gandomi, A.H.; Chen, F.; Holzinger, A. Evaluating the Quality of Machine Learning Explanations: A Survey on Methods
and Metrics. Electronics 2021, 10, 593. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1162/jocn_a_01544
https://doi.org/10.32604/jbd.2021.016993
https://doi.org/10.15171/icnj.2017.01
https://doi.org/10.3390/app10051619
https://doi.org/10.1109/HealthCom.2016.7749447
https://doi.org/10.1109/ICICI-BME.2017.8537731
https://doi.org/10.1155/2021/8896062
https://doi.org/10.3390/s22218550
https://doi.org/10.3390/s19235218
https://www.ncbi.nlm.nih.gov/pubmed/31795095
https://doi.org/10.1016/j.measurement.2019.107003
https://doi.org/10.1016/j.procs.2020.06.100
https://doi.org/10.7717/peerj-cs.944
https://doi.org/10.1017/S0954579405050340
https://www.ncbi.nlm.nih.gov/pubmed/16262989
https://doi.org/10.1155/2018/9616301
https://doi.org/10.1038/s41598-019-51567-1
https://doi.org/10.1109/T-AFFC.2011.15
https://doi.org/10.1007/s11042-017-4580-6
https://doi.org/10.1109/TCYB.2018.2797176
https://www.ncbi.nlm.nih.gov/pubmed/29994384
https://doi.org/10.3390/app10041525
https://doi.org/10.1109/TAFFC.2017.2712143
https://doi.org/10.1007/s13369-021-05695-4
https://doi.org/10.3390/electronics10050593

	Introduction 
	Background 
	Signal Processing 
	Classification Algorithms 

	Related Works 
	Methods 
	General BCI Framework 
	Neural Correlations of Choices 

	Experiment Implementation 
	Dataset Description 
	Preprocessing 
	Feature Extraction 
	Feature Calculation 
	Choice Classification with DL 
	CNN Architecture 
	LSTM Architecture 
	Hybrid Architecture 


	Results and Discussion 
	Comparison with Classical Classifiers 
	Comparison with Previous Studies 

	Conclusions 
	References

