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Abstract: With the rapid data growth driven by smart phone, high-definition television and virtual
reality/augmented reality devices and so on, the launched 5G and upcoming 6G wireless communica-
tions tend to utilize millimeter wave (mmWave) to achieve broad bandwidth. In order to compensate
for the high propagation loss in mmWave wireless communications and track the moving users,
beamforming and beamsteering are indispensable enabling technologies. These have promising
potential to be realized through the use of optical beamforming networks (OBFNs) that have a wider
bandwidth and smaller size, lower power consumption, and lower loss compared to those of their
electric counterparts. In this paper, we systematically review various OBFN architectures using true
time delays and optical phase shifters, as well as discuss performances of different architectures,
scalable technologies that promote the advancement of OBFNs, and the application potentials of
OBFNs. Two-dimensional OBFNs with discrete components or integrated optical devices have been
elaborated, in addition to one-dimensional architectures. Moreover, the state-of-the-art technologies
relative to reducing the size, loss and nonlinearity of OBFNs have also been discussed here.

Keywords: optical beamforming; beamsteering; wireless communication; millimeter wave; phase
array antenna; true time delay; optical phase shifter; 5G; 6G

1. Introduction

In the era of 5G and beyond, wireless communications will witness an explosive
growth in data traffic with the technology advancements of 4 k/8 k high-definition video,
virtual reality/augmented reality (VR/AR), mixed reality (MR), industrial internet of
things, remote healthcare and so on [1–4]. These corresponding application scenarios
will drive the evolution of mobile broadband networks toward wide bandwidth and high
frequency. To this end, mmWave and terahertz (THz), which have a much larger bandwidth
and energy efficiency compared to those of sub-6 GHz, are proposed as the signal carriers
of next-generation wireless communication networks [4–8]. Among them, mmWave has
gained more popularity in terms of research and application in the past two decades [1,7,8].
However, it is challenging to exploit mmWave, which suffers severe propagation loss in
wireless communications, due to the air absorption, rain attenuation and blockages of
buildings, foliage and vehicles, etc. [5,7,9]. One key enabling technology for mmWave
communications is the phase array antenna (PAA) that adopts a large number of antenna
elements to provide sufficient gain in a certain direction through beamforming, and also
has the beamsteering ability to track moving users such as pedestrians and passengers in
vehicles [8,10,11].

Conventionally, the beamforming and beamsteering of PAAs are implemented using
electric beamforming networks that have analog and digital architectures. Analog archi-
tectures of electric beamforming generally utilize a phase shifter array that has a bulky
size and narrow bandwidth, inducing a high cost and the beam squint problem [12,13].
Meanwhile, digital beamforming networks require that the numbers of high-speed digital–
analog converters (ADCs), analog–digital converters (DACs) and mixers are identical to
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those of antenna elements, which are too expensive to implement in PAAs with mas-
sive antenna elements [9,14]. These issues hinder the utilization of electric beamforming
networks in mmWave communications with broad bandwidth and compact antenna ar-
rays. One promising solution is to use OBFNs that have inherent advantages in enabling
broadband wireless communications, thanks to the wide bandwidth of optical devices and
multi-dimensional multiplexing capability of optical signals. With photonic integration
technology, OBFNs also possess the potential advantages of small size, low weight, low
power consumption and low loss [1,14,15].

OBFNs are used to phase tune or induce a time delay in the radio frequency (RF) signal
at each antenna element with optical phase shifters or true time delay (TTD) components,
and further control the beam pattern of PAAs. The implementations of OBFNs in PAAs can
be dated back to the 1970s [16,17]. Early demonstrations of OBFNs are mainly based on TTD
architectures which adopt discrete devices to build fiber-optic or free-space beamforming
systems [18–21]. These architectures are easy to be realized by using commercially mature
components; however, their bulkiness inhibits their integration with antennas especially
in mmWave wireless communications. OBFNs with optical phase shifters predominantly
produce RF signals via coherent beating at photodetectors (PDs), which have a relatively
small tuning range and bandwidth [16,22–25]. Moreover, OBFN architectures combining
TTDs and phase shifters have also been demonstrated to have superiorities in reducing the
cost and complexity of TTD architectures designed for PAAs with limited bandwidth [20,21].
In recent years, OBFNs with integrated TTDs or integrated phase shifters have received
much concern and exhibited advantages in compactness, high scalability and low power
consumption [26–31]. Several application scenarios of OBFNs such as indoor coverage and
mobile fronthaul have been proposed [29,32–38]. Up to now, reviews about OBFNs have
paid more attention on TTD architectures [8,12,15,20,21,39], but the roles and advancements
of phase shifter architectures have not been discussed. Furthermore, relative advancements
in materials, optical devices and electro-photonic integrations, which may improve the
scalability of OBFNs, have not been discussed either.

In this paper, we present a systematic review of OBFN architectures using various
TTDs and phase shifters, introduce typical architectures, discuss the scalability of different
architectures, as well as propose several scalable techniques and application scenarios for
OBFNs. The following sections are organized as follows: Section 2 shows the principles of
PAAs, OBFNs with TTDs and phase shifter arrays, Section 3 introduces the representative ar-
chitectures of five subclasses of OBFNs with TTDs and the corresponding two-dimensional
(2D) schemes, Section 4 presents four classic categories of OBFNs with phase shifters and
a promising combination of these with TTD architectures, Section 5 discusses the scala-
bility, scalable techniques and application potential of OBFNs in next-generation wireless
communication networks, and finally, Section 6 gives the conclusion and outlook.

2. Principles

To sweep the beam in free space for wireless communications, PAAs tune the phase
or induce a time delay at each antenna element. For PAAs using OBFNs, the working
principles relate to the beam pattern of one-dimensional (1D) and two-dimensional (2D)
PAAs, as well as the RF signal processing of OBFNs. The beam pattern is formed by the
integral of the electromagnetic field of each antenna in free space. Categorized by the delay,
OBFNs have two types: TTD architectures and phase shifter architectures [20]. The former
produce different time delays for RF signals transmitted or received by different antenna
elements, while the latter produce various phase shifts.

2.1. Beam Pattern of PAAs

PAAs using OBFNs consist of a 1D antenna array or a 2D antenna array and corre-
sponding OBFNs, as shown in Figure 1a,b. For a 1D PAA with equal amplitude and equal
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spacing (d) between adjacent antennas, the beam pattern (array factor) can be expressed
as follows: [40]

F(θ) = ∑N
n=1 ei(n−1)(kdsinθ−∆φ) (1)

where ∆φ is the progressive phase of the linear array antenna, k is the wave number of the
RF signal exited from the antennas, and θ is the beam angle. The beam angle (θ) can be
given as Equation (2) which is derived from F(θ) obtaining the maximum value.

θ = arcsin
(

∆φ

kd

)
(2)
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Owing to k = 2π/λRF, where λRF is the wavelength of the RF signal, Equation (2) can
also be expressed as follows:

θ = arcsin
(

∆φ

2πd
λRF

)
(3)

Meanwhile, for 2D M × N PAA with equal amplitude and equal spacing (d) between
adjacent antenna elements, the beam pattern can be expressed as follows: [40]

F
(
θ′, ϕ

)
= ∑M

m=1 ∑N
n=1 Imnei((m−1)(kdsinθ′cosϕ)+(n−1)(kdsinθ′sinϕ)) (4)

where θ′ and ϕ are the azimuthal angle and polar angle in the spherical coordinate system,
respectively, and Imn is the excitation of antenna element at m-th row and n-th column.

2.2. Principle of TTD Architectures

As presented in Figure 2, TTD architectures utilize the direct detection of modulated
optical carriers, in which the signal processing of a channel is as follows. The optical carrier
from a laser is modulated by a RF signal, which is then delayed by a TTD with a time delay
of ∆t, then the optical carrier is fed to PD and mixed back to RF signal. The other channels
have a similar operation with the optical carrier and generate a group of RF signals with a
fixed phase difference, in order to form a beam with a certain angle.
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Ignoring the high-order harmonics, the optical signal before the PD can be expressed
as follows: [30]

S(t)1 = A1expi(2π f1(t+∆t)) + A2expi(2π( f1+ fRF)(t+∆t)+φ0) − A2expi(2π( f1− fRF)(t+∆t)+φ0) (5)

where A1 and A2 are the amplitude of the optical carrier and sidebands, ∆t is the time
delay, and φ0 is the initial phase of the RF signal. Detected by the PD, an electric current is
produced as follows:

I(t)1 = R|S(t)1 × S∗(t)1| (6)

where R is the responsivity of PD. Neglecting components of the direct current and beating
term, the electric current can be written as follows:

I(t)1 = R[4A1 A2cos(2π fRF(t + ∆t) + φ0)] (7)

This equation states that the phase of the RF signal is shifted by 2πf RF∆t.

2.3. Principle of Phase Shifter Architectures

Typically, the signal processing of phase shifter architectures is characterized by the
heterodyne detection of coherent optical carriers. For example, two coherent optical carriers
can be produced by two phase-locked lasers, respectively, as plotted in Figure 3. The first
optical carrier from one laser is modulated by an electrical signal (RF1), and then the phases
of the optical carrier and its modulation sidebands are shifted by the phase shifter or TTD;
next, the optical carrier and one sideband are filtered out. The second optical carrier goes
directly to the PD and combines with one sideband of the first optical carrier, generating a
new electrical signal (RF2) via coherent beating. If the lower sideband of the first optical
carrier is left behind, the optical signals before the PD can be expressed as follows:

S(t)2 = A3expi(2π( f1− fRF1)t+φ) + A4expi2π f2t (8)

where A3 and A4 are the amplitude of the sideband signal and the second optical carrier.
Meanwhile, ignoring the components of direct current and high-order frequency, the electric
current can be simplified as follows:

I(t)2 = R× [2A3 A4cos(2π( f2 − f1 + f RF1)t− φ)] (9)

1 
 

 

Figure 3. Operation of the RF signal in one channel of a coherent OBFN.

This equation demonstrates that the phase shift in the optical domain can be trans-
ferred to one in the RF domain via heterodyne detection which can also change the fre-
quency of the RF signal into a new frequency of f RF2 = f 2 − f 1 + f RF1. Derived from
Equation (3), the relationship of the phase difference (∆φ) between adjacent antennas with
the beam angle (θ0) is expressed by the following equation.

∆φ = 2πdsin(θ0)/λRF (10)
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3. OBFNs with TTD Architectures

TTD architectures have the advantages of no beam squint and a large delay tuning
range [8,20,41]. As addressed above, OBFNs with TTD architectures can be based on fiber-
optic or free-space beamforming systems. Meanwhile, TTD architectures with integrated
photonic circuits have also been proposed and demonstrated with the advancement of
photonic integration technology, as shown in Figure 4 [17,18,23,24,42–50]. It is also shown
in this figure that the 1D and 2D OBFN architectures have been proposed since the 1990s.
Up to now, TTD architectures mainly include fiber dispersion delay architectures, microring
resonator (MRR) group delay architectures, Mach–Zehnder interferometer (MZI) delay ar-
chitectures, photonic crystal (PC) delay architectures and time delay selection architectures,
which will be elaborated in subsequent sections.
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3.1. Fiber Dispersion Delay Architectures

The fiber dispersion delay architectures are the most mature ones in TTD architectures,
owing to adopting commercially mature fibers and devices. The time delay difference
between adjacent beam angles or adjacent channels is produced by the chromatic dispersion
of different wavelengths and can be given by the following [43,51]:

∆τ = LD(λ2 − λ1) (11)

where D is the chromatic dispersion coefficient (ps/nm/km), L is the length of the fiber
(km), and λ1 and λ2 represent the adjacent wavelengths (nm).

As shown in Figure 5a,b, the fiber dispersion delay architecture with N channels
(equal to the number of antennas) can be established by one tunable laser, one electro-
optic modulator, 1 × N splitter, N different fiber delay lines and N PDs, namely the
1λ × N framework [42], while it can also be built by N tunable lasers, one multiplexer,
one electro-optic modulator, one fiber, one de-multiplexer and N PDs, namely the Nλ × N
framework [52]. The 1λ × N framework uses one tunable laser and N fiber channels
with different lengths of dispersive fibers and non-dispersive fibers, causing progressive
time delays for adjacent antenna elements, whereas the Nλ × N framework use only
one dispersive fiber, such as a common single-mode fiber (SMF), to afford various delays
for N channels. These frameworks realize 1D beam sweeping by changing the laser
wavelength, which has the advantage of wide bandwidth that is only limited by the
bandwidth (~100 GHz) of optical devices such as modulators and PDs [53,54]. Moreover,
the Nλ × N framework can achieve very low loss, due to the low transmission loss of
commercial SMFs. This advantage can also be obtained in the 1λ × N framework if SMFs
with different lengths are utilized in this architecture, instead of using relatively high-loss
dispersion fibers. Although the Nλ × N framework can largely reduce the cost of the fiber,
the increase in number of the tunable laser may be counter-productive in terms of the
cost of whole system. Nevertheless, the wavelength multiplexing applied in the Nλ × N
framework is one of paramount advantages in OBFNs compared to electrical beamforming
networks. Note that, a PAA with a large number of antenna elements needs high-resolution
scanning with a wide coverage, which further demands a tunable laser with very high
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tuning precision. For example, as calculated by Equation (12) [52], where n is the bit number
corresponding to the resolution of the PAA, a PAA with a six-bit scanning resolution and a
RF of 30 GHz requires a tunable laser with a wavelength resolution of less than 10 p.m.

∆λ = 1/(2n+1LDf RF) (12)
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For practical implementation, 2D beamforming is a basic requirement for 2D planar
PAAs, which can exhibit the superiority of OBFNs thanks to their multi-dimensional
multiplexing abilities such as wavelength multiplexing and spatial multiplexing. As
illustrated in Figure 6a, an OBFN architecture for 2D PAAs has been proposed [51], using an
optical frequency comb, fiber dispersion unit, programmable optical filter and microwave
photonic filter (MPF) to control the delay of each channel. The optical frequency comb can
simultaneously produce multiple optical carriers with various wavelengths and replace
multiple lasers presented in the Nλ × N framework, reducing the size of OBFNs. In this
architecture, multiple optical carriers are first modulated with N RF frequencies at the
polarization modulator (PolM), then delayed by the fiber dispersion unit and selected by
the programmable filter which induces N optical carriers to N different MPF paths; finally,
RF signals with N center frequencies are generated at MPF paths and sent to an antenna
element. This indicates that a 2D PAA with this OBFN architecture can achieve multi-beam
beamforming, which is a promising technique for a mmWave massive multiple-input
multiple-output (MIMO) system [9,55]. However, there is an issue for this concept in
that multi-frequency beamforming requires wideband PAAs which are not commercially
available presently. Two-dimensional beamforming with one center frequency is easier
to be implemented with a fiber dispersion delay architecture, as shown in Figure 6b [56].
Similarly, an electro-optic frequency comb is utilized to provide multiple wavelengths,
whereas optical carriers are modulated by Mach–Zehnder modulators (MZM), are then
delayed by two-stage TTDs including dispersion compensation fibers (DCFs) and tunable
delay lines (TDLs), and are split into various cores of the multi-core fiber (MCF). Next, they
are filtered by de-multiplexers and detected by PDs. Finally, the RF signals produced are
distributed to different columns and rows of the PAA. The delays of optical carriers with
different wavelengths are separately tuned by DCFs, while relative signal delays in various
cores of fiber are controlled by TDLs. This architecture features a time delay variation of
less than 1 ps with a drift in room temperature, which is much more stable than that (~15 ps)
with a single-mode fiber. Similarly, the 2D OBFN with fiber dispersion delay architectures
has a large size and high sensitivity to changes in the environment, since discrete devices
and fibers are applied in this architecture.
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3.2. MRR Group Delay Architectures

With photonic integration technology, a large number of TTDs can be integrated on
one substrate, which greatly reduces the size of OBFNs. The MRR group delay architecture,
employing multiple MRRs as TTDs, is one approach of such OBFNs within a relatively wide
bandwidth, which is typically several gigahertz [26,47,57]. Figure 7a plots the structure of
the MRR, which comprises one microring and one bus waveguide. The time delays of a
MRR with a round-trip time of 20 ps (free spectral range = 50 GHz) are shown in Figure 7b,
as calculated using the following equation [31] in the case that the optical loss of the MRR
is ignored:

τg(ω) = ( γ2−γ
√

1−Kcos(ωτr)

γ2+1−K−2γ
√

1−Kcos(ωτr)

+ γ
√

1−Kcos(ωτr)−γ2(1−K)
1+γ2(1−K)−2γ

√
1−Kcos(ωτr)

)τr
(13)

where K is the coupling coefficient, γ is the optical loss factor, τr is the round-trip time (s),
and ω is the angular frequency of light (rad/s). When ignoring the optical loss of the MRR,
γ = 1. By changing the K, the variation of the group delay induces different time delays of
light. The time delay has a larger variation at the on-resonance wavelength than that at the
off-resonance/anti-resonance wavelength. The MRR group delay architectures can adopt
the time delays at the on-resonance wavelength and off-resonance wavelength. Figure 8a,b
shows two examples of these cases, respectively, with non-coherent optical carriers and
a binary tree structure fabricated on the silicon nitride platform [26,31,58]. To obtain a
large time delay (~one hundred picoseconds), the MRR group delay architecture at the
on-resonance wavelength uses one MRR as a basic delay unit, while the MRR group delay
architecture at the off-resonance wavelength requires several MRRs, such as three MRRs.
The former has a smaller size and much fewer power supplies to control the K of the MRR
than those of the latter. However, the MRR group delay architectures at the off-resonance
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wavelength possess a high resolution of time delay, leading to finer beam-sweeping than
that of the architecture at the on-resonance wavelength. It is worth noting that these MRR
group delay architectures with a binary tree structure have an increasing delay ripple
(around several picoseconds) with the number increase of MRRs at the first stage [58].
Moreover, thermal crosstalk is another issue in these architectures to be carefully dealt with
during the design stage or the post-processing stage.
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Furthermore, MRR group delay architectures can also be applied in OBFNs with coherent
optical carriers. The main advantage of this kind of OBFN is that the intensity of the noise
in the optical signals can be nearly eliminated through the balance PDs (BPD) [59,60], which
reduces the noise of these systems. One example of such an architecture for an OBFN receiver
with N antennas has been proposed [24]; the RF signals received are modulated to the optical
carrier by MZMs and phase shifted by the MRR delays, and then upper sidebands of N signal
channels are selected by the optical sideband filter (OSBF) and are combined with optical
carrier. Finally, the phase-aligned RF signals are produced by the BPD. The MRR delays
have a binary tree structure made up of eight MRRs, seven phase shifters and seven couplers.
Note that, the number of MRR is decreased from 12 to 8 compared to that in the architecture
proposed in [61,62], which can reduce the size of the architecture and electric control units,
especially for application in massive PAAs. In addition, this architecture can better relax the
complexity and cost of modulators compared to the architecture using single-sideband (SSB)
suppressed carrier modulation [23].

To realize 2D optical beamforming, one MRR group delay architecture has been pro-
posed, as shown in Figure 9 [47]. This architecture is used as a receiver for 4 × 4 PAAs,
which shows the capability of horizontal and vertical beamforming via the use of a fixed-
wavelength laser, 16 MZMs, 16× 1 MRR group delays and a PD. Among them, 16 × 1 MRR
group delays have a binary tree structure that consists of 20 MRRs and corresponding
power supplies. Although this 2D OBFN architecture has a small-scale integration of delays,
the numbers of MRRs and power supplies are huge when adopted in massive PAAs. In
addition, MRR group delay architectures require an electric monitoring and control circuit
for each MRR, thanks to the MRR being highly sensitive to temperature fluctuation. There-
fore, MRR group delay architectures need a large amount of electric circuits to control the
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time delays and operation points of MRRs. One approach to reduce the complexity of the
MRR group delay architecture for 2D beamforming is to use the wavelength multiplexing
technique which utilizes the wavelength multiplexing and frequency-periodic response
of an optical ring resonator [63,64]. Horizontal and vertical beamforming are realized
using two cascaded 4 × 1 MRR group delay architectures for the 4 × 4 2D PAA. Note that,
compared with the MRR group delay architecture using one wavelength, more than half of
the total number of MRRs is reduced by that adopting multiple wavelengths.
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3.3. MZI Delay Architectures

In addition to the MRR group delay architectures, TTDs can also be composed of a
Mach–Zehnder delay interferometer (MZDI) and a MZI [45,65], and these can be called MZI
delay architectures. In this architecture, MZDI is used to tune the phase or time delay of the
optical carrier, in which the power coupling ratio of the upper to lower arms is varied by
the MZI. With MZI delays, a TTD architecture for an OBFN receiver of N antennas has been
proposed, as shown in Figure 10a [45]. The architecture includes N signal channels and
one reference channel using the same laser light. N signal channels are encoded with RF
signals received by antennas, while a reference channel is modulated with a local oscillator
(LO) signal. After tuning the time delays, N signal channels and one reference channel
are combined and injected into a BPD, producing an intermediate frequency (IF) signal
with a frequency which is equal to the frequency difference between the RF and LO. The
responses of amplitude and time delay of a MZDI are plotted in Figure 10b, it is clearly
illustrated that these responses resemble to those of a MRR. This MZI delay architecture
has a squint-free operation bandwidth of at least five percent of the RF frequency [66].
Based on this architecture, an experimental implementation has been established, as shown
in Figure 11, demonstrating the receiving capabilities of I/Q signals and two beams [27].
Owing to the fact that a laser is used for the N + 1 channels, the architecture has a high
sensitivity and low phase noise. However, the limited power of a laser will induce a weak
optical signal in each channel, requiring low-loss optical devices such as low-loss phase
shifters, optical splitters and couplers. One approach to relax the requirement of optical
loss for optical devices is to use a power amplifier in each channel, which, however, will
increase the cost and fabrication complexity.
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3.4. PC Delay Architectures

OBFNs using PC structures, founded on the high dispersion of the PC in the vicinity
of the band edge [67], are also a promising architecture for small-scale integration. An early
report of this architecture was based on PC fibers [68]. With several PC waveguides of various
lengths, the architecture provides different delays for PAAs originally. Meanwhile, the beam
angle can be changed by tuning the wavelength of the laser. In order to reduce the size of
the PC delay architecture, integrated PC waveguides have been adopted, which can scan
the beam by changing the wavelength and by thermo-optic effect simultaneously [46,69–72].
One example is based on a silicon platform and four PC waveguides of varied lengths which
are integrated on one substrate, as presented in Figure 12 [46]. The 1 × 4 delay lines of this
architecture occupy less than a 1 mm2 area with a length of few millimeters, largely reducing
the size compared to that of the counterpart employing PC fibers. However, there is an issue
that the integrated PC waveguides have a mode mismatch between general waveguides on
the same substrate, which induces a larger optical loss than that of the PC fibers. Similarly,
PC delay architectures are sensitive to fabrication imperfection, owing to the fact that the PC
waveguide has small units (~few hundred nanometers in the optical domain) and a periodic
structure. Moreover, OBFNs with PC delay architectures generally have a limited delay
bandwidth product for a certain length of PC waveguides [67].
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3.5. Time Delay Selection Architectures

The time delay selection architecture is a significant type of OBFNs employing TTD and
has squint-free behavior. According to the optical devices exploited for time delay selection,
these architectures predominantly include three subclasses as plotted in Figure 13a–c:
(1) the architecture with optical switches; (2) the architecture with a wavelength de-
multiplexer; (3) the architecture with space light modulators (SLMs). The first architecture
uses an optical switch to select the delay lines of various lengths, which is widely stud-
ied and several prototypes of small-scale integration have been manufactured [50,73–77].
The optical switch can take advantage of the thermo-optic effect and electro-optic effect,
which have a tuning speed of a microsecond scale and nanosecond scale, respectively.
Thus, beam sweeping speed can be engineered according to the various requirements
of wireless systems. The second architecture (Figure 13b) adopts the wavelength de-
multiplexer (DE-MUX) to select different delay lines according to the laser wavelengths;
namely, the time delay of each channel in the architecture is determined by the laser wave-
length [32,33,78,79]. Once the time delay is selected, the optical signals under different
wavelengths are connected to the same PD by a multiplexer (MUX). This architecture can
realize nanosecond-scale beam sweeping, resulting from the fast tunable laser which has a
switching time of ~1 nanosecond [80]. The third architecture (Figure 13c) selects the time
delays of SLMs and polarization beam splitters (PBSs) [18,43,44,81]. Owing to the fact that
free-space devices are extensively applied, this architecture has a large size and weight,
causing high difficulty for integration. Moreover, the number of antenna elements and
structure of 2D planar PAAs should be identical to the pixel number and shape of SLM,
which limits the upgrade of the architecture. Nevertheless, the SLMs are commercially
available and have small optical loss [82,83], making it easy for this architecture to meet
the demand of 2D PAAs with massive antenna elements. One solution to match the pixel
number and shape of a SLM with 2D planar PAAs is to utilize a flexible SLM module which
can change the pixel number and shape of the SLM [81].
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As mentioned earlier, the time delay selection architecture with the wavelength de-
multiplexer can tune the time delay by changing the laser wavelength. This architecture
adopts multiple optical delay lines for high-resolution beam sweeping. However, these
delay lines are used for one antenna, leading to the fact that a massive PAA will utilize a
large number of delay lines and increasing the complexity of the system. One approach
to simplify the architecture is to allocate one laser wavelength for an antenna, changing
the time delay of each antenna using other delay-tuning methods [84,85]. Figure 14 shows
one implementation of such an approach with dispersion components, namely linearly
chirped fiber Bragg grating (LCFBG) [84]. It is similar to the fiber dispersion architecture
in that the time delay difference between adjacent optical channels of the architecture
is given by Equation (14) [85], where β is the dispersion coefficient of the LCFBG. This
implementation architecture tunes the time delay differences of antennas by changing the
wavelength spacing between the adjacent optical channels, thanks to the strain-induced
period variation of the fiber Bragg grating with different periods. As a result, the time delay
difference, ∆τg1, between adjacent channels changes with the variation in λ2 − λ1. The
architecture is based on fibers and fiber components, which have a relatively large size and
weight. To realize small-scale integration, integrated de-multiplexers have been applied
to simplify the time delay selection architectures with a wavelength multiplexer [32,33].
Furthermore, when using one AWG as a de-multiplexer and the multiplexer simultaneously,
the architecture has the potential for more compact integration than does its counterpart
with two AWGs [49,78,79].

∆τg1 = β(λ2 − λ1) (14)

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 28 
 

in that the time delay difference between adjacent optical channels of the architecture is 
given by Equation (14) [85], where β is the dispersion coefficient of the LCFBG. This im-
plementation architecture tunes the time delay differences of antennas by changing the 
wavelength spacing between the adjacent optical channels, thanks to the strain-induced 
period variation of the fiber Bragg grating with different periods. As a result, the time 
delay difference, Δτg1, between adjacent channels changes with the variation in λ2 − λ1. 
The architecture is based on fibers and fiber components, which have a relatively large 
size and weight. To realize small-scale integration, integrated de-multiplexers have been 
applied to simplify the time delay selection architectures with a wavelength multiplexer 
[32,33]. Furthermore, when using one AWG as a de-multiplexer and the multiplexer sim-
ultaneously, the architecture has the potential for more compact integration than does its 
counterpart with two AWGs [49,78,79].  

Δτg1 = β(λ2 − λ1) (14)

 
Figure 13. Schematic diagrams of OBFNs based on time delay selection by (a) optical switches, (b) 
wavelength de-multiplexer, and (c) SLMs. 

 
Figure 14. Schematic diagrams of OBFNs based on time delay selection with wavelength de-multi-
plexer and dispersion components [84]. Copyright 2002, IEEE, #5491100280556. 

As addressed earlier, 2D optical beamforming is required for 2D planar PAAs. 
Among the OBFNs with time delay selection architectures, 2D optical beamforming has 
been achieved by the architectures combined wavelength multiplexers and optical 
switches or dispersion components. As plotted in Figure 15a, a 2D time delay selection 
architecture implements wavelength-dependent (WD) TTD and wavelength-independent 
(WI) TTD to realize horizontal beamforming and vertical beamforming, respectively 

Figure 14. Schematic diagrams of OBFNs based on time delay selection with wavelength de-
multiplexer and dispersion components [84]. Copyright 2002, IEEE, #5491100280556.



Appl. Sci. 2023, 13, 8346 13 of 28

As addressed earlier, 2D optical beamforming is required for 2D planar PAAs. Among
the OBFNs with time delay selection architectures, 2D optical beamforming has been
achieved by the architectures combined wavelength multiplexers and optical switches or
dispersion components. As plotted in Figure 15a, a 2D time delay selection architecture
implements wavelength-dependent (WD) TTD and wavelength-independent (WI) TTD to
realize horizontal beamforming and vertical beamforming, respectively [48,86]. The WD-
TTD adopts fiber Bragg gratings (FBGs) to control time delays for different wavelengths,
which is induced by the reflection of the FBGs with various periods, while the WI-TTD
uses optical switches to set progressive delays for antenna elements in different rows.
It is obvious that a large number of optical switches is demanded in this architecture.
For an l-bit × n-bit beamforming system to support a 2D p × q PAA, a total number of
l + n × q optical switches is needed. Alternatively, a 2D OBFN architecture with wavelength
multiplexers and chirped FBGs (CFBGs), as shown in Figure 15b [87], can be used to reduce
the components needed. Owing to the multi-wavelength operation capability of tunable
CFBGs, this architecture can tune time delays for antenna elements in one row of PAAs by
changing the dispersion of the corresponding CFBG. Meanwhile, the time delay difference
between adjacent rows of PAAs is controlled by the center wavelength of the CFBG [88].
Note that, for a similar l-bit × n-bit beamforming system to support a 2D p × q PAA, a total
number of p CFBGs is needed in this 2D OBFN architecture in case the tunable CFBG has
an l-bit tuning ability. For the small-scale integration of this architecture, the CFBG can be
substituted by integrated chirped Bragg grating or chirped sub-wavelength grating [89,90],
while the de-multiplexer can be replaced by integrated AWG.
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4. OBFNs with Phase Shifter Architectures

The phase shifter architectures are built by an array of optical phase shifters which tune
the phases of RF signals. Commonly, the main advantage of this kind of architecture is that
the phases of RF signals are equal to phase differences between two optical carriers owing
to coherent beating at PDs, as expressed by Equation (9). In other words, the phase shifts of
RF signals produced by phase shifter architectures are same as the phase shifts in the optical
domain. Phase shifter architectures predominantly include four subclasses: polarization-
modulated phase shifter architectures, modulator-induced phase shifter architectures,
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integrated phase shifter array architectures, matrix architectures (Butler matrix, Blass
matrix and Nolen matrix), as shown in Figure 16 [16,22,91–96].
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4.1. Polarization-Modulated Phase Shifter Architectures

One phase shifter architecture for the OBFN receiver is presented in Figure 17a, which
is a polarization-modulated phase shifter architecture that is composed of a laser diode
(LD), a polarization division-multiplexing MZM, a PBS, an optical band-pass filter (OBPF),
a 1 × N splitter, N polarization controllers (PCs), N polarizers, and N PDs [97]. Via carrier-
suppressed double-sideband modulation at the MZM, sidebands corresponding to the RF
signal and local oscillator (LO) signal with orthogonal polarization directions are produced,
separately. Then, the upper sidebands of the RF signal and LO signal, extracted by the
OBPF, beats at the PD and down-converts into an intermediate frequency (IF) signal in this
OBFN receiver architecture. The phase of each IF signal is controlled by the corresponding
PC which adjusts the light polarization direction and further tunes the phase difference
produced at the polarizer [98]. A similar architecture is presented in Figure 17b, in which
the laser light is oriented at an angle of 45◦ originally and is modulated by a polarization
modulator [93]. The functions of the tunable PC, polarizer and OBPF are same as those
applied in the architecture before. The phase of the RF signal at one antenna can be given
by Equation (15) [25], where φi is the phase of one antenna in the PAAs, and αi is the
polarization angle between one principal axis of the PolM and the polarization direction
aligned by a PC. The phase induced by the phase shifter can vary in a range between
0 and 2π, if αi changes from 0 to π. These architectures both have a key advantage in
that the amplitude of the RF signal in each antenna remains unchanged when tuning the
phase, since the PC, PBS and polarizer will not influence the magnitude of a circularly
polarized optical signal [93]. However, the tuning speed of the PC may be too low to meet
the demand of beam sweeping for PAAs. One solution to improve the tuning speed is to
use the other PolM to change the phase through the electric control of its DC voltage [99].

φi =
π

2
+ 2αi (15)
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4.2. Modulator-Induced Phase Shifter Architectures

For optical beamforming, realizing the functions of modulation and the phase shift by
the same modulator may largely reduce system complexity, especially for OBFN receivers.
OBFNs with this kind of modulator can be called modulator-induced phase shifter architec-
tures. A phase modulator is one kind of such modulators that can be adopted to tune the
phase difference of two coherent optical carriers [94]. The phase modulator, manufactured
by LiNbO3, has two different electro-optic coefficients for the TE mode and TM mode;
namely, the former is one-third of the latter, inducing a phase difference (∆φi) between the
TM mode and TE mode in one channel as (2πVi)/(3Vπ), where Vi is the applied voltage in
this channel, and Vπ is the half-wave voltage of the phase modulator [94]. Thus, the phase
of the RF signal at each antenna is induced by a phase difference of two coherent optical
carriers in the orthogonal polarization direction. The phase difference of adjacent channels
in an antenna array can be given by Equation (16), where ∆V is the difference of the applied
voltages on the adjacent phase modulators. Additionally, modulation and the phase shift
can be realized by a dual-drive MZM, as plotted in Figure 18 [100]. The phase shift in a
channel can be induced by the bias voltage of the modulator [101]. The phase difference
between adjacent channels can be expressed by Equation (17), where ∆VDC is the difference
of bias voltages added on the dual-drive MZMs in adjacent channels. In addition, DMZM is
also modulated by the LO signal which has a small frequency difference from the RF signal
and down-converts the RF signals into IF signals at the PD. With these phase shifter array
architectures, a simplified OBFN without or with less discrete phase shifters can be built
for PAAs operating with a given bandwidth. Although fibers are used to connect discrete
components, this OBFN architecture has the advantage of immunity to the influence of the
environment, due to the fact that the two coherent optical signals employed pass through
the same path.

∆φ = (2π∆V)/(3Vπ) (16)

∆φ = (π∆VDC)/(3Vπ) (17)
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4.3. Integrated Phase Shifter Array Architectures

To miniaturize the OBFNs, multiple phase shifter arrays integrated on one substrate
can be employed for phase shifter architectures, owing to the fact that the optical phase
shifter has a small footprint for a phase shift in the optical domain. As depicted in Figure 19a,
four phase shifters on a silica platform are manufactured for 1 × 4 OBFN [22]. This
architecture mainly consists of two lasers, an integrated phase shifter array and four
optic/millimeter-wave converters (OMC), namely optic-electric converters. The integrated
phase shifter array occupies an area of 2 × 30 mm2. Two lasers are coupled to high
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modulation sidebands of a master laser (LDM) and have a frequency spacing of 60.8 GHz
(19 × 3.2 GHz). Therefore, except for the phase shift, the frequency up-conversion is also
realized in the optical domain, which may enhance the value of the OBFNs applied in PAAs.
One disadvantage of this architecture is the slow tuning speed of phase shifters using a
thermo-optic effect, which is typically tens of or hundreds of microseconds. This issue
can be solved by integrating electro-optic phase shifters with a much higher tuning speed.
Figure 19b shows the implementation of a phase shifter array architecture using the electro-
optic effect, composed of a continuous work (CW) laser, an electro-optic modulator (EOM)
with the ability of single-sideband (SSB) modulation, and four beamforming network
elements (BFN-E) fabricated on a silicon platform [28,102]. The BFN-E includes an optical
filter, an electro-optic phase shifter, and a BPD, which occupies an area of ~4.5 mm2. The
optical filter consists of a MRR and MZI structure and separates the optical carrier and
the sideband. The electro-optic phase shifter has a tuning speed of 5 ns, which is at least
three orders of magnitude faster than that of the thermo-optic phase shifter. Therefore, the
integrated phase shifter array architectures is promising for realizing small-scale OBFNs
with a beam sweeping speed as fast as hundreds of megahertz. Note that, the loss of the
electro-optic phase shifter is larger than that of the thermo-optic phase shifter due to the
carrier injection in the waveguide region.
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4.4. Matrix Architectures

Matrix architectures, including the Butler matrix, Blass matrix and Nolen matrix are
popularly adopted in electric beamforming networks [103–106]. A distinguished advantage
of these architectures is that multi-beam beamforming can be straightforwardly realized
when injecting signals into different input ports, in addition to the fact that these architec-
tures have compact structures. There are few works that have adopted these architectures
in OBFNs [29,91,95,96,107–110], in which the optical Butler matrix architecture has the
superiorities of footprint and optical loss. Figure 20a shows a 4 × 4 optical Butler matrix
which consists of four 3 dB couplers, two phase shifters and a waveguide crossing [111],
which is similar to the electrical counterpart. With this structure, each optical signal from
one of the input ports will be split into four output ports with a linear phase relationship
and an even power. For example, the phases of four optical outputs, when launching from
the first input port (In1), are ϕ1, π/4 + ϕ1, π/2 + ϕ1, and 3π/4 + ϕ1, separately. Using the
similar Butler matrix, several implementations for OBFN transmitters and receivers were
established [91,107–110]. For example, a Butler matrix architecture for an OBFN receiver
has been demonstrated with an 8× 8 Butler matrix fabricated on a lithium niobate (LiNbO3)
platform with a footprint of ~32 mm × 0.9 mm [91]. Employing this Butler matrix in an
OBFN receiver has advantages over using other OBFN receivers since each output of the
matrix can combine a high-power LO for increasing the receiving power of the system.
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The typical Butler matrix shown above cannot tune the amplitude of the output ports,
in order to control the side lobe and grating lobe of the beam pattern formed by the PAA.
This issue can be solved by the Blass matrix and Nolen matrix, although these architectures
have a larger footprint than that of the Butler matrix. Figure 20b presents a 4 × 4 Blass
matrix, in which a tunable coupler together with a phase shifter is served as one node [29].
The phase and amplitude of lights at four outputs can be tuned simultaneously, and each
output has the ability to export four optical signals from the four inputs. Based on this
principle, an M × N Blass matrix is designed for feeding an N-element PAA [96]. This
architecture adopts the self-heterodyne detection technique to produce RF signals. The
main operation is as follows. M parts of the optical carrier are modulated by M independent
RF signals; then, the upper sidebands are selected by the optical sideband filter and tuned
by the M × N Blass matrix, and are coupled with the optical carrier at the couplers and
mixed back to the RF signals at PDs. Finally, RF signals are fed to N antennas. In this
architecture, M × N phase shifters and tunable couplers are utilized, which occupy a
relatively large footprint and need a great number of electric control units. One approach
to remediate this issue is to use a Nolen matrix, which reduces the number of nodes to half
of that in the Blass matrix. The Nolen matrix has a triangular structure which can also be
seen in Figure 20b by ignoring the section below the dashed line. A 144 × 36 Nolen matrix
has been reported, and its beamforming pattern has been theoretically investigated [95]. It
is worthy to note that the Nolen matrix architecture for OBFN has a footprint that is three
orders of magnitude smaller than that of its electric counterpart.

PAAs using phase shifter architectures addressed above are not squint-free, since the
phase shift provided by a phase shifter does not depend on the RF frequency, causing
a change in the beam angle under different RF frequencies. However, there is a great
number of applications with limited bandwidth, while exploiting phase shifters in a TTD
architecture can reduce its complexity and cost [18,20,112,113]. For instance, one architec-
ture combined with the phase shifters and TTDs has been proposed in [92,114]. In these
two architectures, phase shifters and TTD can realize fine tuning and coarse tuning, sepa-
rately. This feature is beneficial for scanning the beam in a broad coverage, and achieving a
balance between bandwidth and system complexity. Therefore, OBFN architectures with a
phase shifter array and TTDs are conducive to PAAs with a limited bandwidth.

5. Scalability and Application Potentials

Up to now, the OBFN architectures implemented have been tested for PAAs with few
antenna elements, which may have resulted from the limited optical power of lasers and the
large energy dissipation at several components, such as modulators, phase shifters, delay
lines and PD. The scalability of OBFNs, including the performances of size, weight, power
consumption, loss, bandwidth, multi-beam beamforming and linearity, should be kept in
line with the increase in the scale of PAAs. Here, the scalability represents the capability to
catch up the development of a wireless communication system with the explosive growth of
capacity. In this section, a scalability comparison of different OBFN architectures, scalable
techniques and the application potential of OBFNs is discussed.
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5.1. Scalability Comparison of Different OBFN Architectures

Table 1 summarizes six performances related to the scalability of OBFN architectures
which are elaborated above. The size and weight of OBFNs are intuitive performances
corresponding to the number of free-space components and fiber components used in
architectures [14]. The power consumptions of OBFNs are mainly induced by lasers,
except for the electric and photonic amplifiers [65]. Here, the power consumptions of
OBFNs are simply evaluated using the number of lasers applied in these architectures.
OBFNs’ loss originates from the insertion loss of components and propagation loss of
waveguides. OBFNs’ bandwidth is determined by the mechanisms of time delay and the
bandwidth of optical devices. TTD architectures have a wider bandwidth than that of
phase shifter array architectures, while MRR and MZI-TTD have a smaller bandwidth
than other TTD architectures do since time delays of MRR and MZI-TTD remain constant
within a limited frequency range [23,45]. Multi-beam beamforming is a significant ability
of OBFNs for massive PAAs which have a narrow beam and should meet the demand of
multiusers [9]. The capability of the multi-beam beamforming is assessed via considering
the feasibility of producing multiple beams with current architectures. It is shown in Table 1
that, architectures of MRR group delay, MZI delay, photonic crystal, time delay selection
with integrated devices, and integrated phase shifter array are of a small size, are light
weight and have relatively low power consumption, which are amendable for aerospace
applications and pole-mounted base stations. The fiber dispersion delay architectures
and time delay selection architectures of SLMs have the advantage of low loss and wide
bandwidth. Meanwhile, matrix architectures have the inherently ability of multi-beam
beamforming with a relatively small size, weight and power consumption. Therefore, the
scalability of these architectures may be evaluated according to the application scenario,
while there is not an architecture that can meet the requirements of all applications. For
example, the time delay selection architectures of SLMs can easily establish a massive OBFN
for massive PAAs in a scenario without considering its size and weight; however, integrated
architectures are more appropriate for aerospace antennas and pole-mounted antennas.

Table 1. Comparison of scalability for various OBFN architectures.

Schemes
Performance Size Weight Power

Consumption * Loss Bandwidth Multi-Beam
Beamforming

I. Fiber dispersion delay
architectures + + + +++ +++ +

II. MRR group delay architectures +++ +++ ++ ++ ++ ++
III. MZI delay architectures ++ ++ ++ ++ ++ ++
IV. PC delay architectures with
integrated PC +++ +++ + + ++ ++

V. Time delay selection
architectures with SLMs and PBSs + + + +++ +++ ++

VI. Time delay selection
architectures with integrated
optical switches and delay lines

++ ++ ++ ++ +++ ++

VII. Time delay selection
architectures with integrated
wavelength de-multiplexer

++ ++ ++ ++ +++ +

VIII. Polarization-modulated
phase shifter architectures + + + ++ + ++

IX. Integrated phase shifter array
architectures +++ +++ ++ ++ + ++

X. Matrix architectures ++ ++ ++ ++ + +++

The more “+” appears, the better the corresponding performance is. * power consumption is evaluated by the
number of lasers and the integration level in various architectures.

5.2. Scalable Techniques for OBFNs

Among the above architectures, MRR group delay architectures, MZI delay archi-
tectures, PC delay architectures, integrated time–time delay selection architectures and
integrated phase shifter array architectures and matrix architectures are promising for
small-scale integration. Nevertheless, these architectures are still of a relatively large size
and demand a large number of delay units. For example, a 16 × 1 MRR group delay archi-
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tecture is adopted to form and steer the beam received by the 4 × 4 2D PAA, which needs
20 MRRs to provide the accurate delays for 16 antennas (Figure 9). It is difficult to scale up
this architecture for massive PAAs, since a thermal compensation circuit and a delay control
circuit are required for each MRR except for the complexity of delays. One approach is to
use the wavelength multiplexing technique as addressed earlier, dramatically decreasing
the total number of MRRs from 20 to 8 for the 4 × 4 2D PAA. However, a large amount of
lasers, including an integrated laser array, are required for the wavelength multiplexing
technique which greatly increases the footprint and cost. One solution is to use micro-
comb source (Figure 21a [115]) which can largely reduce the size and has the flexibility
to meet the demands of different 2D PAAs by changing number of comb lines [56,116].
Furthermore, combining wavelength multiplexing with mode multiplexing, the channel
number of integrating OBFNs can be further increased by several times [117], relaxing the
requirement of a microcomb source. In addition, photonic field-programmable gate arrays
based on microdisk (Figure 21b) and MRR (Figure 21c) can achieve a small footprint, time
delay selection, wavelength filtering and reconfiguration simultaneously [118,119]. These
structures have potential to be applied in large-scale OBFNs. To sum this up, microcomb
sources and programmable structures may provide high scalability for OBFNs used in
PAAs with massive antenna elements.
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Figure 21. (a) A microcomb source and its spectrum [115] (figure licensed under a Creative Commons
Attribution 4.0 License), (b) microdisk-based photonic field-programmable gate arrays [118] (figure
licensed under a Creative Commons Attribution 4.0 License), and (c) MRR-based photonic field-
programmable gate arrays [119] (Copyright 2021, AIP Publishing, #5443540906967).

For small-scale integration, a material platform with very low loss is vital for large-
scale OBFNs. Currently, photonic integration circuits are predominantly implemented on
platforms of silicon (Si), silicon nitride (Si3N4) and indium phosphide (InP). Table 2 lists
the propagation losses of these material platforms [120–125], in which it is exhibited that
the Si3N4 deposited via low-pressure chemical vapor deposition (LPCVD) has the smallest
propagation loss, of less than 0.1 dB/cm. The propagation losses of Si and InP fabricated
by generic foundries is about 1 dB/cm and 2 dB/cm, respectively, while Si3N4 deposited
via plasma-enhanced chemical vapor deposition (PECVD), inductively coupled plasma
chemical vapor deposition (ICP-CVD) and reactive sputtering (RS) can also achieve a small
loss of ~1 dB/cm. As a result, Si3N4 material, especially the Si3N4 deposited via LPCVD,
is promising for the integration of large-scale OBFNs. More recently, a wideband erbium
waveguide amplifier was realized based on Si3N4 deposited via LPCVD [126], which may
have greatly promoted the photonic integration on the Si3N4 platform. However, the
lack of a modulator and PD hinders the full integration of photonic circuits on a Si3N4
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platform. One probable approach is to develop a Si-Si3N4 monolithic integration platform
as presented in Figure 22, which combines the Si active devices (such as modulator and PD)
and Si3N4 passive devices [120,127]. Thus, this Si-Si3N4 photonic platform can capitalize on
the advantages of Si3N4 passive devices, Si3N4 waveguide amplifiers and Si active devices.

Table 2. Typical propagation losses of Si, Si3N4 and InP waveguides.

Performance
Material

Si
Si3N4

(LPCVD)
Si3N4

(PECVD)
Si3N4

(ICP-CVD)
Si3N4
(RS) InP

Propagation loss (dB/cm) ~1.0
[120]

<0.1
[121]

~2.0
[122]

~0.8
[123]

~0.8
[124]

~2.0
[125]
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The heterogeneous integration and monolithic integration of photonic circuits and
electrical circuits (electro-photonic systems) are prominent for the compactness, energy
efficiency and stability of beamforming systems [11]. The heterogeneous integration of
an electro-photonic system can present the advantages of Si3N4 deposition via LPCVD,
thanks to the separate fabrication of electric circuits and photonic circuits on different
wafers. Meanwhile, the monolithic integration of an electro-photonic system can accelerate
the innovation of an electro-photonic system on one substrate [128]. This electro-photonic
monolithic integration can be implemented on a silicon-on-insulator (SOI) platform and
bulk silicon platform, the latter being more CMOS-compatible [128,129]. To integrate
Si3N4 devices on these platforms, Si3N4 material should be fabricated via low-temperature
processes such as PECVD, ICP-CVD and RS, instead of LPCVD. Therefore, more efforts
should be devoted to manufacturing low-loss photonic circuits and waveguide amplifiers
via a low-temperature fabrication process for exploiting the advantages of a Si3N4 platform
and the monolithic integration of electro-photonic systems.

In addition, the linearity of OBFNs is also a key factor for scalability, which is mainly
determined by the linearity of modulators and PDs [130–132]. For microwave photonic
systems, such as OBFNs, the linearity of the modulator is critical for the performance
of whole system [132]. The linearity of a modulator can be characterized by a spurious
free dynamic range (SFDR) defined as the ratio of the maximum RF power which pro-
duces third-order intermodulation distortions to noise power. Typically, the SFDR of a
silicon-based MZM is smaller than 100 dB·Hz2/3 at a 1 GHz modulation frequency, ex-
hibiting worse linearity than do LiNbO3 modulators [133]. The linearity of a modulator
can be improved using response compensation techniques of MRR and the Kerr effect in
a MZM [132–134]. Especially, the SFDR of a heterogeneously integrated III–V/Si MZM
has been increased to ~117 dB·Hz2/3 at 10 GHz with the assistance of MRR, as shown in
Figure 23a. For mmWave wireless communication networks, high-speed and high-power
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PDs are significant devices as well. The linearity of PDs can be evaluated via a consideration
of the maximum output power that approaches the 1 dB compression point [130,135]. One
alternative to using high-speed and high-power PDs is to use uni-traveling carrier (UTC)
PDs. These PDs have superiorities of low bias voltage, high operation speed and high out-
put power compared to common PDs, since electrons are the majority carriers as shown in
Figure 23b [136–138]. Currently, UTC-PDs are mainly fabricated on Si/Germanium, InP and
InGaAs material platforms [139–141]. The maximum output power of Si/Germanium UTC-
PDs has reached ~0 dBm at 20 GHz [140–142]. Compared to those with a Si/Germanium
platform, InP/InGaAs-based UTC-PDs have a wider bandwidth and higher output power,
which has resulted in a maximum output power larger than 20 dBm at a low-frequency
band of mmWave spectrum such as at 28 GHz, 40 GHz and 48 GHz [130,143–146]. Therefore,
heterogeneous integrations of InP-based UTC-PDs on Si and Si3N4 can be employed [147–149],
to obtain high-speed and high-power PDs which are comparable to their InP-based counter-
parts. In summary, it is promising to integrate high-linearity modulators and PDs on Si/ Si3N4
platforms, achieving compact and high-linearity OBFNs.
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5.3. Application Potential in Wireless Communication Systems

The application of OBFNs in practical wireless communication system may not be
realized in a short time, suffering from the relatively low energy efficiency of electro-optic
conversion at the modulator/laser and optic-electric conversion at the PD. Nevertheless,
one approach that combines the advantages of analog radio over fiber (A-RoF) and OBFNs
has demonstrated application potential in high-frequency wireless communications such as
mmWave wireless communication [32–35,38,150]. This approach implements A-RoF in the
mobile fronthaul and OBFNs as beamformers for PAAs. A-RoF technology is a promising
alternative for mobile fronthaul, thanks to its high bandwidth efficiency, carrying RF signals
directly on the optical signals [7,151]. Recently, A-RoF fronthaul linked with RF signals of
high-level modulation formats such as 16 QAM, 32 QAM and 64 QAM have experimentally
succeeded and achieved a data rate larger than 1 Gb/s for each beam [152–154]. One
issue that may hinder the application of the A-RoF with OBFN is its nonlinearity, which
results from the laser nonlinear effect, four-wave mixing in optical amplifier and fibers, the
nonlinear transfer function of modulators, and the nonlinearity of PDs, as well as the power
amplifier [153,155]. OBFNs with high-linearity modulators and high-power PDs provide a
solution for this issue. The convergence of an A-RoF fronthaul and OBFN-based PAAs can
not only eliminate mixers and digital–analog convertors/analog–digital convertors [32,35],
but also remove the lasers and modulators required for OBFNs in antenna sites. This is
because OBFNs can be deployed at the central office, which simplifies the antenna units
and improves the cost effectiveness and installation flexibility [38,114,152].
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6. Conclusions and Outlook

Beamforming and beamsteering through OBFNs provide promising enabling tech-
nologies for mmWave wireless communications. In this review, we analyzed typical OBFNs
with TTD architectures and phase shifter architectures, introduced their principles and
basic features, and conducted a performance comparison of different architectures. Further-
more, several technologies that can scale-up OBFNs were recommended, which include
wavelength multiplexing using a microcomb source, MRR/microdisk-based photonic
field-programmable gate arrays, the use of low-loss material platforms such as Si3N4, and
the heterogeneous and monolithic integration of electro-photonic systems. In addition,
integrated devices such as high-linearity modulators and UTC-PDs on Si/Si3N4 platforms
are also key components in OBFNs for meeting the demands of mmWave PAAs with
massive antenna elements and high excitation power. These two research topics may
receive much more concern in the future. For practical applications, the convergence of an
OBFN-based PAA and A-RoF is a competitive candidate technology for mmWave wireless
communications.
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