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Abstract: Magnesia is one of the vital and extensively used refractory components. In this study,
the dissolution of magnesia is investigated at 1450, 1500, and 1550 ◦C in three silicate slags in the
CaO–Al2O3–SiO2–MgO system using high-temperature confocal laser scanning microscopy to de-
termine its effective binary diffusivity. The pore-free fragments of single-crystal fused magnesia
particles were used, and the effects of experimental parameters and slag properties on the dissolution
of magnesia were assessed. The ranking of dissolution times in the three slags at the three tempera-
tures did not agree with the trend expected from the CaO/SiO2 ratio of each slag. Instead, several
quotients serving as reference numbers were tested. The effective binary diffusivities were calculated
considering all the impacting phenomena and parameters. The diffusivities of magnesia at 1500 ◦C
in the slags with CaO/SiO2 weight ratios of 0.65, 0.93, and 1.17 are 2.67 × 10−10, 1.81 × 10−10, and
3.20 × 10−10 m2/s, respectively. The diffusivity of magnesia in one of the three slags was compared
with rotating finger test results, which showed good agreement. The plausibility of diffusivity was
checked using an Arrhenius plot.
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1. Introduction

Magnesia is one of the widely used refractory components in pyro-metallurgy and
cement industries [1–5]. When applied to a working lining, it is susceptible to corrosion
owing to the corrosive charge at elevated temperatures, including dissolution in melts.
Refractory corrosion often seriously hampers the production performance of vessels and
the product quality [6].

To design a resource- and cost-efficient refractory with a longer service life, the dis-
solution of the refractory component must be studied thoroughly in different corrosive
melts [7,8]. Diffusivity is the primary parameter used to quantify dissolution [2,7,9–11]. The
diffusivities of the dissolving species can be experimentally determined. In the last two and
half decades, high-temperature confocal laser scanning microscopy (HT-CLSM) has be-
come a popular tool for dissolution studies [9,10,12–25]. The in situ measurements and
possibility of maintaining a high slag-to-particle mass ratio make this method important for
dissolution studies. However, only small particles can be studied using this apparatus. In
several reported CLSM dissolution studies [9,10,12–23], all of the influencing phenomena
and parameters, particularly the effects of slag bath motion and Stefan flow, were not
incorporated into the evaluation methods. Ogris and Gamsjaeger [26] accounted for Stefan
flow, but the effect of bath motion was not considered. However, both of the phenomena
were incorporated in Ref. [11]. The main hurdle in determining the diffusivity from CLSM
studies is the appropriate depiction of the effective diffusive boundary layer thickness.
In Ref. [11], a method for appropriately depicting the effective diffusive boundary layer
thickness by integrating the effect of bath motion and related flow parameters using the
Sherwood relation is described in detail. The same method for determining the diffusivity
was employed in this study.
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Few dissolution studies on magnesia using HT-CLSM and their diffusivities are avail-
able in the literature [10,16,21,23]. In these studies, the effects of slag bath motion and
Stefan flow on diffusivity determination were not considered. However, the effect of slag
basicity on magnesia dissolution has not been extensively studied. In the present study, the
dissolution of magnesia particles in three silicate slags at 1450, 1500, and 1550 ◦C have been
studied to enrich the literature with effective binary diffusivities of magnesia determined
with the consideration of all influencing phenomena and parameters. Furthermore, we
tried to establish a parameter for the qualitative estimation of dissolution, which is not
possible with slag basicity only. The aforesaid parameter consisted of the dimensionless
concentration difference (B), thermodynamic factor ( f ), effective diffusive boundary layer
thickness (δ), and slag viscosity (η). Additionally, the diffusivities of magnesia in one of
these three slags were weighed against the findings obtained from dynamic finger test
experiments [8] where the δ could be accurately controlled.

2. Materials and Methods
2.1. Materials

In this study, pore-free fragments of single-crystal fused magnesia particles close to
the theoretical density of 3.58 g/cc, with a magnesia content of 98.66 wt% and sizes of
300–500 µm, were investigated in three silicate slags. In this study, fused magnesia grains
were used because dense spherical magnesia particles are not commercially available.
Cubic-shaped particles were manually selected, which transformed into a spherical shape at
the beginning of the experiment owing to the faster dissolution of the edges. Synthetic slags
in the CaO–Al2O3–SiO2–MgO system were produced from quartz powder, calcined Al2O3
powder, decarburized CaCO3, and MgO powder (S3 Handel und Dienstleistungen UG, Bad
Oeynhausen, Germany). The slag preparation procedure was adopted from Ref. [11]. Each
of the raw materials was taken as per the target slag composition and mixed to prepare
slag batches. To enhance the homogeneity, the pre-mixes were melted at 1450 ◦C for 15 min
in a preheated furnace and quenched on a metal sheet. To enhance the uniformity and
maintain the same slag quantity in all CLSM crucibles, the solidified slag was pulverized
in a cup mill lined with tungsten carbide. In two steps (0.08 g + 0.12 g), the powdered
slag was pre-molten in each platinum-10% Rhodium (Pt-Rh10) crucible at 1450 ◦C for
15 min in a preheated furnace for easy removal of bubbles, which are detrimental in CLSM
dissolution experiments [11]. The chemical compositions, dynamic viscosities (η) at the
three experimental temperatures, and liquidus temperatures (TL) are listed in Table 1,
where C/S is the CaO/SiO2 weight ratio. Table 2 represents the densities (ρ) of the slags
and mass fractions of magnesia (ws) in the saturated slags at 1450, 1500, and 1550 ◦C. The
viscosities and thermochemical properties of the slags were calculated using FactSage® 7.3.
The slag densities were determined according to the method reported in Ref. [27].

Table 1. Chemical compositions, viscosities, and liquidus temperatures of the slags.

Slag No. C/S CaO
[wt%]

Al2O3
[wt%]

SiO2
[wt%]

MgO
[wt%]

η1450◦C
[Pa·s]

η1500◦C
[Pa·s]

η1550◦C
[Pa·s]

TL
[◦C]

S1 0.65 32.42 11.16 49.56 6.86 1.02 0.73 0.53 1265
S2 0.93 38.07 21.00 40.93 - 1.28 0.88 0.62 1301
S3 1.17 45.03 11.33 38.64 5.00 0.36 0.27 0.20 1317

Table 2. Slag densities and mass fractions of magnesia in the saturated slags.

Slag No. ρ1450◦C
[kg/m3]

ρ1500◦C
[kg/m3]

ρ1550◦C
[kg/m3]

Ws.1450◦C
[]

Ws.1500◦C
[]

Ws.1550◦C
[]

S1 2595 2587 2579 0.2724 0.2749 0.2779
S2 2611 2600 2589 0.1881 0.1932 0.1987
S3 2671 2662 2653 0.1551 0.1592 0.1637
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2.2. Experimental

In this study, the dissolution of magnesia at 1450, 1500, and 1550 ◦C under air at-
mosphere was investigated using HT-CLSM at Montanuniversitaet, Leoben. Refs. [28,29]
provide a complete description of the device used; the experimental procedure reported in
Ref. [11] was used. The measured furnace temperature may differ from the slag tempera-
ture because the furnace thermocouple is situated a few millimeters below the slag-filled
crucible. Before starting the dissolution experiments, the temperature difference between
the furnace and slag was measured using an S-type thermocouple inserted into the pre-
molten slag. The temperature difference was incorporated into the furnace heating program
to achieve the target slag temperature. At around 20 ◦C, a magnesia particle was placed in
the middle of a slag-filled Pt-Rh10 crucible. Thereafter, the heating schedule of the mirror
furnace was started, where the heating rate was 50 ◦C/min until 150 ◦C. After 1 min of
dwell time at this temperature, the heating rate was set to 500 ◦C/min until 50 ◦C below the
target temperature and then reduced to 100 ◦C/min to achieve the target temperature. Near
the target temperature, the heating program was kept on hold. The temperature was manu-
ally controlled to avoid overheating and uphold the target temperature until the complete
dissolution of the particle. Subsequently, the cooling rate was set to 400 ◦C/min [11]. Video
was captured from 150 ◦C until the dissolution process at the target temperature was com-
plete. Five experiments (only four experiments at 1550 ◦C in S1) were carried out at each
experimental temperature to confirm the repeatability and obtain representative results.

2.3. Analysis

The image analyzing software ImageJ 1.52a was used to analyze the videos at the
isothermal target temperatures for each individual dissolution experiment until complete
dissolution. The areas of the particle images at different frames were measured and utilized
to determine the equivalent particle diameters (Ø) at the corresponding dissolution times.
The time interval for the video analysis was adjusted according to the total dissolution time
to obtain at least 30 data points. As an example, Figure 1 shows snapshots of two different
time frames from the CLSM video of magnesia dissolution in S3 at 1450 ◦C. Upon reach-
ing the isothermal target temperature in all experiments, the equivalent diameters were
usually different. Therefore, 300 µm was selected as the initial equivalent diameter for a
better comparison.
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3. Results and Discussion
3.1. Dissolution

Figure 2a–c show the dissolution curves of equivalent diameters over time in S1, S2,
and S3 at 1450, 1500, and 1550 ◦C, respectively. The shaded area represents the standard
deviation of dissolution time for a particular equivalent diameter in the corresponding
experiments. Figure 2d shows the reciprocal of total dissolution time, ttot (mean of the
corresponding experiments), for a 300 µm particle at three temperatures in S1, S2, and
S3. In all cases, time for the complete dissolution of a 300 µm particle decreases with
rising experimental temperature. This is expected because of the increase in diffusivity
with temperature, and it agrees with the trend of decreasing slag viscosity with increasing
temperature, as shown in Table 1. In the case of magnesia, a dissolution time increase is
expected with an increasing C/S ratio. However, at 1450 and 1500 ◦C, the sequences of S2
and S3 contradict this expectation.
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Figure 2. Dissolution curves for magnesia in (a) S1, (b) S2, and (c) S3 at 1450, 1500, and
1550 ◦C; (d) reciprocal of total dissolution times; shaded area represents the standard devia-
tion of dissolution time.

Figure 3a–c show the dissolution rates in terms of the derivative of particle size dØ/dt
with respect to time in S1, S2, and S3 at 1450, 1500, and 1550 ◦C, respectively. In all slags, at
a particular temperature, the absolute value of the dissolution rate decreases to a minimum
at the beginning owing to the development of a quasi-steady diffusive boundary layer; it
then increases because the quasi-steady diffusive boundary layer thickness decreases in
accordance with the particle radius. Similar to the total dissolution time, the absolute value
of the dissolution rate increases with rising temperature; however, it does not show the
expected trend with an increasing C/S ratio. Here, the concentration difference in magnesia
between the saturated and bulk slag decreases with an increasing C/S ratio; this parameter
acts to decrease the dissolution rate with a rising C/S ratio, but other factors also play
important roles. Dissolution is inversely proportional to the δ, which is influenced by the
fluid flow field around the dissolving particle and slag viscosity. According to the process
in Ref. [11], average effective diffusive boundary layer thicknesses were determined from
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the experimental mean dissolution curves, presented in Figure 3d. Based on the aforesaid
factors, we consider introducing two parameters, B/η and B/(η·δ), to assess the dissolution
trend. The dimensionless concentration difference B is defined by Equation (1).

B =
ws − w0

1 − ws
, (1)

where w0 and ws are the mass fractions of magnesia in bulk and saturated slags, respec-
tively. However, these parameters do not explain the dissolution trend of magnesia in the
three slags. For further improvement, the thermodynamic factor of diffusion f , defined by
Equation (2), was calculated using the magnesia activity coefficient (γ) calculated from the
FactSage® results.

f = 1 +
dlnγ

dlnx
(2)
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Figure 3. Dissolution rates for magnesia in (a) S1, (b) S2, and (c) S3 at 1450, 1500, and 1550 ◦C;
(d) effective boundary layer thicknesses (δ) in S1, S2, and S3 at 1450, 1500, and 1550 ◦C.

The extended parameter B· f /(η·δ) was introduced, and it successfully explains the
dissolution trend at 1450 and 1500 ◦C. For 1550 ◦C, it identifies the most corrosive slag as S1;
the ratios B/η and B/(η·δ) do not successfully quantify this improvement. Notably, B·D/δ
gives the correct ranking of dissolution times for all slags and temperatures, although the
ratio f /η is not sufficiently proportional to diffusivity. This deficiency in the simplified
assessment can be observed for 1550 ◦C rather than for the other two cases, which follows
the form of the lower variance in dissolution times for slag S3. The coefficients of vari-
ation for the dissolution times of S1 and S2 are 39.8% and 38.2%, respectively, but only
27.2% for S3. Table 3 represents the dissolution parameters which can be used to assess the
aggressiveness of the slag for magnesia dissolution.
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Table 3. Dissolution parameters to rank the slag aggressiveness.

Temperature (◦C) Slag ttot· (s) B/η (1/Pa·s) B/(η·δ)·(1/Pa·s·m) B·f /(η·δ)·(1/Pa·s·m)

1450
S1 188.1 0.275 6.38 × 103 2.84 × 104

S2 439.5 0.181 2.67 × 103 8.18 × 103

S3 412.6 0.346 7.79 × 103 2.25 × 104

1500
S1 111 0.390 1.19 × 104 5.35 × 104

S2 245.7 0.272 5.04 × 103 1.52 × 104

S3 172.4 0.481 1.27 × 104 3.60 × 104

1550
S1 66.1 0.547 1.73 × 104 7.38 × 104

S2 91.4 0.400 1.30 × 104 3.73 × 104

S3 115.7 0.680 2.08 × 104 5.78 × 104

3.2. Diffusivity

Each experiment was evaluated according to the model proposed in Ref. [11] to deter-
mine the diffusivity of magnesia. The average diffusivities of magnesia in S1–S3 at 1450,
1500, and 1550 ◦C are presented in Figure 4a. In a particular slag, the diffusivity of magnesia
increased with increasing experimental temperature because of its lowered viscosity at
higher temperatures. In addition, no trend was observed in the case of diffusivity with
slag basicity; however, slag viscosities can explain the trend in diffusivities. Figure 4b
shows the Arrhenius plots of the magnesia diffusivities in S1–S3 as a function of reciprocal
temperature (K). The linear tendency of the Arrhenius plot confirms the plausibility of the
trend in diffusivities. The activation energies of magnesia diffusion calculated from the
Arrhenius plots are 213, 185, and 259 kJ/mol for S1, S2, and S3, respectively.
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Figure 4. (a) Magnesia diffusivity and (b) Arrhenius plot of magnesia diffusivity in S1, S2, and S3
slags at 1450, 1500, and 1550 ◦C.

Table 4 shows the diffusivities of magnesia obtained from the rotating finger test and
CLSM. Magnesia diffusivities determined using a rotating finger test were obtained from
Ref. [8], which were determined for slag S1, as used here; however, they are not exactly valid
for the virgin slag composition. In Ref. [10], the magnesia concentration of the slag increased
during the experiment, which was negligible for the CLSM investigation performed in
this study. Therefore, they were converted to diffusivities of the virgin slag viscosity
using the Stokes–Einstein relation, where the product of the diffusivity and viscosity is
constant. In addition to the diffusivity determination model (M3) proposed in Ref. [11],
shrinking core models with (M2) and without (M1) Stefan flow, both exemplified in Ref. [11],
were employed to determine the diffusivities from the CLSM studies. M3 showed good
agreement with the rotating finger test results, where the effective boundary layer thickness
could be accurately controlled. However, M1 and M2 overestimated diffusivity in all cases.
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Table 4. Diffusivities of magnesia received from rotating finger test and CLSM studies.

Slag Experimental
Temperature (◦C)

Diffusivities from Rotating
Finger Test [8] (m2/s)

Diffusivity from CLSM [11] (m2/s)

M1 M2 M3

S1
1450 8.44781 × 10−11 3.93 × 10−10 2.81 × 10−10 1.63 × 10−10

1500 2.04898 × 10−10 6.48 × 10−10 4.61 × 10−10 2.67 × 10−10

1550 3.81569 × 10−10 1.09 × 10−9 7.71 × 10−10 3.67 × 10−10

4. Conclusions

HT-CLSM investigations for pore-free fragments of single-crystal fused magnesia
particles in three silicate slags were carried out at 1450, 1500, and 1550 ◦C under an ambient
atmosphere. As expected, dissolution was faster at higher temperatures because of the
lower slag viscosity. In all slags, at a particular temperature, the absolute value of the
dissolution rate decreased to a minimum at the beginning because of the development of
a quasi-steady diffusive boundary layer, and subsequently increased because the quasi-
steady diffusive boundary layer thickness decreased in accordance with the particle radius.
It is often desirable to characterize dissolution trends using simple reference numbers. The
results show that the dissolution trend among the slags could not be explained simply
by the C/S ratio or even by B/η and B/(η·δ). However, the introduction of a so-called
thermodynamic factor and using the quotient B· f /(η·δ) greatly improve its correspondence.
Therefore, the assumption of proportionality between D and f /η fits much better than
that between D and 1/η, although it is still imperfect. The Arrhenius plots of diffusivities
show a linear trend, which confirms the plausibility of the diffusivity results, providing
the opportunity to obtain the diffusivities at other temperatures without carrying out
physical experiments. Furthermore, the diffusivities from the M3 model of the CLSM
studies correspond well with the rotating finger test results, where the effective boundary
layer thickness could be accurately controlled, increasing the reliability of the outcomes.
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