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Abstract: The planning of metering network infrastructure based on the concept of the Internet of
Things primarily involves the choice of available radio technology. Then, regardless of the type and
availability of power sources, energy conservation should be one of the main optimization criteria.
For this reason, LPWANs operating in unlicensed ISM bands appear to be a suitable solution in urban
environments due to their sub 1 GHz propagation properties. High signal penetration and coverage
make them applicable in urban areas with buildings and various obstacles. Therefore, this article
presents solutions developed to support the planning process of implementing a LoRaWAN network
infrastructure aimed at monitoring and collecting electricity meter data in smart cities. To this end,
an algorithm has been proposed to support the selection of the number of LoRaWAN gateways and
their deployment, as well as the selection of transmission parameters at the measurement nodes with
a particular focus on geographic data from real maps.

Keywords: LoRaWAN; IoT; clustering; network optimization; smart city; AMI

1. Introduction

The emergence of the Internet of Things (IoT) has revolutionized the way data are
transmitted, protocol designs are created, and network services are provided. Therefore,
with the development of artificial intelligence, it is considered the next technological
revolution. Designers of IoT solutions face the crucial task of assessing the scalability of a
particular technology, particularly when it operates on unlicensed ISM (Industrial, Scientific,
and Medical) frequency bands. The growth of the Internet of Things network is particularly
evident in the urban environment, where smart technologies and data analytics are being
added as part of the network infrastructure to optimize urban processes [1]. Governments
worldwide prioritize enhancing ecological practices and automating processes to improve
physical infrastructure, bolster the economy, enhance energy efficiency, and elevate citizens’
quality of life [2]. Smart cities aim to support urban management and quality of life
processes with minimal human intervention [3]. Smart sensors and measurement systems
can help develop future cities, but there are many challenges, including the need to improve
energy efficiency by planning effective and efficient infrastructure.

Today, electricity operators and suppliers are showing a keen interest in the possibili-
ties of remote reading, acquisition, and processing of metering data. Electricity meters are
electronic devices that record information such as electricity consumption, voltage level,
current consumption, and power factor. This information is transmitted to the electric
operator for system monitoring and customer billing. They can also be transmitted to
the consumer for greater transparency of consumption behavior. Usually, these meters
capture real-time energy consumption and regularly transmit the data at frequent intervals
throughout the day, utilizing diverse data transmission technologies. Advanced Metering
Infrastructure (AMI) is an integrated system of smart meters, interconnecting communica-
tion networks, and data processing systems that allow two-way communication between
energy companies and customers. The system provides a range of functionalities that were
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previously not possible or had to be performed manually in Automatic Meter Reading
(AMR), such as the ability to automatically and remotely measure electricity consumption,
connect and disconnect services, tamper detection, power outage detection, and voltage
monitoring. In combination with solutions for dedicated end-user technologies, such as
home displays and programmable communication thermostats, AMI also enables the col-
lection of data on customer behavior to adjust electricity tariffs and encourages customers
to reduce peak demand and energy consumption.

The amount of energy consumed by household electrical appliances is significantly
influenced by the behavior and habits of customers. The test results showed that the savings
measures reduced daily energy consumption by 15.88%. On the other hand, weekly energy
consumption decreased by 6.43%. During the three months of observation, there was a
33.77% decrease in energy consumption [4]. Such savings not only limit related expenses
but also help to achieve one of the key sustainability objectives, i.e., limiting carbon dioxide
emissions caused by coal and gas power stations.

Communication from the metering devices to the network can take place using a
variety of wired and wireless technologies. The native method of wired communication
offered by the operator is undoubtedly Power Line Carrier (PLC). In contrast, common
wireless communication solutions include many more options: mobile cellular communi-
cation, Wi-Fi, ZigBee, Wi-SUN (Smart Utility Networks), wireless ad hoc networks over
Wi-Fi, wireless mesh networks, and, finally, Low-Power Wide Area Networks (LPWANs).
The basic requirements for data transmission technologies in the Internet of Things are
low power consumption, low cost, and low complexity of end nodes with the capability
to transmit data over long distances. Under these assumptions, terminal devices can be
battery-powered or operate autonomously using photovoltaic cells. In some technologies
and radio bands short-range communication is used [5], whereas in others, it can span
from hundreds of meters to several kilometers, and the network can be designed in a star
topology. As a result, routing issues in this network type are deemed insignificant and are
not considered or addressed [6,7].

There are several popular LPWAN solutions available in the market that cater to the
diverse needs of IoT deployments. A prominent LPWAN technology is LoRaWAN (LoRa
Wide Area Network), which offers long-range connectivity, low power consumption, and
scalability for IoT applications [8–13]. The Semtech LoRa radio modules have important
features for IoT applications, such as long range, low power consumption, and secure data
transmission [14].

Another notable LPWAN solution is NB-IoT (NarrowBand IoT), which is a cellular-
based LPWAN solution, supported by major telecom operators, offering deep penetration
and wide coverage using existing infrastructure [15–21]. LTE-M (Long-Term Evolution for
Machines) is another cellular LPWAN technology that provides higher bandwidth and
lower latency, suitable for applications requiring real-time communication.

LoRaWAN has become highly popular in Western European countries due to its
license-free spectrum usage, scalability, flexibility, collaborative ecosystem, standardization
efforts, interoperability, and cost-effectiveness. These factors have enabled the widespread
adoption of LoRaWAN for IoT applications in urban areas, agriculture, asset tracking,
and more, making it a preferred choice for businesses, organizations, and communities in
the region. In Poland, for example, there are the first municipalities to put into practice
solutions based on LoRaWAN technology. There is a well-founded belief that the wider
use of sensors of this type is an opportunity for business, administration, and individual
customers [22]. This technology is compatible with public, private, or hybrid networks,
offering broader coverage compared to cellular networks. It seamlessly integrates with
existing infrastructure and facilitates the deployment of cost-effective battery-powered IoT
applications. Semtech’s LoRa chips are integrated into a wide range of devices that are
manufactured by many IoT solution providers. They connect to WANs and use WANs, and
network services are supported by dedicated cloud solutions.
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Building and implementing a wireless network for the Internet of Things with any
of the technologies presented is costly and time-consuming and must be preceded by a
performance evaluation based on computer simulations. The most important objective
of the solution presented in this paper is to determine the optimal number of gateways
and to select the transmission parameters of the measurement nodes. The problem of
gateway deployment is equally important from the point of view of providing services in a
given geographical area at the expected quality level. It turns out that a small number of
gateways is sufficient to provide communication within a small city. Simulation studies are
therefore not limited to synthetic datasets but make use of open databases collecting data
on the placement of urban infrastructure elements. In this view, similar studies have not
been conducted. To the authors’ best knowledge, such studies have not been undertaken to
this date.

This paper presents the use of machine-learning mechanisms and the application of a
reliable radio loss model to determine the effective coverage of a network of measurement
nodes operating in LoRaWAN technology. In Section 2, a literature review is presented.
Section 3 shows how the LoRaWAN network infrastructure works and the computational
techniques used. Section 4 discusses the desirability of the approach used, supported by
the results of the research work in hypothetical scenarios and in the actual topography of
the city. The final section contains summaries and conclusions from the research presented
in the article.

2. Related Works

There are a small number of items in the literature on LoRaWAN simulation that take
into account accurate radio propagation models and how to deploy gateways efficiently.
Upon reviewing the literature, it is evident that the majority of articles conducting sim-
ulations of LoRa networks primarily focus on analyzing access to the common channel
solely for the traffic generated by the end nodes. As if by design, multi-access in a radio
link is modeled. The Pure Aloha mechanism is used in this context. The authors of [23]
included the assumptions of the simulation model for the MAC sublayer of the LoRa net-
work in an application called LoRaSim written using the SimPy framework in Python. The
assumptions made by the simulator tend to overlook the impact of imperfect orthogonality
between messages generated on the same channel but with different spreading factors
(SFs). In simulations, the primary metric used to evaluate the system’s performance is
the Data Extraction Rate (DER). DER is defined as the ratio of received messages to sent
messages within a specified time frame, providing an assessment of the system’s message
retrieval efficiency.

The LoRaWANSim [24] project extends the LoRaSim simulator to support the MAC
layer mechanisms of the LoRaWAN protocol and introduces bidirectional communica-
tion. The downlink transmission to the end node is applicable for IoT applications with
automation of the joining process and generates additional traffic for handshakes, acknowl-
edgment traffic (e.g., ACK messages), and key exchange in cryptographic algorithms. The
LoRaWANSim incorporates a duty cycle of 1% for the majority of European subbands.
Furthermore, it incorporates a realistic collision model that eliminates collisions for traffic
in both directions, even if transmissions occur simultaneously on the same channel and
with the same spreading factor. The simulator also considers the retransmission strategy,
whereby packets that are not acknowledged due to collisions or duty cycle constraints
are retransmitted.

It is worth mentioning that some models make the fairly realistic assumption that
LoRaWAN technology is used in applications that exhibit communication asymmetry,
meaning that the amount of data in the uplink is greater than in the downlink. In [25],
measurements in an urban environment showed that, with a distance of up to 2 km between
the measurement node and the gateway, the reliability measured by the packet reception ratio
(PRR) was 95.5%.
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The problem of how to optimally select the number of gateways and how to optimally
deploy them to achieve maximum radio coverage was not considered in the context of
the above simulators. This problem is often generalized in the topic of wireless sensor
networks (WSNs) as optimal sink node placement. The literature presents numerous tech-
niques devoted to it. These are usually heuristic algorithms or computational intelligence
techniques [26]. The use of machine-learning mechanisms in LoRaWAN node placement is
a new approach here.

3. Materials and Methods

In order to select the locations of LoRaWAN gateways of a distributed measurement
system, it is important to identify an accurate propagation model and suitable machine-
learning techniques to enable clustering modeling and the selection of optimal node loca-
tions. These issues are presented later in this section.

3.1. LoRaWAN Technology Overview

LoRaWAN, a network standard introduced by the LoRa Alliance [27], utilizes the
proprietary LoRa modulation technology, which is based on the Chirp Spread Spectrum
modulation technique developed and owned by Semtech Company [14]. It operates in
one of the unlicensed ISM radio bands, which is geographically dependent. In Europe,
the LoRa Alliance established two specific frequency bands for the implementation of LoRa
technology. These bands are EU433, ranging from 433.05 to 434.79 MHz, and EU863, span-
ning from 863 to 870 MHz. The primary modulation parameter in LoRa technology is the
spreading factor (SF), which impacts both the data rate and the range of radio transmission.
The spreading factor can range from 7 to 12. Signals modulated with different spreading
factors are orthogonal, enabling simultaneous transmission and decoding at the same time
and frequency. Additionally, signals with the same spreading factor can be decoded even if
there is a power level difference of 6dB between them (Table 1).

Table 1. Interference thresholds for different SF (SINR) [dBm].

SFre f SF7 SF8 SF9 SF10 SF11 SF12

7 6 −16 −18 −19 −19 −20
8 −24 6 −20 −22 −22 −22
9 −27 −27 6 −23 −25 −25

10 −30 −30 −30 6 −26 −28
11 −33 −33 −33 −33 6 −29
12 −36 −36 −36 −36 −36 6

The LoRaWAN architecture defines an open protocol standardized by LoRa Alliance
at the MAC (Medium Access Control) network layer. A LoRaWAN network follows a star
topology, where end nodes such as sensors and physical parameter measurement systems
exclusively communicate with LoRaWAN gateways within a specific area. In this network
structure, end nodes do not communicate directly with each other. This configuration is
depicted in Figure 1. As a result, gateways play the role of packet relays within the network
by encapsulating raw data into IP packets using TCP or UDP protocols. Additionally, the
network server facilitates the transmission of downlink packets to the end nodes. The
specifics of this transmission process depend on the class of the end device. The LoRaWAN
standard outlines three classes of end devices: A, B, and C.

In Class A devices, the majority of the time is spent in sleep mode. These devices
activate two receive (RX) windows, one and two seconds after completing packet trans-
mission from the end device to the gateway. This mechanism allows the end devices to
send acknowledgment packets, indicating successful receipt of the message by the net-
work server. The first window utilizes the same frequency channel for transmission. In
the second window, transmission occurs on a channel with a frequency of 869.525 MHz,
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employing a spreading factor of SF 12 and an increased transmission power of 24 dBm.
This mode is designed for low power consumption.

end devices gateways

network server

join server

application server

data storage
and visualization

Figure 1. LoRaWAN system architecture [14].

In order to enhance the transmission capabilities towards end nodes, devices operating
in Class B mode introduce reception windows at predetermined intervals. The gateway
sends downlink beacons to Class B end devices, synchronizing them and notifying the
network server about the specific times when an end device will be listening for downlink
traffic. On the other hand, Class C devices keep their windows continuously open, remain-
ing available at all times for downlink traffic, except during their own transmission periods.

The LoRaWAN protocol incorporates mechanisms to ensure reliable and secure com-
munications. One such mechanism is the Adaptive Data Rate (ADR), which enables the
dynamic management of link parameters to enhance packet delivery rates. The manage-
ment of transmission parameters is possible on both the end device and network server
sides. As per the standard documentation [28], the end device initially attempts to optimize
connectivity by increasing its transmit power. If this proves insufficient, the device proceeds
to lower the data rate as a further adjustment.

When two nodes utilize different spreading factors (SFs), they can transmit their data
simultaneously, provided that neither transmission is received at significantly higher power.
In the case of different SFs, each packet can be demodulated if the difference in received
power exceeds the SINR (Signal-to-Interference-Plus-Noise Ratio) threshold for each SF, as
indicated in Table 1. For instance, a transmission using SF 7 can be successfully received as
long as another transmission using SF 8 does not exceed a 16 dB power difference.

3.2. Radio Transmission Range Modeling

The range of wireless transmission is primarily influenced by three key characteristics
of these networks: radio range, data transmission rate, and energy consumption. Each
technology aims to strike a balance between these properties. For instance, Wi-Fi and
Bluetooth-based devices achieve high transmission speeds at the cost of increased energy
consumption and limited range, particularly indoors (typically within several dozen meters
or less). In contrast, LoRa technology utilizes lower radio bands and lower data rates, allow-
ing for transmission over significantly longer distances with minimal power consumption.

Ensuring optimal coverage involves another crucial factor: direct visibility, which
refers to a clear line of sight between the transmitter and the receiver. In radio communica-
tion, the radiation area is characterized by Fresnel zones. These zones represent ellipsoids
situated between the transmitter and the receiver. The size of each ellipsoid depends on
the transmission frequency and the distance separating the two locations.
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Objects within the Fresnel zone have a detrimental impact on the signal level and can
diminish the communication range. LoRa technology possesses a significant advantage
by utilizing the 868 MHz, 915 MHz, and 923 MHz ISM bands. These frequencies are
considerably lower than the commonly used 2.4 GHz and 5 GHz bands, resulting in reduced
transmission losses and improved penetration through obstacles like building walls or
trees. Additionally, the interference from devices operating at 2.4 GHz and 5 GHz, such as
Wi-Fi and Bluetooth, is increasingly prevalent in densely populated urban environments.

The log-distance propagation model, also known as the log-normal shadowing model,
is a commonly employed method for predicting radio signal propagation and attenuation
across various environments [29]. It assumes that propagation losses follow a logarithmic
normal distribution, with the mean varying with distance according to a power relationship.
The model is versatile and applicable to both line-of-sight scenarios and scenarios beyond
line-of-sight, where the signal may encounter obstacles such as buildings and trees:

Pr = Pt + Gt + Gr − 10γlog10(d) + Xσ, (1)

where Pr is the received signal power and Pt is the transmit power. Parameters Gt and Gr
are antenna gains in transmitting and receiving and d is the distance between devices. The
γ is empirically determined for different environmental conditions. The Xσ component
refers to the shadow fading of the received signal power. The log-distance propagation
model captures the signal attenuation caused by obstacles such as buildings, trees, or
terrain. This attenuation is represented by a random variable that follows a log-normal
distribution with a mean of zero and a specific standard deviation σ.

In the literature, various analytical network models for LoRaWAN performance have
been described [12,30]. These models differ in terms of the type of interference from the
spreading factor that they consider and whether they incorporate channel fading [31] or
other interference from technology [30]. On a different note, the mathematical model for
LoRa modulation was introduced in [32]. Analytically, it has been demonstrated that LoRa
modulation outperforms FSK modulation in scenarios involving frequency selective fading.

The COST-213 Hata model is a radio propagation (that is, path loss) model that
extends the Hata model for urban environments. It is based on the Okumura model and
designed to cover a wide frequency range up to 2 GHz. It is the most widely cited of
the COST-231 models, which were developed as part of a research project funded by the
European Union [33]. The model combines empirical and deterministic approaches to
estimate path losses in urban areas in the frequency range from 800 MHz to 2000 MHz [34]
and incorporates the results of experimental measurements carried out in many cities
throughout Europe. For both the reasons mentioned above, as well as its popularity in
the literature, it seems reasonable to apply it to studies using LoRaWAN, although the
literature related to this radio technology also indicates the validity of the variations of the
Lee [35] or Okumura model [36]. The model is expressed by the following formula [34]:

Pr = (46.3 + 33.9log10( fc))− 13.82log10(hb)− Ch+

+ (44.9− 6.55log10(hb))log10(d) + C, (2)

where:
Ch = hm(1.1log10( fc)− 0.7)− (1.56log10( fc)− 0.8) (3)

and hm is the antenna height of the terminal node [1–10 m], hb is the antenna height of
the LoRaWAN gateway [30–200 m], fc is the carrier frequency [500–2000 MHz], d is the
transmission distance [up to 20 km], the parameter C takes the value 0 for medium-sized
cities and suburban areas and 3 for metropolitan areas.
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3.3. Clustering Techniques

In machine learning (ML), clustering techniques are a set of algorithms and methods
that are used to group similar data points based on their inherent properties or patterns.
This specific task of unsupervised learning is particularly useful when dealing with large
datasets and can be applied to various domains, including geographical data analysis. The
goal of clustering is to identify natural groups or clusters in a dataset without the need for
predefined labels or classes. These techniques are widely used in data mining, exploratory
data analysis, pattern recognition, and many other fields [37]. They can be used in the
process of clustering the end nodes of LoRaWAN networks to find optimal deployment
points for packet forwarders (gateways).

Among clustering algorithms, K-means is one of the most widely used [38]. It aims to
partition a dataset into K clusters, where each cluster is represented by its centroid. K-means
groups similar data samples in one group away from dissimilar data samples. Its objective
is to minimize the Within-Cluster Sum of Squares (WCSS) and maximize the Between-
Cluster Sum of Squares (BCSS). The K-means algorithm has various implementations and
conceptual variations. Many implementations and libraries focus on the most common
method, known as Lloyd’s algorithm (Naive K-means). This algorithm follows an iterative
approach to find a suboptimal solution and is convenient for an exact, predetermined
number of groups (e.g., to maintain a minimum number of gateways—it is a constraint—a
business need) and is more suitable for a small number of clusters [39].

Unlike other clustering methods (e.g., DBSCAN), K-means is computationally efficient,
especially for large datasets, because its time complexity is linear with respect to the number
of data points. It effectively handles large-scale clustering tasks. Admittedly, DBSCAN
determines the optimal number of clusters (although during the design of the network, the
number of gateways may already be imposed in advance as an economic factor). However,
the result is irregular structures, and the center of gravity of such subgraphs must be
determined by additional methods.

4. New Proposals and Results

In the initial stage of this work, it was assumed that the specifics of the designed
network consisting of metering nodes installed at AMI meters allowed for a static configu-
ration of the radio parameters of these nodes. The nodes are pre-configured in such a way
as to minimize potential collisions that may occur in the common transmission channel.

4.1. K-Means-Based Gateway Deployment

Messages from the individual nodes are sent several times a day and contain com-
pressed AMI profiles and basic measurement values (e.g., voltage, current value of energy
consumed, or cosine fi). Minimal downlink traffic is generated for real-time clock synchro-
nization in order to schedule the timing of messages sent by each node (a process in the
application server manages the scheduling process to avoid collisions). From the point of
view of the efficiency of the designed network, it is important to select the location of the
gateway and to establish the radio coverage of the individual nodes.

As mentioned in the previous section, the K-means algorithm will be used to cluster
the points representing the end nodes of the LoRaWAN network and determine the optimal
placement of gateways. To determine the value of the K parameter, two methods were
used: elbow method, by determining WCSS and cluster quality, and silhouette coefficient.
The so-called elbow method is based on the principle that as the number of clusters increases,
the WCSS coefficient, which is the sum of the squares of the Euclidean distances from each
node to the centroid, decreases. The silhouette coefficient, on the other hand, measures how
well nodes are assigned to their own cluster, yet how far they are from other clusters. This
parameter close to 1 means that the data points are in the right cluster, while a silhouette
coefficient close to −1 means that the nodes are in the wrong cluster. In both cases, K = 4
was determined as the optimal number of gateways to ensure that each node belonged to
the designated clusters (Figure 2).
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Figure 3 shows the application of the K-means algorithm for LoRaWAN end nodes
randomly distributed over a 6× 6 km square area. Some simplifications have been adopted
in this model. All nodes have the same radio range and operate with SF = 7. They were
randomly distributed on the plane. The Euclidean distance was used to determine the
distance between each node and the centroid, which was determined from geographical
coordinates. The presentation of network coverage and visualization is taken from the
TTN Mapper project [40]. The colour of the line and point reflects the value of the RSSI
parameter (e.g., red for RSSI > −100 dBm and blue for RSSI < −120 dB). The hypothetical
range of the gateway has been marked for the clarity of the figure (the ranges of the nodes
would obscure the figure). Note that all nodes were assigned to individual clusters; no
noise remained in the clustering process.
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Figure 2. Determination of the optimal number of clusters using the elbow method (a) and silhouette
coefficient (b).

(a) K = 3 (b) K = 4
Figure 3. An example of a network topology using the K-means algorithm to determine LoRaWAN
gateway locations.

Despite the assignment of nodes to the cluster, the radio loss model used (COST-231
Hata) determines the ability to communicate with the gateway. Figure 3a shows grey-
colored nodes whose transmit power is too low for the gateway to receive messages or
for the gateway to send an uplink message in the first transmission window (RX1) [14].
If the number of clusters is increased to 4 in the same network, full radio coverage can
be achieved (Figure 3b). Figure 2 shows two ways to determine the optimal number of
clusters (elbow collapse and the maximum value of the form factor occurs for K = 4).
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4.2. Spreading Factor Optimization

Paper [41] analyzed the impact of adding new clusters (resulting in new gateways) on
the power efficiency of LoRaWANs. As the number of gateways increased, the distances
shortened, leading to an increase in SNR, causing the ADR algorithm to recommend
smaller values for the transmit power Pt and SF factor. However, [42] showed that
the ADR technique has a long convergence time and is not able to adapt to changing link
conditions, sometimes requiring several hours to several days to reach a reliable and energy-
efficient communication state. Given the one-time approach in infrastructure planning
and the additional energy consumption resulting from bidirectional communication in
ADR, it seems important to plan the deployment of metering nodes and such settings to
minimize both SF and the number of gateways. This approach presents the SFArrangement
Algorithm 1.

Algorithm 1 SFArrangement

Parameters: n, K, SF, RSSI = f (SF).
1: Determine the deployment of end nodes by transforming the geographic coordinates

to a Cartesian system.
2: Determine the deployment of LoRaWAN gateways based on the K-means algorithm.
3: Starting with SF = 7, determine the received signal power at each end node according

to the propagation model.
4: Assign nodes for which RSSI < max(RSSISF7)→ with SF = 7.
5: If there are nodes in the cluster that do not meet the above condition, increase the SF to

8 and assign to nodes that meet the condition RSSI < max(RSSISF8)→ with SF = 8.
6: Increase SF sequentially until it reaches 12.
7: Termination condition: all nodes have been assigned SF values or the step for SF = 12

has been performed.

The algorithm determines the so-called coverage ratio, defined as the ratio of the
number of metering nodes in range of the gateway (whose range allows transmission to the
gateway) to the number of all nodes in the metering network. Figure 4 shows visualizations
of the network for different parameters and different stages of the algorithm obtaining
the same coverage factor with nodes spread over a 10× 10 km area. The circles indicate
the maximum radio coverage for successive values of the spreading factor (SF = 7 . . . 11).
The calculation of the maximum radio range is based on the sensitivity of the widely
used Semtech SX1276 radio module for different 868 MHz bandwidths (Table 2) and the
transformation of COST-231 Hata radio loss model used (Formula (2)) for different BW and
SF parameters. The accuracy and desirability of the adopted radio loss model has been
demonstrated in the literature, and field tests of node coverage confirm these results [43,44].

According to Figure 5, the maximum range is 2500 m for SF = 7 and 6350 m for
SF = 12 (at BW = 125 kHz). It is worth noting that as the SF increases, the measurement
nodes may remain in range of more gateways and reduce the transmission efficiency within
these gateways due to a higher probability of collisions. By knowing the radio parameters
of each node, it is possible to determine the transmission airtime based on the length of the
messages sent and, as a result, the energy efficiency of the entire system [41].
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(a) N = 200, K = 3, SF = 8 (b) N = 200, K = 4, SF = 7
Figure 4. Two cases of network topology that for different parameters give the same coverage factor
of approximately 0.755.

Table 2. Semtech SX1276 sensitivity of LoRa receiver (dBm).

BW [kHz] SF7 SF8 SF9 SF10 SF11 SF12

125 −126 −129 −132 −135 −138 −141
250 −124 −127 −130 −133 −136 −139
500 −121 −124 −127 −130 −133 −136

The results shown in Figure 6 show the dependence of the coverage ratio on both
the SF and the number of gateways used. The study was conducted for a wide number
of measurement nodes N (from 100 to 2000). A coverage factor was determined for a
random distribution of nodes for 100 instances. The use of high SF values (11 and 12) only
seems justified when the installation of new gateways is not possible (for K = 2, 3). Then,
however, the energy efficiency and the transmission restrictions imposed by The Things
Networks recommendations (fair use policy) make the solution ineffective [45]. A coverage
ratio of 1 can already be achieved at SF = 10 for K = 4, 5. Further increases in the number
of gateways in a given area are not justified.
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Figure 5. Maximum radio range values determined for the SX1276 module using COST-231 Hata.
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Figure 6. Dependence of the coverage factor on the spreading factor (SF) for different numbers of
LoRaWAN gateways.

4.3. Node Deployment Based on Real Geospatial Data

The use of random network scenarios provides general observations and guidance for
network planning. The use of these research results is crucial when planning infrastructure
for specific realities. Then, infrastructure elements are located based on terrain maps
and the distribution of nodes is described in recognized formats such as GeoJSON [46]
or GTFS [47]. Using OpenStreetMap [48] data from Python is convenient thanks to an
API called Overpass Turbo [49,50], which can be used to query geospatial data from
OpenStreetMap. In general, all elements in the maps are expressed by a set of points,
each of which has a single latitude and longitude. These points are called nodes and roads,
where nodes are single points usually used to mark places such as individual shops. It is,
therefore, possible to use OpenStreetMaps data to pre-plan the placement of LoRaWAN
network metering nodes and associate them with the location of the energy meter.

Due to research related to the pilot construction of a wireless data network in the city
of Bydgoszcz, the techniques presented in this article were tested in close connection with
the aforementioned location. Bydgoszcz is a city located in northern Poland, situated on
the Brda and Vistula rivers. It is the eighth-largest city in the country and the capital of
the Kuyavian-Pomeranian Voivodeship. As of the latest available data, Bydgoszcz has a
population of approximately 330,000 people. In terms of population density, Bydgoszcz is
relatively densely populated, with an average density of around 1875 people per square
kilometer. Similar studies have been carried out on the example of Paris [51] but these
mainly focused on the reliability of the transmission itself, without taking into account
how the gateways were deployed (these were distributed evenly, with LoRaWAN nodes
clustered around them).

For this part of the research, the geographical coordinates of shops and retail outlets
were downloaded (there are 741 sites in the OpenStreetMaps database). Geographical
coordinates were then converted to Cartesian coordinates and the Euclidean metric was
used in the application of the K-means algorithm. An area of the city of 10× 10 km was
established for the visualization (Figure 7). The white circles indicate the metering nodes
and the red triangles indicate the LoRaWAN gateways. A coverage factor of 0.969 was
obtained for 4 gateways (Figure 7a) and for 5 gateways—0.996 with SF = 7 (Figure 7b).
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(a) K = 4, SF = 7 (b) K = 5, SF = 7
Figure 7. Locations of shops and retail outlets as metered electricity consumption sites, together with
the location of LoRaWAN gateways determined using the K-means algorithm (Bydgoszcz, Poland).

5. Conclusions

Algorithms to support gateway placement combined with radio coverage modeling
in urban environments are challenges facing computer simulation environments. This
paper presents a new algorithm to locate gateways collecting data from wireless IoT
sensor networks. The research was conducted on the example of a 330,000-strong city in
Poland. The proposed algorithm, according to the authors, enables efficient deployment of
data collection gateways. The authors’ involvement in a research agenda focused on data
transmission from electricity meters enables a comparison between the results of simulation
tests and real-world metering networks employing LoRaWAN technology. As far as the
authors are aware, this is the first study that employs machine-learning (ML) techniques to
determine the location of data-collecting nodes in LoRaWAN networks.

The proposed solution is the first stage of building a simulation environment, which
does not yet include traffic models that allow accurate simulation of uplink and downlink
traffic. Assumptions have been made to avoid collisions and message overlap, but an
accurate model will take these aspects into account. No less, the application created
at this stage allows planning the deployment of network nodes for measurement. The
implemented mechanisms for communication with geospatial databases will in the future
be able to be applied to areas with varying degrees of urbanization with the possibility of
using different path loss radio models.

It is noteworthy that the algorithm presented in the paper can have an impact on the
careful design and implementation of networks to reduce energy consumption and radio
bandwidth usage. Moreover, when the required coverage and continuous monitoring are
provided, it will be possible to draw realistic conclusions and take action based on the data
collected. Thus, this could become the next step toward the implementation of a smart city
concept, whose functionality and capabilities will be optimized for the convenience and
safety of residents.
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