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Abstract: With the development of deep learning technology, more and more researchers are in-
terested in ear recognition. Human ear recognition is a biometric identification technology based
on human ear feature information and it is often used for authentication and intelligent monitor-
ing field, etc. In order to make ear recognition better applied to practical application, real time
and accuracy have always been very important and challenging topics. Therefore, focusing on the
problem that the mAP@0.5 value of the YOLOv5s-MG method is lower than that of the YOLOv5s
method on the EarVN1.0 human ear dataset with low resolution, small target, rotation, brightness
change, earrings, glasses and other occlusion, a lightweight ear recognition method is proposed
based on an attention mechanism and feature fusion. This method mainly includes the following
several steps: First, the CBAM attention mechanism is added to the connection between the backbone
network and the neck network of the lightweight human ear recognition method YOLOvV5s-MG,
and the YOLOv5s-MG-CBAM human ear recognition network is constructed, which can improve
the accuracy of the method. Second, the SPPF layer and cross-regional feature fusion are added to
construct the YOLOv5s-MG-CBAM-F human ear recognition method, which further improves the
accuracy. Three distinctive human ear datasets, namely, CCU-DE, USTB and EarVN1.0, are used to
evaluate the proposed method. Through the experimental comparison of seven methods including
YOLOV5s-MG-CBAM-F, YOLOv5s-MG-SE-F, YOLOv5s-MG-CA-F, YOLOv5s-MG-ECA-F, YOLOv5s,
YOLOv7 and YOLOv5s-MG on the EarVN1.0 human ear dataset, it is found that the human ear recog-
nition rate of YOLOv5s-MG-CBAM-F method is the highest. The mAP@0.5 value of the proposed
YOLOvV5s-MG-CBAM-F method on the EarVN1.0 ear dataset is 91.9%, which is 6.4% higher than
that of the YOLOv5s-MG method and 3.7% higher than that of the YOLOv5s method. The params,
GFLOPS, model size and the inference time per image of YOLOv5s-MG-CBAM-F method on the
EarVN1.0 human ear dataset are 5.2 M, 8.3 G, 10.9 MB and 16.4 ms, respectively, which are higher than
the same parameters of the YOLOv5s-MG method, but less than the same parameters of YOLOvb5s
method. The quantitative results show that the proposed method can improve the ear recognition
rate while satisfying the real-time performance and it is especially suitable for applications where
high ear recognition rates are required.

Keywords: YOLOv5s-MG; ear recognition; accuracy; attention; feature fusion

1. Introduction

Due to the increasing computing power of computers, biometric identification tech-
nology has been widely developed and applied. Biometric recognition is based on human
features for identification. At present, the commonly used biometric features are mainly
face, ear, iris, palmprint, gait, voice and fingerprint. Because the human ear is stable,
non-invasive, easy to collect, has low requirements for image acquisition equipment, and
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is not easily affected by factors such as glasses, emotions and makeup, it has attracted
the attention of many researchers. In 2023, Oyebiyi O.G. et al. used a search criterion of
publications not later than 10 years and downloaded 1121 articles from 10 databases: Taylor
& Francis, Springer, Science Direct, ACM, Emerald, Sage, Elsevier, Wiley, MIT and IEEE
explore [1].

At present, ear recognition methods mainly include traditional methods and deep
learning-based methods. The deep learning methods for ear recognition mainly include
two-stage Faster R-CNN and single-stage SSD and YOLO series. In 2017, Zhang Y. proposed
an efficient and fully automatic 2D ear detection system utilizing multiple scale faster R-
CNN on the UND-]J2 database [2]. In 2017, Fan, T.Y. et al. [3] proposed a face and ear
detection method by using Faster R-CNN. In 2022, Aman Kamboj et al. [4] introduced a
new database, NITJEW, and used the modified deep learning models Faster-RCNN and
VGG-19 for ear detection and ear recognition tasks, respectively. In 2021, Kamboj A. et al. [5]
proposed the CED-Net model for ear recognition and compared it with the Faster-RCNN
and SSD methods. Qian J.R. [6] used YOLOvV3 for dynamic human ear recognition. In
2021, Quoc H.N. [7] used YOLOVS to locate multiple tiny ears with a short inference time.
The authors of [4,8-13] also used different deep learning network models to achieve ear
recognition. In addition to 2D ear recognition, the authors of [14,15] also implemented
3D ear recognition by deep learning. In 2022, Bahadir K. et al. [16] implemented gender
recognition based on human ear images and deep learning.

Through the study of the above references, it is found that the method based on deep
learning can realize dynamic, static, 2D and 3D ear recognition with various pose changes.
However, when CNN is used to solve the problem of ear recognition, there will be a large
amount of calculation, parameter quantity and model size.

The real-time performance of a single-stage network is better than that of a two-
stage network. In order to further improve the real-time performance of single-stage
networks, many scholars use lightweight networks to improve single-stage networks.
Common lightweight networks include MobileNet series, Shufflenet series and Ghostnet.
In 2023, Lei, Y. et al. [17] proposed the YOLOv5s-MG method which has better real-time
performance than YOLOv5s-V3, YOLOv5s-V2 and YOLOv5s-G. However, while improving
real-time performance, it may also reduce the accuracy of human ear recognition on some
human ear datasets. For a practical application of the ear recognition system, the ear
recognition rate is the most important evaluation index. If the human ear recognition rate is
low, there will be missed recognition or false recognition, which will affect the application
of the system. Because the mAP@0.5 value of the YOLOv5s-MG method is 0.855, the goal of
this paper is how to improve it to more than 0.9. on the EarVN1.0 ear dataset in this paper.

The main contribution of this paper is to propose a lightweight ear recognition method
based on the attention mechanism and feature fusion named YOLOv5s-MG-CBAM-F. In
this method, the CBAM attention mechanism was added to the connection between the
backbone network and the neck network of the lightweight human ear recognition method
YOLOv5s-MG. Then, the SPPF layer and cross-regional feature fusion in the above method
were added to further improve the accuracy of ear recognition. Therefore, the YOLOv5s-
MG-CBAM-F method proposed in this paper can not only improve the accuracy of human
ear recognition but also ensure real-time performance.

The other parts of this paper are arranged as follows. YOLOv5s-MG, CBAM atten-
tion mechanism, SPPF network and PANet network are introduced in Section 2. The
improved YOLOv5s-MG-CBAM-F method is proposed in Section 3. Section 4 provides the
experiments and results analysis. Section 5 provides the conclusion of the paper.

2. Related Works
2.1. YOLOubs-MG
YOLOvV5s-MG [17] is a lightweight YOLOv5s human ear recognition method based

on MobileNetV3 and the idea of the Ghostnet. In this method, the backbone network of
the YOLOv5s was replaced by the MobileNetV3 lightweight network and the C3 module
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and Conv module in the YOLOv5s neck network are replaced by the C3Ghost module and
GhostConv module, which realizes the lightweight of feature extraction and feature fusion
of YOLOvb5s simultaneously. Compared with other methods, the YOLOv5s-MG method
has good real-time performance, but for EarVN1.0 human ear datasets, the human ear
recognition rate has a slight decrease. Therefore, based on the high real-time performance
of the YOLOvV5s-MG method, this paper further improves the accuracy of human ear
recognition, so that the improved human ear recognition method can have relatively good
real time and accuracy at the same time.

2.2. CBAM Attention Mechanism

The attention mechanism assigns different weights to different parts of the image,
so that the network pays attention to the important information of the target and ignores
other secondary information. At present, the commonly used attention mechanisms mainly
include SENet [18], CANet [19], ECANet [20] and CBAM [21].

SENet channel attention strengthens the expression ability of the network by establish-
ing the relationship between the channel features of the feature map, thereby improving
the sensitivity of the channel and enabling the network to improve its information utiliza-
tion. ECANet is based on SENet, abandoning the fully connected layer, but using 1x1
convolution to capture the relationship between channels to avoid the impact of incomplete
information caused by dimensionality reduction. CANet is a lightweight attention that
obtains location information by changing the pooling method. It not only avoids the prob-
lem of information loss, but also considers direction-related location information. CBAM
is a lightweight attention method combined with Channel Attention Module (CAM) and
Spatial Attention Module (SAM), which uses CAM and SAM in turn for feature maps. CAM
enables the network to learn channels containing key information, and SAM enables the
network to learn key information on the channel feature map. The structure of CBAMNet
is shown in Figure 1a.

Channel Attention

M.

Input Feature

Spatial Attention

Refined Feature Channel Attention Module Channglfgtt};‘:l %A}tentlon Module

M

@ ‘_%;—@—»ﬂ

[Maxpool,Avgpool] Spatial Attention

(a)

(b) (c)
Figure 1. CBAMNet. (a) The structure of CBAMNet; (b) CAM; (c) SAM.

Firstly, the input feature map will go through the CAM module, as shown in Figure 1b.
The feature map in the channel is compressed and the weights are assigned, so that the
network can play an important role in analyzing the channel where the key information is
located, as shown in Equations (1) and (2).

FI = Mc(F)®F (1)
M.(F) = o(MLP(AvgPool(F))+ MLP(MaxPool(F)))
= o (W (Wo(Eéog ) ) + W (Wo(Fia))) ?

where F is the input feature and F € RF*WXC M (F) is a one-dimensional channel
attention feature map, o is a Sigmoid activation function, MLP is a multi-layer perception,
Wy and W are two shared weights, Fj,, and Fy,,, represent the average pooling feature
map and the maximum pooling feature map, respectively.

Then, it will enter the SAM module, as shown in Figure 1c, and use the results of CAM
output as CAM input, use the spatial relationship between features to generate a spatial
attention map, keep the spatial dimension unchanged, compress the channel dimension

and enable the network to learn the location information of key information.
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The SAM module is shown in Equations (3) and (4).
F'" = Mg(F1) ® F/ 3)

M;(F, 1) = o (f7*7([AvgPool (F'); MaxPool (F1)])) A
Zo(r ([ m]) ®

where M;(F, /) is a one-dimensional spatial attention feature map, Fj,, and Fy,,, represent
the average pooling feature map and the maximum pooling feature map, respectively.
The four attention mechanisms introduced have their own advantages and disadvan-
tages. Among them, the CBAM attention mechanism considers both spatial information
and channel information, which can improve the feature extraction ability. Therefore, this
paper uses CBAM to improve the ear recognition rate of the YOLOv5s-MG method and the

YOLOvV5s-MG-CBAM method is constructed.

2.3. SPPF Network

In 2015, He K.M. proposed the SPP module [22], that is, spatial pyramid pooling.
The main goal of SPP is to generate a fixed-length vector without considering the size or
proportion of the input image. The purpose of SPPF and SPP is the same, but the structure
is slightly different. Figure 2 is the SPPF network structure. For any size of the image,
the SPPF module is a maximum pooling module with 5 x 5,9 x 9 and 13 x 13, which
is connected in a series to extract the features of the image. The output features of each
pooling layer are connected with the input image features to form a fixed-length feature
map. Compared with an SPP network, an SPPF network maintains multi-scale information
extraction. Therefore, by adding an SPPF network in YOLOv5s-MG method, the accuracy
can be effectively improved.

Maxpool Maxpool Maxpool Input
13x13 9x9 5x5 image

f’Concat?

Figure 2. SPPF network.

2.4. PANet Network

In 2017, Lin et al. [23] first proposed the feature fusion network FPN network. FPN
uses the hierarchical semantic features of the convolutional network itself to construct
a feature pyramid, integrates high-level features and low-level features and determines
the target location. It is conducive to the use of the top-level strong semantic features
(conducive to classification), and the use of the underlying high-resolution information. In
2018, Shu Liu et al. [22] believed that low-level features are very useful for recognition tasks.
The path between high-level features and low-level features is long, and the efficiency of
information transmission in the network is not high. Therefore, PANet network is proposed
based on FPN network. In order to improve the utilization of low-level information and
accelerate the dissemination efficiency of low-level information, a PANet network shortens
the information path.

Therefore, by adding a PANet network to the YOLOv5s-MG method, the accuracy can
be effectively improved. On the basis of the YOLOv5s-MG-CBAM method, the YOLOv5s-
MG-CBAM-F method is proposed through adding an SPPF and PANet network.
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3. Proposed Method
3.1. The Overall Framework of the Proposed Method

In this section, a new ear recognition method is proposed. Figure 3 illustrates the
overall framework of the method which can be mainly divided into three parts: ear dataset,
ear recognition model and ear recognition. The ear recognition model includes the three
processes of lightweight, attention and feature fusion.

Ear Recognition Model

Bar L o YOLOVSs-MG || CBAM | SPPF,PANet [ L3
Dataset ; Recognition

Lightweight Attention Feature Fusion

Figure 3. The total structure block diagram of the proposed method.

3.2. The Proposed Method YOLOuvbs-MG-CBAM-F

In Section 2.1, a YOLOv5s-MG lightweight ear recognition model is introduced, which
reduces the parameter amount and calculation amount of the network model and the
model size from two aspects of feature extraction and feature fusion. Section 2.2 introduces
four attention mechanisms, each with advantages and disadvantages, but their common
purpose is to strengthen the feature extraction ability. In order to further improve the
accuracy of human ear recognition on the basis of improving real-time performance, this
section will further improve the YOLOv5s-MG method. CBAMNet takes into account
both channel information and spatial information, so in this paper, CBAMNet was used to
improve the YOLOv5s-MG lightweight network. The improved human ear recognition
network YOLOv5s-MG-CBAM-F is shown in Figure 4.

7777777777

Attention
echanism output

<

concat

Figure 4. The structure block diagram of the proposed algorithm YOLOv5s-MG-CBAM-F.

In general, attention can be added to the backbone, neck and output modules of the
network in YOLOvb5s [24,25]: added to the backbone module mainly to strengthen the
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network feature extraction capabilities, added to the neck module to strengthen the feature
fusion ability and added to the output module to enhance the output prediction ability of
the network.

3.2.1. YOLOv5s-MG-CBAM Ear Recognition Network Based on Attention Mechanism

In this paper, we propose to add a CBAM attention module where the backbone and
neck modules are connected, as shown in the red box in Figure 4. It can be seen that the
entire network needs to perform three attention operations. The first CBAM is connected to
the fourth layer of the backbone network and the second concat layer of the neck network.
The second CBAM is connected to the ninth layer of the backbone network and the first
concat layer of the neck network. The third CBAM is connected to the twelfth layer of the
backbone network and the fourth concat layer of the neck network.

Such a connection makes the attention mechanism analyze shallow features and deep
features, making the feature information of the feature fusion network more accurate. At
the same time, by weighting the attention of the target in the feature map in different
dimensions, it can enhance the network’s ability to extract important information from the
target in the feature map, thereby improving the detection accuracy.

3.2.2. YOLOv5s-MG-CBAM-F Ear Recognition Network Based on Feature Fusion

Through the study of the improved YOLOv5s-MG-CBAM model, compared with
the YOLOvV5-MG model, the accuracy of human ear recognition will increase, but there
will be some limitations. First, the feature fusion of the neck network is not high for
shallow information and deep information utilization; second, the backbone network
extraction information is not stable enough. Therefore, in this paper we further improve
the YOLOv5s-MG-CBAM model based on feature fusion.

Step 1: Network improvement based on SPPF

In order to further increase the multi-feature extraction ability of the network, the
SPPF module is added to the YOLOv5s-MG-CBAM ear recognition model. The specific
operation is as follows: after connecting CBAM, the SPPF module is added to the last layer
Bneck of the backbone of the YOLOv5s-MG-CBAM model, and finally connected to the
last layer GhostConv module on the left side of the neck module. Through the maximum
pooling of different sizes of pooling kernels in the SPPF module, the receptive field of the
network is improved and the feature extraction ability is increased.

Step 2: Cross-regional feature fusion

As the feature extraction operation of the neural network continues, the underlying
features and high-level features in the image will be decomposed layer by layer. The
underlying features of the image contain less semantic information, but the feature map has
large resolution, sufficient location information and accurate target location. The high-level
features of the image have rich semantic information, but the target location is rough.
Therefore, the fusion of different levels of features helps the neural network to be more
accurate in target detection and recognition.

Although the PANet network introduced in Section 2.4 uses an extended path to
enable the underlying information to be transmitted to the higher layer faster and improve
the recognition accuracy of large targets, it is not enough for small objects and targets with
poor image quality. Therefore, in this section, the PANet network will be improved to solve
this problem.

As shown in Figure 4, two channels are added on the basis of the YOLOv5s-MG-CBAM
network and PANet network [26]. One path starts from the sixth layer of the backbone
network and connects to the third concat layer of the neck network. The other path is
starting from the eleventh layer of the backbone network and connecting to the fourth
concat layer. The two paths complement the context information of the feature fusion layer.
More shallow and deep features are added to the network to supplement the information
of small objects and targets with poor image quality.
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4. Experimental Results and Analysis
4.1. Human Ear Datasets

In order to train and test the model of the YOLOv5s-MG-CBAM-F method proposed
in this paper, three different human ear datasets, namely, CCU-DE, USTB and EarVN1.0,
were used. In order to facilitate the comparison of performance between different methods,
the selection of three datasets is the same as that in Reference [17]. There are 3274, 7700 and
3201 pictures in the CCU-DE, USTB and EarVN1.0 human ear datasets, respectively. The
training set, validation set and test set are divided according to 3:1:1. Because the selected
human ear datasets have different characteristics of data size, category, attitude change,
resolution, gender, dynamic and static, etc., it can detect the performance of the proposed
method very well.

4.2. Experimental Setting

In order to test the real time and accuracy of the YOLOv5s-MG-CBAM-F method
proposed in this paper, two groups of experiments are set up. The first group com-
pares YOLOv5s-MG-CBAM with YOLOv5s-MG-SE, YOLOv5s-MG-ECA, YOLOv5s-MG-
CA, the original YOLOv5s model, the original YOLOv7 model and YOLOv5s-MG. The
second group compares YOLOv5s-MG-CBAM-F with the original YOLOv5s model, the
original YOLOv7 model, YOLOv5s-MG-SE-F, YOLOv5s-MG-ECA-F, YOLOv5s-MG-CA-F
and YOLOv5s-MG. The connection of YOLOv5s-MG-SE/CA /ECA and YOLOv5s-MG-
SE/CA/ECA-F is the same as YOLOv5s-MG-CBAM and YOLOv5s-MG-CBAM-F.

The hardware platforms in the experiment mainly include CPU is Intel(R) Core (TM) i5-
10400F and CPU@2.90 GHZ, GPU is NVIDIA GeFORCE RTX 3060, Memory is 16 GB, GPU-
accelerated libraries are CUDA11.1.134 and CUDNNS8.0.5. Operating system is Windows10
(64 bit). The software is pytorchl.8 and python3.8. The main parameters used in the
model training are the following: the initial learning rate is 0.01, batch size is 16, weight
attenuation coefficient is 0.0005, momentum coefficient is 0.937, learning rate reduction
coefficient is 0.2 and optimizer is SGD with the momentum. The hardware, software and
parameters of the experiment in this paper are the same as those in Reference [17].

4.3. Evaluation Indicators

In order to compare the performance between the improved YOLOv5s-MG-CBAM
and YOLOv5s-MG-CBAM-F methods and the YOLOv5s-MG [17] method, four evaluation
indexes of mAP, model size/MB, GFLOPs/G and params/M are used [17].

mAP is the mean average precision and is a performance index to describe the accuracy
of the ear recognition method. In this paper, mAP@0.5 and mAP@0.5:0.95 are used. Model
size, GFLOPs and params are performance indexes to describe the real time of the ear
recognition method. The larger is mAP and the smaller are model size, GFLOPs and
params; and the ear recognition method is better.

4.4. Ear Recognition Experiments of the Improved YOLOv5s-MG-CBAM on Three Datasets

In order to test the accuracy of ear recognition of the YOLOv5s-MG-CBAM method
based on the attention mechanism and the YOLOv5s-MG method proposed in this paper,
and verify the similarities and differences between the four lightweight networks based on
the attention mechanism YOLOv5s-MG-CBAM, YOLOv5s-MG-SE, YOLOv5s-MG-ECA,
YOLOv5s-MG-CA and the original YOLOv5s model and YOLOv5s-MG, the six networks
with the same parameters on CCU-DE, USTB and EarVN1.0 human ear datasets were
trained and tested.

Figure 5 is the training curves of YOLOv5s-MG-CBAM (proposed), YOLOv5s-MG,
YOLOvV5s-MG-SE, YOLOv5s-MG-CA, YOLOv5s-MG-ECA and YOLOvV5s networks by
using the training set and validation set in three human ear datasets. The abscissa and the
ordinate are the training epoch and mAP@Q.5, respectively. It can be seen from Figure 5
when the number of epochs gradually increases, the model tends to converge gradually.
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However, the epoch of the model convergence on the CCU-DE, USTB and EarVN1.0 ear
dataset is 40, 50 and 500, respectively.

[ —— YOLOVSs
110 —— YOLOV5s-MG

Wi - YOLOV5s-MG-CBAM
~——— YOLOV5s-MG-SE
[l YOLOV5s-MG-CA
1/ YOLOV5s-MG-ECA

—— YOLOVS5s

—— YOLOV5s-MG

—— YOLOv5s-MG-CBAM

——— YOLOV5s-MG-SE
YOLOvV5s-MG-CA
YOLOv5s-MG-ECA

—— YOLOV5s

—— YOLOV5s-MG

—— YOLOV5s-MG-CBAM

——— YOLOV5s-MG-SE
YOLOV5s-MG-CA
YOLOV5s-MG-ECA

0 20 40 60 80 100 120 140 0
epoch

(a)

40 60 80 100 120 140

epoch

(b)

T T T T 1
200 400 600 800 1000

epoch

(c)

Figure 5. The mAP@0.5 value of YOLOv5s-MG-CBAM (proposed), YOLOv5s-MG, YOLOv5s-MG-SE,
YOLOvV5s-MG-CA, YOLOv5s-MG-ECA and YOLOvV5s models trained on three human ear datasets.
(a) CCU-DE ear dataset; (b) USTB ear dataset; (c¢) EarVN1.0 ear dataset.

As shown in Figure 5, compared with YOLOv5s-MG-SE, YOLOv5s-MG-ECA and
YOLOv5s-MG-CA, YOLOv5s-MG-CBAM converges fastest on the EarVN1.0 human ear
dataset, and converges slowly on the CCU-DE and USTB human ear datasets. This is
mainly because the YOLOv5s-MG-CBAM method is mainly designed for the poor image
quality and low resolution of the EarVN1.0 human ear dataset, while the image quality of
CCU-DE and USTB human ear datasets is good and overfitting occurs when training with
higher resolution.

In this experiment, epoch = 150 and epoch = 1000 were chosen to quantitatively test
the difference between the six models. Table 1 and Figure 6 are the experimental results of
the six methods on the test sets of three human ear datasets.

Table 1. Quantitative comparison results of the improved YOLOv5s-MG-CBAM and other methods.

Human Ear Dataset Model Params (M) GFLOPS(G) Model Size (MB) mAP@0.5
YOLOV5s [17] 6.75 [17] 16.4 [17] 13.7 [17] 0.999 [17]
YOLOV5s-MG [17] 2.05[17] 3.7 [17] 4.3[17] 0.997 [17]
CCU-DE YOLOvV5s-MG-CBAM 3.28 6.1 6.86 0.986
(epoch = 150) YOLOvV5s-MG-SE 1.68 3.5 3.62 0.984
YOLOv5s-MG-ECA 1.63 3.5 3.52 0.985
YOLOv5s-MG-CA 1.62 34 3.5 0.987
YOLOV5s [17] 6.9 [17] 16.9 [17] 14 [17] 1[17]
YOLOV5s-MG [17] 2.2[17] 4.2 [17] 4.6 [17] 1[17]
USTB YOLOvV5s-MG-CBAM 3.44 6.6 7.5 1
(epoch = 150) YOLOvV5s-MG-SE 1.83 4.0 3.9 1
YOLOv5s-MG-ECA 1.786 4.2 3.84 1
YOLOvV5s-MG-CA 1.786 3.9 3.9 1
YOLOV5s [17] 6.76 [17] 16.4[17] 13.7 [17] 0.793 [17]
YOLOv5s-MG [17] 2.06 [17] 3.7 [17] 4.34[17] 0.356 [17]
EarVN1.0 YOLOv5s-MG-CBAM 3.95 6.7 8.1 0.542
(epoch = 150) YOLOvV5s-MG-SE 2.12 3.9 44 0.41
YOLOvV5s-MG-ECA 2.02 3.8 4.3 0.379
YOLOvV5s-MG-CA 2.06 3.8 4.2 0.355
YOLOV5s [17] 6.76 [17] 16.4[17] 13.7 [17] 0.882 [17]
YOLOV5s-MG [17] 2.06 [17] 3.7 [17] 4.34 [17] 0.855 [17]
EarVN1.0 YOLOvV5s-MG-CBAM 3.95 6.7 8.1 0.883
(epoch = 1000) YOLOvV5s-MG-SE 2.12 3.9 44 0.859
YOLOvV5s-MG-ECA 2.02 3.8 4.3 0.833
YOLOv5s-MG-CA 2.06 3.8 4.2 0.855




Appl. Sci. 2023, 13, 8441

90f17

mAP@0.5

0.44

0.0

CCU-DE
P )

USTB
P

EarVNLO  EarVNLO
(epoch=150) (ep

;w9

params(MB)
- woa

GFLOPS(G)

=~}

Model size (M)

S

e w & o =
> N & o ®

0+ 4

CCU-DE USTB EarVNL0 EarVNL.0 CCU-DE USTB EarVNL0 EarVN1.0 CCU-DE USTB EarVN1.0  EarVNLO
P 3 T S P > P T S P! 50) (eps ) 7 ) (ep P ) (ep

(@)

[0 you

P

0v5s [l YOLOvSs-MG [l YOLOvSs-MG-CBAM [] YOLOvSs-MG-SE [l YOLOv5s-MG-ECA Il YOLOvSs-MG-CA|

(b) (©) (d)

Figure 6. The comparison results of YOLOv5s-MG-CBAM (proposed), YOLOv5s-MG, YOLOv5s-MG-
SE, YOLOv5s-MG-CA, YOLOv5s-MG-ECA and YOLOv5s models on three datasets. (a) mAP@0.5;
(b) params; (c) GFLOPS; (d) the model size.

From Table 1 and Figure 6a, on the USTB human ear dataset, YOLOv5s-MG-CBAM has
the highest ear recognition rate and the mAP@0.5 value is 1. CCU-DE follows; mAP@0.5 is
above 0.98 and the mAP@0.5 value of YOLOv5s-MG-CBAM was within +0.2% compared
with other methods. Compared with the CCU-DE and USTB ear datasets, the EarVN1.0
dataset has the lowest ear recognition rate. However, on the EarVN1.0 dataset, when
epoch = 1000, the mAP@0.5 value of YOLOv5s-MG-CBAM is 0.883. The human ear recog-
nition rate is the highest among the six methods, which is 0.1% higher than that of YOLOv5s,
2.8% higher than that of YOLOv5s-MG, 2.4% higher than that of YOLOv5s-MG-SE, 5.0%
higher than that of YOLOv5s-MG-ECA and 2.8% higher than that of YOLOv5s-MG-CA.

It can be seen from Table 1 and Figure 6b—d that the params, GFLOPS and model
size of the YOLOv5s-MG-CBAM method are slightly higher than those of YOLOv5s-MG-
SE, YOLOv5s-MG-ECA, YOLOv5s-MG-CA and YOLOv5s-MG. This is mainly because
CBAM takes into account both channel attention and spatial attention. Theoretically, its
parameter quantity and calculation amount are larger than those of SE, ECA and CA, and
the experiment also verifies this.

From Table 1 and Figure 6b—d, it can be seen that the params, GFLOPS and model size
of the improved YOLOv5s-MG-CBAM model are much smaller than those of YOLOv5s
models. On the CCU-DE human ear dataset, the params, GFLOPS and model size of
the improved YOLOv5s-MG-CBAM model are 48.6%, 37.2% and 50.1% of YOLOv5s, re-
spectively. On the USTB human ear dataset, the params, GFLOPS and model size of the
improved YOLOv5s-MG-CBAM model are 49.9%, 39.1% and 53.6% of YOLOV5s, respec-
tively. On the EarVN1.0 ear dataset, the params, GFLOPS and model size of the improved
YOLOv5s-MG-CBAM model are 58.4%, 40.9% and 59.1% of YOLOV5s, respectively.

From Table 1 and Figure 6b—d, it can be also seen that the params, GFLOPS and model
size of the improved YOLOv5s-MG-CBAM model are much larger than those of YOLOv5s-
MG models. Comparing those of the YOLOv5s-MG method, the params, GFLOPS and
model size of the improved YOLOv5s-MG-CBAM model are increased by 60%, 64.9%
and 59.5%, respectively, on the CCU-DE human ear dataset, 56.4%, 57.1% and 63.0%,
respectively, on the USTB human ear dataset and 91.7%, 81.1% and 86.6%, respectively, on
the EarVN1.0 human ear dataset.

4.5. Ear Recognition Experiments of the Improved YOLOv5s-MG-CBAM-F on Three Datasets

In order to verify the feasibility and effectiveness of the YOLOv5s-MG-CBAM-F based
on feature fusion proposed in this paper, and verify the similarities and differences between
YOLOv5s-MG-CBAM-E, YOLOv5s-MG-SE-F, YOLOv5s-MG-ECA-F, YOLOv5s-MG-CA-F
and the original YOLOv5s model and YOLOv5s-MG, the six networks with the same
parameters on CCU-DE, USTB and EarVN1.0 human ear datasets were trained and tested.

The six methods YOLOv5s-MG-CBAM-F (proposed), YOLOv5s-MG, YOLOv5s-MG-
SE-F, YOLOv5s-MG-CA-F, YOLOv5s-MG-ECA-F and YOLOV5s are tested by using test
sets on three human ear datasets, and the training curves are shown in Figure 7. It can be
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seen from Figure 7 that the value of mAP@0.5 gradually tends to be stable and the model
converges when epoch increases. The epoch of the model convergence is about 40, 50 and
500 on the CCU-DE, USTB and EarVN1.0 human ear dataset respectively. This is mainly
related to the difference pose, resolution, image size and number of each human ear dataset.
From Figure 7, it can be found that compared with YOLOv5s-MG-SE-F, YOLOv5s-MG-
ECA-F and YOLOv5s-MG-CA-F, YOLOv5s-MG-CBAM-F has the fastest convergence speed
on the three human ear datasets.

— YOLOVSs

—— YOLOvV5s-MG

—— YOLOV5s-MG-CBAM-F

— YOLOV5s-MG-SE-F
YOLOvV5s-MG-CA-F
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i —— YOLOVSs

[l —— YOLOV5s-MG
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Figure 7. The mAP@0.5 value of YOLOv5s-MG-CBAM-F (proposed), YOLOv5s-MG (proposed),
YOLOv5s-MG-SE-F, YOLOv5s-MG-CA-F, YOLOv5s-MG-ECA-F and YOLOv5s models trained on
three human ear datasets. (a) CCU-DE human ear dataset; (b) USTB human ear dataset; (c¢) EarVN1.0
human ear dataset.

In this experiment, epoch = 150 and epoch = 1000 were selected as quantities to verify
the difference between the six models. The experimental results on testing a set of the three
human ear datasets are shown in Table 2 and Figure 8.

Table 2. Quantitative comparison results of the improved YOLOv5s-MG-CBAM-F and other methods.

Ear Dataset Model Params (M) GFLOPS (G) Model Size (MB) mAP@0.5 mAP@0.5:0.95
YOLOV5s [17] 6.75 [17] 16.4[17] 13.7 [17] 0.999 [17] 0.826
YOLOvV5s-MG [17] 2.05[17] 3.7 [17] 4.3[17] 0.997 [17] 0.771
CCU-DE YOLOvV5s-MG-CBAM-F 53 8 10.3 0.986 0.781
(epoch = 150) YOLOvV5s-MG-SE-F 2.87 4.6 6.02 0.988 0.766
YOLOvV5s-MG-ECA-F 2.87 4.6 6.02 0.988 0.777
YOLOvV5s-MG-CA-F 2.8 4.5 5.9 0.986 0.771
YOLOV5s [17] 6.9 [17] 16.9 [17] 14 [17] 1[17] 0.918
YOLOV5s-MG [17] 2.2 [17] 4.2[17] 4.6 [17] 1[17] 0.903
USTB YOLOvV5s-MG-CBAM-F 5.89 8.8 12.08 1 0.906
(epoch = 150) YOLOv5s-MG-SE-F 3.03 5.1 6.23 1 0.903
YOLOvV5s-MG-ECA-F 3.03 5.1 6.35 1 0.904
YOLOvV5s-MG-CA-F 2.97 5 6.23 1 0.906
YOLOvV5s [17] 6.76 [17] 16.4[17] 13.7 [17] 0.793 [17] 0.635
YOLOV5s-MG [17] 2.06 [17] 3.7 [17] 4.34 [17] 0.356 [17] 0.281
EarVN1.0 YOLOvV5s-MG-CBAM-F 5.2 8.3 10.9 0.698 0.559
(epoch = 150) YOLOv5s-MG-SE-F 2.89 4.6 6.03 0.502 0.398
YOLOvV5s-MG-ECA-F 2.89 4.6 6.03 0.518 0.407
YOLOvV5s-MG-CA-F 2.8 45 59 0.518 0.414
YOLOvV5s [17] 6.76 [17] 16.4[17] 13.7 [17] 0.882 [17] 0.712
YOLOV5s-MG [17] 2.06 [17] 3.7 [17] 4.34 [17] 0.855 [17] 0.706
EarVN1.0 YOLOvV5s-MG-CBAM-F 5.2 8.3 10.9 0.919 0.755
(epoch = 1000) YOLOv5s-MG-SE-F 2.89 4.6 6.03 0.856 0.702
YOLOvV5s-MG-ECA-F 2.89 4.6 6.03 0.878 0.718
YOLOvV5s-MG-CA-F 2.8 4.5 5.9 0.870 0.713
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Figure 8. The comparison results of YOLOv5s-MG-CBAM-F (proposed), YOLOv5s-MG, YOLOvV5s-
MG-SE-F, YOLOv5s-MG-CA-F, YOLOv5s-MG-ECA-F and YOLOv5s models on three datasets.
(a) mAP@0.5; (b) the parameter quantity (params); (c) the calculation amount (GFLOPS); (d) the
model size.

From Table 2 and Figure 8a, on the USTB human ear dataset, YOLOv5s-MG-CBAM-F
has the highest ear recognition rate in six methods and the mAP@0.5 value is 1. CCU-DE
follows; mAP@Q.5 is above 0.98 and the mAP@0.5 value of YOLOv5s-MG-CBAM-F was
within £0.3% compared with other methods. Compared with the CCU-DE and USTB
ear datasets, the EarVN1.0 dataset has the lowest ear recognition rate. However, on the
EarVN1.0 dataset, when epoch = 1000, the mAP@0.5 value of YOLOv5s-MG-CBAM-F is
0.919. The human ear recognition rate is the highest among the six methods, which is 3.7%
higher than YOLOVb5s, 6.4% higher than YOLOv5s-MG, 6.3% higher than YOLOv5s-MG-
SE-F, 4.1% higher than YOLOv5s-MG-ECA-F and 4.9% higher than YOLOv5s-MG-CA-F.
However, the mAP@0.5 value of YOLOv5s-MG-SE-F, YOLOv5s-MG-ECA-F and YOLOv5s-
MG-ECA-F is lower than that of YOLOV5s.

From Table 2 and Figure 8b—d, we can see that the parameters, calculation and model
size of the YOLOv5s-MG-CBAM-F method are lower than those of YOLOv5s, but higher
than other methods. However, YOLOv5s-MG-CBAM-F method still has a lower params,
GFLOPS and model size.

On the CCU-DE human ear dataset, the params, GFLOPS and model size of the im-
proved YOLOv5s-MG-CBAM model are 78.5%, 48.8% and 75.2% of YOLOv5s, respectively.
On the USTB human ear dataset, the params, GFLOPS and model size of the improved
YOLOv5s-MG-CBAM model are 85.4%, 52.1% and 86.3% of YOLOVb5s, respectively. On the
EarVN1.0 ear dataset, the params, GFLOPS and model size of the improved YOLOv5s-MG-
CBAM model are 76.9%, 50.6% and 79.6% of YOLOvb5s, respectively.

Comparing the experimental results before and after feature fusion, it can be seen
from Tables 1 and 2 that on the EarVN1.0 dataset, with the exception that the mAP@0.5
value of YOLOv5s-MG-SE-F is 0.3% lower than that of YOLOv5s-MG-SE, YOLOv5s-MG-
CBAM-F, YOLOv5s-MG-ECA-F and YOLOv5s-MG-CA-F were 3.6%, 4.5% and 1.5% higher
than YOLOv5s-MG-CBAM, YOLOv5s-MG-ECA and YOLOv5s-MG-CA, respectively. The
experiment quantitatively proves that by adding the SPPF network and PANet network
in the YOLOv5s-MG-CBAM with an attention mechanism, the feature extraction and
feature fusion ability of the network are indeed increased, and the accuracy of human ear
recognition is improved. At the same time, the params, GFLOPS and model size are also
increased, but they are lower than the YOLOvV5s ear recognition network.

The quantitative ear recognition results of the six methods on testing the set of three
datasets are shown in Figures 9 and 10 and Table 3.
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Figure 9. The quantitative ear recognition results of the six methods on CCU-DE datasets.
(a) YOLOvV5s-MG-CBAM-F (proposed); (b) YOLOv5s-MG-CA-F; (c¢) YOLOv5s-MG-ECA-F;
(d) YOLOv5s-MG-SE-F; (e) YOLOV5s; (f) YOLOv5s-MG.

Figure 10. The quantitative ear recognition results of the six methods on USTB datasets. (a) YOLOv5s-
MG-CBAM-F (proposed); (b) YOLOv5s-MG-CA-F; (c¢) YOLOv5s-MG-ECA-F; (d) YOLOv5s-MG-SE-F;
(e) YOLOV5s; (f) YOLOvV5s-MG.
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Table 3. Quantitative ear recognition on EarVN1.0 dataset comparison results of the improved
YOLOv5s-MG-CBAM-F and other methods.

Method Earl Ear4 Ear5 Ear6
YOLOV5s- A
MG-CBAM- -
F
YOLOv5s- L
MG-CA-F
~
Y
YOLOV5s- L
MG-ECA-F
YOLOV5s- L
MG-SE-F
~
[ o
Y
YOLOv5s -
»>
YOLOv5s-
MG

From Figure 9, we can see that all the six methods can identify the four types of
human ears on the CCU-DE dataset and the range of recognition results is 87-95%. The
four improved YOLOv5s-MG methods based on the attention mechanism have similar
recognition effects, while the ear recognition results of the YOLOv5s-MG method are
slightly lower, which is consistent with the experimental results and theoretical analysis in
Table 2. From Figure 9, we can also see that the size of the picture is large, and the human
ear is a small target relative to the entire picture. Therefore, the method proposed in this
paper is also suitable for small target recognition. The ear recognition results of the side
face and the back face are given in the figure, and the ear recognition effect of the front face
is better.

From Figure 10, we can see that all the six methods can identify the five types of human
ears on the USTB dataset and the range of recognition results is 90-96%. The recognition
effects of the six methods on the USTB ear dataset are almost the same. However, the ear
recognition effect of the six methods on the USTB dataset is better than that of the CCU-DE
ear dataset. For an actual human ear recognition application system, the human ear is often
in a dynamic environment with pose changes such as translation, rotation, illumination
and contrast changes, or occlusion. Therefore, only when all possible situations in practice
are taken into account in the experiment, can the performance of the proposed method
be better verified for application. From Figure 10, we can also see that the USTB human
ear dataset is obtained by flipping, rotating a certain angle, illumination and contrast on
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the original image. Therefore, the method proposed in this paper is also suitable for ear
recognition in some dynamic environment changes.

Table 3 is the quantitative ear recognition results of the six methods on EarVN1.0
datasets. From Figure 6, we can see that on 10 types of human ears, the range of recognition
results of the proposed YOLOv5s-MG-CBAM-F and YOLOv5s-MG method are 80-94%
and 71-92%. This shows that the use of the attention mechanism and feature fusion in the
YOLOv5s-MG method can indeed improve the accuracy of ear recognition. Among the six
methods, the ear recognition accuracy of the YOLOv5s-MG method is the lowest. Take ear1
as an example, the ear recognition results of the six methods are 93%, 89%, 88%, 88%, 89%
and 71%. The recognition result of the YOLOv5s-MG-CBAM-F method is the highest and
the recognition result of the YOLOv5s-MG method is the lowest. From Figure 6, we can
also see that the image size, brightness and clarity of the EarVN1.0 dataset are different. At
the same time, most of the ears have one or more occlusions such as headphones, glasses
and earrings. Therefore, the YOLOv5s-MG-CBAM-F method proposed in this paper is
suitable for ear recognition with occlusion. At the same time, compared with the CCU-DE
and USTB datasets, Table 3 also explains the reason for the low ear recognition rate on the
EarVN1.0 dataset. However, from Table 3, we can see that the YOLOv5s-MG-CBAM-F
method can meet the human ear recognition in practical applications.

4.6. The Computational Complexity Analysis

In order to test the real time of ear recognition, all experiments were performed under
the same conditions and the inference time per image is shown in Table 4. From Table 4, we
can see that for the same image, whether on CPU or GPU, the YOLOv5s-MG method has
the fastest ear recognition speed, while the YOLOv7 method has the slowest recognition
speed. The inference time per image of YOLOv5s-MG-CA-F, YOLOv5s-MG-ECA-F and
YOLOv5s-MG-SE-F method is similar.

Table 4. The inference time per image of the six methods on the testing set of three datasets. The unit
is milliseconds (ms).

Model
Human Ear Device YOLOV5 YOLOV5 YOLOV5 YOLOv5s-M
Dataset g v5s- v5s- v5s- v5s-
atase YOLOV5s-MG 1 CBAM-F MG-CA-F MG-SE-F G-ECA-F YOLOv?7
CCU-DE CPU 69 114 81.2 825 82.6 1000
(epoch = 150) GPU 124 159 15 145 15.1 711.9
USTB CPU 117.6 1702 1269 1285 1285 769.2
(epoch = 150) GPU 12.8 16.2 15.4 15.1 149 975.4
EarVN1.0 CPU 893 137.8 96.9 945 101.1 909.1
(epoch = 150) GPU 128 16 148 143 143 8035
EarVNL.0 CPU 87.7 137.6 174 103.4 1134 769.2
(epoch = 1000) GPU 1256 16.4 152 14.8 147 807

From Table 4, it can be seen that on the CCU-DE, USTB and EarVN1.0 ear dataset,
the inference time per image of the improved YOLOv5s-MG-CBAM-F model increased by
3.5 ms, 3.4 ms and 3.8 ms compared with that of YOLOv5s-MG, respectively, by using GPU.

4.7. Selection Strategy of Ear Recognition Method

In this paper, based on YOLOv5s-MG, two improved ear recognition methods, YOLOvb5s-
MG-CBAM and YOLOv5s-MG-CBAM-F, were proposed from the perspective of improving
accuracy based on the lightweight ear recognition method YOLOv5s-MG. The comparison
results of the four methods are shown in Figure 11.

It can be seen from Figure 11 that all the four methods can realize human ear recogni-
tion. Among the two improved methods, for the three distinctive human ear datasets, the
YOLOv5s-MG-CBAM-F method has the best accuracy.
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Figure 11. The comparison results of YOLOv5s-MG-CBAM-F (proposed), YOLOv5s-MG-CBAM
(proposed), YOLOv5s-MG and YOLOv5s models on three datasets. (a) mAP@0.5; (b) the parameter
quantity (params); (c) the calculation amount (GFLOPS); (d) The model size.

It can be seen from Figure 11a that the same method has different ear recognition
accuracy on different ear datasets, which is mainly related to three factors: the human
ear dataset, feature extraction ability of the model and convergence of model training.
The human ear dataset with high resolution, a small amount of data and simple posture
change has a high ear recognition rate, that is, the mAP@0.5 value is large on the USTB
human ear dataset, medium on the CCU-DE human ear dataset and small on the EarVN1.0
human ear dataset. Because the YOLOv5s-MG-CBAM-F method has the strongest feature
extraction ability, the mAP@0.5 value is the largest on the EarVN1.0 human ear dataset.
On the EarVN1.0 dataset, the mAP@0.5 value is low when the model does not converge at
epoch = 150, and is high when the model converges at epoch = 1000.

It can be seen from Figure 11b—d that the real-time performance of the improved methods
YOLOv5s-MG-CBAM-F is worse than the method YOLOv5s-MG before improvement. How-
ever, because the real-time performance of the YOLOv5s-MG method is particularly good, the
improved YOLOv5s-MG-CBAM-F method can still meet the real-time requirements.

According to the theoretical analysis of Section 3 and the experimental results and
analysis of Section 4.4, Section 4.5, Section 4.6, Section 4.7, the selection strategy of the
human ear recognition method is formulated, that is, according to different human ear
datasets, the principle of accuracy priority is adopted when the accuracy and real-time
performance meet the requirements at the same time. For the three human ear datasets
in this paper, the YOLOv5s-MG method is selected on the CCU-DE and USTB human ear
datasets; on the EarVN1.0 dataset, the YOLOv5s-MG-CBAM-F method is selected.

5. Conclusions

In this paper, two improved ear recognition methods are proposed: YOLOv5s-MG-
CBAM and YOLOv5s-MG-CBAM-FE. Experiments were carried out on three distinctive
human ear datasets of CCU-DE, USTB and EarVN1.0, and four performance indicators of
mAP@0.5, params, GFLOPS and model size were used to evaluate the improved method.
Quantitative experimental results show that the two methods proposed in this paper can
realize ear recognition and meet the requirements of real time and accuracy.

Compared with YOLOv5s-MG, the mAP@0.5 value of the proposed YOLOv5s-MG-
CBAM-F method on the EarVN1.0 ear dataset increased by 6.4% and the inference time per
image of the improved YOLOv5s-MG-CBAM-F model increased by 3.8 ms compared with
that of YOLOv5s-MG by using GPU.

The quantitative results show that compared with YOLOv5s-MG, the YOLOv5s-MG-
CBAM-F method has the best ear recognition accuracy, especially for images with poor
resolution and rich posture in the EarVN1.0 ear dataset. The method proposed in this paper
can meet the performance of human ear recognition accuracy and real-time performance,
and has a good prospect for the application of human ear recognition devices in the field
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of identity recognition. The next step will apply the method proposed in this paper to the
actual ear recognition equipment.
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