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Abstract: The lifetime of induction motors can be significantly extended by installing diagnostic
systems for monitoring their operating conditions. In particular, detecting broken bar failures in
motors is important for avoiding the risk of short circuits or other accidents with serious consequences.
In the literature, many approaches have been proposed for motor fault detection; however, additional
generalized methods based on local and statistical analysis could provide a low-complexity and
feasible solution in this field of research. The proposed work presents a methodology for detecting
one or two broken rotor bars using the sums and differences histograms (SDH) and machine learning
classifiers in this context. From the SDH computed in one phase of the motor’s current, nine texture
features are calculated for different displacements. Then, all features are used to train two classifiers
and to find the best displacements for faults and health identification in the induction motors. A
final experimental evaluation considering the best displacements shows an accuracy of 98.16% for
the homogeneity feature and a few signal samples used in a decision tree classifier. Additionally, a
polynomial regression curve validates the use of 50 samples to obtain an accuracy of 88.15%, whereas
the highest performance is achieved for 250 samples.

Keywords: broken rotor bars; SDH; current signals; induction motors; texture features; regression
analysis

1. Introduction

Induction motors are electro-mechanical elements of the industry used essentially for
manufacturing, power generation, and transportation [1]. Due to the critical role of the
induction motor in various sectors, detecting faults has become a vast field of research in
recent years [2]. As an electromechanical machine, induction motor faults are categorized
as electrical or mechanical. Approximately 45–55% of mechanical failures are typically
located in the components most exposed to damages, such as the stator, the rotor, and
the bearings. Similarly, electrical faults are mainly associated with stator winding faults,
broken rotor bar (BRB) faults, phase unbalance, and single phasing faults [1]. Analyzing
vibration, voltage, and current signals has been widely used for monitoring motor faults.
In general, the success of defect classification depends on the correct choice of the signal
and its acquisition techniques that better provide information about the motor state [2]. To
this aim, current signal acquisition methods have been non-invasive and reliable, contrary
to other invasive sensors requiring an instrumentation stage. Additionally, most of the
traditional signal processing techniques are used in the time, frequency, and time-frequency
domains; the choice of the domain depends on the information required to perform motor
fault classification [1].
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Some methods in the time domain are MUSIC [3], PCA and LDA [4], quaternions [5],
statistics [6], and machine learning based [7,8]. These methods provide low computational
cost and quickness in processing. Likewise, domain transformation methods are developed
to classify faults as MCSA [9], FFT [10], Wavelet [11], and Hilbert transform [12]. Multiple
faults such as stator winding, ball element, outer race, unbalanced, and bearing are diag-
nosed using the aforementioned methods. The broken rotor bar (BRB) detection is one of
the most analyzed faults due to its severity and for avoiding subsequent major failures [13].
In this context, some works in the literature propose the diagnosis and classification of BRB
in the time domain using machine learning methods and achieving accurate classification
results. In [14], stator current signals in the time domain are used to classify four cases
of BRB and healthy motor case using support vector machine (SVM), k-nearest neighbor
(KNN), fuzzy ARTMAP, and multilayer perceptron network, showing an accuracy of 95%.

In the spatial domain context, histograms are graphical objects in statistics that estimate
any density function. They are used to analyze quantitative data and extract features that
describe local behaviors [15]. Previous work proposed in [16] uses statistical histograms
to identify and classify failures. The histograms detect healthy and unhealthy bearings
through infrared thermal images. Moreover, in [17], five image segmentation methods
were applied to extract statistical information from thermal images and use histograms to
determine different bearing fault conditions. Similarly, [18] proposed the classification of
broken rotor bars, bearing faults, and misalignment analyzing the segmentation of gray-
scale infrared imaging. The histogram obtains the image asymmetry, calculating first-order
statistical features in the time domain.

In the case of frequency analysis, discrete wavelet transform (DWT) is a method
presented in related works for motor fault detection [2]. This case was presented in [19],
where features are extracted from the acoustic sign through DWT, statistical histograms,
and local binary patterns (LBP). SVM and KNN classification algorithms were applied,
obtaining an accuracy of 99.8% in detecting healthy motor, one, two, and three BRB and
bearing defects. Moreover, fast Fourier transform (FFT)-based algorithms were proposed to
calculate two current spectrograms based on multiple short-time Fourier transforms (STFT).
A segmentation task is also performed through the Otsu algorithm [20]. After, a histogram
is calculated to highlight its non-stationary frequencies, aiming to obtain the kurtosis. It
is used to classify half, one, two BRBs, and healthy conditions with a normal distribution
with 100% efficiency. A histogram of oriented gradients (HOG) is an essential approach to
fault detection. In [21], three stator currents were transformed into three images, and the
HOG was used to extract interesting features of a healthy state, bearing faults, BRB faults,
short-circuit faults, and their combinations. A multi-layer artificial neural network (ANN)
was trained to classify, achieving 95% accuracy. Similarly, in [22], the stator current was
used to extract intensity gradients and edge directions to classify healthy motor and one to
four BRB faults in the time domain. The features were calculated through HOG and used
to train an ANN, obtaining an accuracy of 96%.

It is noticeable that the scientific community has increased its interest in induction
motor fault monitoring due to its essential role in the industry. The choice of motor diagnosis
through the analysis of current in the time allows for the design of feasible and cheap
sensors to acquire the signal of the motor. In this context, this article proposes a low-
complexity and statistical approach to identify the operating condition of induction motors
by evaluating texture features based on SDHs. The current from the induction motor is
used to calculate the SDH and the nine texture attributes evaluating two different sets of
displacements, called ∆. Both displacement sets are used to train and test the decision tree
classifier. The classifier is trained to detect one and two BRB and health conditions to find
the best displacements that perform best. Based on the classification results, the best ∆
displacements are used to train and test two more classifiers: the bagged decision tree and
the K-nearest neighbor KNN. From this, the texture feature with the highest performance
is finally chosen. A polynomial regression curve shows the best trade-off between samples
and performance.
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The rest of the paper is organized in the following order. Section 2 presents the method-
ology based on histograms of sums and differences and deeply analyses the displacements
for texture calculation. Then, three conducted experimental tests of the classification results
obtained and a comparison with related works are described in Section 3. Lastly, the
discussion and conclusions are presented in Section 4.

2. Proposed Methodology

Broken bar fault detection is one of the most challenging conditions in an induction
motor because the motor continues working without notable malfunctions. However,
one motor bar’s damage extends the fault condition to the attached bars, consequently
increasing energy consumption. The presence of a broken bar can be detected in the current
signal. Therefore, the increased current demand represents multiple broken bars facilitating
the diagnosis.

Figure 1 shows a global description of the proposed method for detecting one broken
rotor bar (1BRB), two broken rotor bars (2BRB), and health in induction motors. An instru-
mented test bench allows the acquisition of one phase’s current signal represented by S(n)
to gather the database used in the experimental tests. Several electronic components allow
the signal acquisition and conditioning of the motor current signal. The sum histogram hs
and difference histogram hd are computed for a predefined window size Ws. Then, the tex-
ture feature module extracts nine features from hs and hd histograms considering different
displacements for the sliding window, defined as ∆. Considering different displacements
and their combinations, one vector is stored for each texture feature and displacement.
The fault classifier module performs three tests, Test A, Test B, and Test C. During Test A
and Test B, all texture features are considered, and different ∆ values are predefined. The
displacements used for each test are defined in Section 2.3. The best classification resulting
from Test A and B is used to train a decision tree classifier in Test C for all texture features.
Then, Test C allows selection of the texture feature with the highest performance. After
that, the chosen selected feature is used to train two more classifiers: a bagged decision tree
and a k-nearest neighbor (KNN) classifier.

Figure 1. Proposed methodology for HLT, 1BRB, and 2BRB fault classification.

2.1. Experimental Test Bench

An induction motor is an electromagnetic machine with intertwined electrical and
magnetic circuits that converts the electrical current through the stator windings into
mechanical energy. This energy is produced due to the flux of current where a rotating
magnetic field is produced [23]. The presence of broken bars produces a disturbance in
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the rotor’s magnetic field, intensifying torque modulation and vibrations within the motor.
The sidebars also suffer a progressive deterioration due to the tension generated by motor
bar fractures [24]. Thus, the effect of broken rotor bars can be detected through the current
signals emitted by the motor power supply or by vibrational signals. Some approaches for
motor fault detection consider both kinds of signals. In this work, only one current phase is
processed and analyzed for detecting the motor’s 1BRB, 2BRB, or HLT condition.

Figure 2 shows the test bench used to acquire the current signals for validating the
proposed methodology. The acquisition module uses a WEG 00136APE48T two poles
three-phase induction motor of 1 hp, 28 bars, and 220 V AC power supply at 60 Hz. Motor
initiation is controlled by a relay that synchronizes data acquisition with the ignition switch.
The data acquisition module (DAS) uses a phase of the current signal acquired by a Fluke
Model i200s AC clamp with a 16-bit analog-to-digital converter (ADS7809) from Texas
Instruments Incorporated. The instrumentation system provides a sample rate of 1.5 kHz.

Figure 2. Data acquisition module.

Broken rotor bars effects are observed in the current signal acquired S(n) through
the harmonics that alter the uniformity. Therefore, the current signal can be statistically
analyzed to detect broken bars anomalies. Sampled signals are below the tenth harmonic,
allowing variations detection within the signal. Thirty signals were acquired in one of
the motor phases for each fault and health state with 4096 samples. Based on the plots
shown in Figure 3, the amplitude of the signal increases for fewer samples in 2BRB like
shows in Figure 3c than for the rest of the cases. This increment results from a greater
demand for current to the power system. The amplitude variation of the current signal
allows statistical analysis for detecting unusual patterns in the motor state. The acquired
signal is conditioned by analog-to-digital (A/D) conversion, corresponding to the 16-bit
format in the DAS. A bank of 90 tests was obtained for signal conditioning, 30 for each
motor state (HLT, 1BRB, 2BRB). The broken bars in the motor were artificially produced by
making circular holes of 7.938 mm diameter to cause partial fractures of the bar illustrated
in Figure 4. The rotor part is shown for extracting the HLT, 1BRB, and 2BRB samples.

2.2. Sum and Difference Histograms for Texture Classification

A histogram shows the distribution of a numerical variable contained in a dataset
that measures the frequency of values within the analyzed vector. Similarly, the sum and
difference histograms (SDH) method represents the frequency of values considering the
addition or subtraction between a reference point Rs in the dataset and its neighborhood. In
this work, the histograms represent the discrete joint probability functions locally calculated
using only one phase of the current signal S(n) acquired from an induction motor. The
SDHs are computed in a small analysis window denoted as Ws, which counts the frequency
values inside. The Ws window is depicted in red in Figure 5 for illustrating the range of the
local data around each Rs point in the current vector S(n).

The size of Ws helps to find the best precision by varying distances around Rs. The
histograms are calculated in S(n) over the Ws windows centered at Rs, and it is displaced
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along the vector according to the set of values in ∆. Different displacements are considered
to more accurately assess the local behavior of current for the BRB faults. The ∆ values
with the best performance were used to evaluate the texture features.
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Figure 3. Single -phase current signals of an induction motor for (a) HLT, (b) 1BRB, (c) 2BRB.

(a) (b) (c)

Figure 4. Squirrel cage rotor images: (a) healthy motor, (b) 1BRB, (c) 2BRB.

Figure 5. Representation of the sliding window used to calculate the SDH in the signal S(n) using ∆
displacements. The displacements to the right compute hs and to the left, hd.
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The direction of displacements in ∆ depends on the histogram to be calculated. Then,
the displacements will be applied to the right to calculate the histogram of sums hs and
to the left for the histograms of differences hd, as illustrated in Figure 6. Based on the ∆
displacements, various histograms are computed according to the amplitude of the current
signal defined as Ac. The processing will be repeated until the entire vector signal S(n)
is scanned.

The SDH establishes a relation between two points in the current signal amplitude
separated by a distance (∆). Then, these points are added or subtracted to obtain the
histograms hs and hd, respectively, as defined in Equation (1). Let S be a current signal
of size N, and each element n ∈ [0, N − 1] represents a signal amplitude defined at
displacement ∆. The hs and hd histograms are defined in Equation (1).

hs = S(n) + S(n + ∆) hd = S(n)− S(n + ∆) (1)

Figure 6. Representation of displacements in S. (a) For hs, its right neighbor value is added, (b) hd is
subtracted from its left neighbor value.

The domains of hs and hd are Gs = 2, ..., 2Ac and Gd = −Ac + 1, ..., Ac − 1, respectively.
For hs, the domain Gs is twice the amplitude of the current, and the domain has positive
values. However, for hd, the amplitude domain extends from negative to positive values.
In the signals, there are positive and negative values. To avoid the negative currents in hd
and to align both domains, negative currents are adjusted to the values of hs. After that,
hs and hd are normalized considering the number of samples in the histogram as N for
obtaining the probability density function of the current, as shown in Equation (2). This
equation requires that vectors S, hs, and hs have the same number of elements as defined in
Equation (3).

ĥs(i) = hs(i)/N ĥd(j) = hd(j)/N (2)

N = ∑
i

hs(i) = ∑
j

hd(j) (3)

Summarizing, the displacements (∆) are applied to the current signal (S), which
contains N samples represented in Figure 6 according to the set of the distances defined
in ∆. Each value is calculated by adding or subtracting the reference value Rs and its
neighboring value ∆ to compute the histograms hs and hd.

Using the SDH, the texture features proposed in [25] are calculated considering a
predefined window size Ws = 3 and different displacements in ∆ for better characterization
of the current S(n). Table 1 illustrates the nine texture features extracted, where ĥs(i) is the
histogram indicated by indexes Rs × i and ĥd(j) is the histogram shown by indexes Rs × j.
Three tests were performed to validate different displacements ∆ to find the predominant
points in the acquired signal. Test A and Test B were the initial configurations used to
evaluate the classification faults in motors. Based on these classification results, the best
displacements are used to perform Test C to distinguish the most representative among the
nine features. Displacements distributed between the tests are described in the following
section.
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Table 1. Texture features calculated from SDH [25].

Texture Feature Definition

Mean 1
2 ∑i i ∗ ĥs(i) = µ

Variance 1
2{∑i(i− 2µ)2 ∗ ĥs(i) + ∑j j2 ∗ ĥd(j)}

Energy ∑i ĥs(i)2 ∗∑j ĥd(j)2

Correlation 1
2{∑i(i− 2µ)2 ∗ ĥs(i)−∑j j2 ∗ ĥd(j)}

Entropy ∑i ĥs(i) ∗ log{ĥs(i)} −∑j ĥd(j) ∗ log{ĥd(j)}
Contrast ∑j j2 ∗ ĥd(j)
Homogeneity ∑j

1
1+j2 ∗ ĥd(j)

Cluster shade ∑i(i− 2µ)3 ∗ ĥs(i)
Cluster prominence ∑i(i− 2µ)4 ∗ ĥs(i)

2.3. Settings

As mentioned above, the displacements through the vector S for calculating the texture
features in Table 1 represent the resolution of the sliding window for overlapping sampling
around the reference point Rs. These displacements presented in Table 2 are the ∆ values
used during the SDH calculation for Tests A, B, and C.

Table 2. Proposed configurations for evaluating current characterization.

Test A Test B Test C

A1 = (−1 1) B1 = (−1 1) C1 = Mean
A2 = (−2 2) B2 = (−2 −1 1 2) C2 = Variance
A3 = (−3 3) B3 = (−3 −2 −1 1 2 3) C3 = Energy
A4 = (−4 4) B4 = (− 4 −3 −2 −1 1 2 3 4) C4 = Correlation
A5 = (−5 5) B5 = (−5 − 4 −3 −2 −1 1 2 3 4 5) C5 = Entropy
A6 = (−6 6) B6 = (−6 −5 − 4 −3 −2 −1 1 2 3 4 5 6) C6 = Contrast
A7 = (−7 7) C7 = Homogeneity
A8 = (−8 8) C8 = Cluster shade
A9 = (−9 9) C9 = Cluster prominence
A10 = (−10 10)

• Test A: Test A was designed to perform incremental displacements of the ∆ values in
the SDH algorithm from 1 to 10. From this test, ten vectors per feature are computed,
yielding 90 feature vectors in total.

• Test B: This setup performs cumulative increments in the SDH algorithm for six
displacements. Then, six vectors per feature are obtained for 54.

• Test C: From the best result obtained in Test A and Test B, the displacements are
used to assess the texture features. This test receives nine vectors for each computed
attribute to find the best performance feature.

2.4. Classifiers

The classification stage is an instance of supervised learning that identifies the data
category among several types based on a previous training stage [26,27]. The classifiers use
the texture features matrix to tune the parameters. The dimensionality of data increases
following the ∆ values described above for Test A and Test B. Initially, a decision tree
classifier is trained to detect the failure of 1BRB, 2BRB, and Health from the acquired
signals S. This classifier is used due to its straightforward calculation methodology, making
it computationally efficient. Likewise, it provides a good result in terms of precision and
accuracy by determining the texture feature with the highest gain within the analyzed
dataset [28]. Based on the results of Test C, two more classifiers were trained, the bagged
decision tree and the k-nearest neighbor classifier. The main objective of the multi-classifier
analysis is to improve accuracy because, in the case of biased data, the learning stage of
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a decision tree may also be biased. The bagged decision tree algorithm builds multiple
tree-like structures trained with a random selection of subsets to make classifications. This
process is performed repeatedly by replacing the trees and training each weak algorithm
with the selected subsets [29]. The classification algorithms are tested using Matlab’s
corresponding machine learning and statistics toolbox functions.

3. Results

This section evaluates the proposed classification method to analyze the displacement
configuration and texture that obtains the best performance. The analysis of a single-
phase current in induction motors evaluates two sets of different ∆ displacements defined
in Tests A and B. Moreover, the experiments are conducted using a fixed value for the
analysis window Ws, nine texture features, and comparing the accuracy performance of
three classifiers.

To perform the tests, 30 current signals for each category were analyzed from an induc-
tion motor diagnosed with 1BRB, 2BRB, and Health. From these signals, 153 histograms
were obtained, divided as follows: for Test A 90 vectors, for Test B 54 vectors, and nine for
Test C. Table 3 shows the accuracy classification results obtained by a multiclass decision
tree for the three tests performed. Decision trees offer all the advantages of any other
more robust classifier. However, the disadvantages of this classifier can be reduced by
compensating hyperparameters required for determining the best configuration to train
the model [30]. Therefore, the complexity of training a decision tree is controlled by the
parameter that governs the process. Table 4, and Figure 7a specifies the tuning parameters
evaluated in each iteration to achieve the best performance. Furthermore, Table 5 shows the
summary of the decision tree tuning parameters with the best performance, and Figure 7b
shows the estimated objective function value.
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Figure 7. Hyperparameter optimization performance graphs. (a) Objective function model. (b) Min
objective vs. function evaluations.

Table 3. The accurate results for the performed tests for decision tree classifier.

Test A Test B Test C

A1 81.76% B1 81.76% C1 42.8%
A2 80.12% B2 81.66% C2 40.51%
A3 79.92% B3 83.16% C3 88.20%
A4 84.79% B4 87.93% C4 59.95%
A5 83.84% B5 91.40% C5 86.53%
A6 84.23% B6 93.37% C6 68.63%
A7 87.23% C7 98.05%
A8 90.07% C8 46.30%
A9 87.17% C9 58.75%

A10 85.94%
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Table 4. Hyperparameters (decision trees) for Test C7.

Iteration Best
Observed

Best
Estimated Iteration Best

Observed
Best

Estimated

1 0.377380 0.377380 16 0.058669 0.058932
2 0.254860 0.266290 17 0.058669 0.058645
3 0.137740 0.137790 18 0.058669 0.058685
4 0.065611 0.065584 19 0.058669 0.058689
5 0.058669 0.058120 20 0.058669 0.058773
6 0.058669 0.059034 21 0.058669 0.058808
7 0.058669 0.058826 22 0.058669 0.058937
8 0.058669 0.058769 23 0.058669 0.058980
9 0.058669 0.058740 24 0.058669 0.059034

10 0.058669 0.058748 25 0.058669 0.059115
11 0.058669 0.587110 26 0.058669 0.058672
12 0.058669 0.058711 27 0.058669 0.058672
13 0.058669 0.058715 28 0.058669 0.058672
14 0.058669 0.558560 29 0.058669 0.058672
15 0.058669 0.057117 30 0.058669 0.058672

Table 5. Best configuration for Test C7.

Best Observed Feasible Point

Observed objective function value 0.058669
Estimated objective function value 0.058672
Evaluation time 11.3949 (s)

From the total samples in the dataset, 75% were selected for training and 25% were
selected for validation. Thirty tests were performed, choosing the above percentage;
however, the examples were randomly selected for training and validation during the
experimental tests. Based on these results of Tests A and B, the best ∆ displacements are
B6, which are used to perform the analysis in Test C. Notably, the best percentage in Test C
among all the analyzed features is C7, corresponding to the homogeneity attribute. Test C’s
classification accuracy is above 80% for three texture attributes. These results show that the
proposed methodology is reliable as multiple texture features can characterize the method.
Furthermore, we can consider adding signals from other motor states to be analyzed for
increasing the number of faults. Therefore, additional analysis using the homogeneity
feature is performed using a polynomial regression curve. This analysis validates the
performance of classification as the number of samples increases. The processing time of
texture features depends on the number of displacements performed. We have proposed
three displacement sets; therefore, the processing time differs. In this case, the processing
time for feature extraction, training, and validation of the analyzed signal is shown in
Table 6.

Table 6. Process computational time for C7.

Process Time σ

Feature extraction 296.20 ms 16.10 ms
Training 15.50 s 1.97 s

Validation 18.35 µs 48.52 µs

According to the confusion matrix shown in Figure 8a, the motor state that provides
the best classification result is one broken rotor bar. Moreover, Figure 8b shows the analysis
history from the initial samples evaluated through a polynomial regression curve. Based
on this plot, it can be noticed that the processing of 50 samples obtains an acceptable result,
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with an accuracy of 88.15%. At the end of the plot, it can be shown that 250 samples obtain
an accuracy of 98.05%.

Considering the percentage results obtained from the polynomial regression curve,
additional classification tests were performed. At this stage of the experimental tests, the
B6 displacements resulting from Test B and the best feature in Test C were considered. The
accuracy percentages per class are shown in Figure 9 and have been obtained using the
homogeneity texture for two different classifiers. The classification accuracy achieved is
98.16% using the Bagged decision tree and 91.4% for K-NN.
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Figure 8. Classification results for the homogeneity texture (C7) of Table 3. (a) Confusion matrix for
C7. (b) Polynomial regression curve for decision tree.
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Figure 9. Confusion matrices obtained for homogeneity feature. (a) K-nearest neighbor. (b) Bagged
decision tree.

Table 7 compares the proposed approach with previous works in the literature. The
second column in the table presents the methods, the third column the type of faults,
the fourth column the type of signal, the fifth the domain of analysis, and finally, the
accuracy. The proposed method achieves an accuracy of 98.16% using fundamental and
low-complexity arithmetic operations. The nature of the proposed algorithm allows for
parallelization of the computations to speed up the processing. However, authors in [31]
achieved a 100% accuracy in induction motor classification of HLT, 1BRB, and 2BRB. This
processing implies filtering the signal to perform convolutional processing, demanding high
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computational resources. The accuracy difference is irrelevant to our proposed conventional
computational resource approach.

Likewise, in [22], the authors initially filtered the signal; then, an analysis window was
used for segmenting and detecting BRB under different motor loads. The final detection
consisted of checking the presence of BRB without considering additional motor conditions
and achieving a lower percentage than the proposed method. On the other hand, in [32],
the authors presented a dataset obtained through an Ansys Maxwell simulator to generate
synthesized signals for evaluating the signal decomposition with cross-correlation. The
results are promising; however, simulated signals do not provide real motor behavior.
In [33], authors developed a similar methodology to our approach for detecting HLT, 1BRB,
and 2BRB, obtaining an accuracy of 98.3%. However, our system proposes a more robust
analysis that includes nine texture features for describing motor behavior.

Table 7. Comparison with related works.

Work Methodology Fault Signal Type Domain Accuracy

Valtierra et al. [31] 1. Fourier transform
2. CNN as estimator
and classifier

HBRB
1BRB
2BRB

Current Time
Frequency 100%

Cleber et al. [22]
1. Histogram of
Oriented Gradients
2. Bayesian classifier.

BRB Current Time 96%

Yang et al. [32]
1. MEEMD energy
entropy
2. Artificial neural
network

BRB Current Time 99%

Ferrucho et al. [33] 1. Contrast calculation
2. Fuzzy logic

1BRB
2BRB Current Time 98.3%

Our approach 1. SDH.
2. Texture features.

HLT
1BRB
2BRB

Current Time 98.16%

4. Conclusions

In this work, we proposed the detection of 1BRB and 2BRB faults in induction motors
by applying statistical analysis of one phase’s electrical current in the time domain. The
main contribution is to provide a low-complexity method combining local statistical meth-
ods and standard machine learning classifiers that could be quickly and easily embedded
for real-time fault detection. The analysis of nine texture characteristics with different
displacements demonstrates the careful comparison of the current behavior varying the
sampling points and, consequently, the resolution of the features. The three tests performed
help to find the most relevant feature and distances, obtaining 98.16% of global perfor-
mance for three motor condition classifications using a bagged decision Tree. Moreover,
regression analysis shows that our method obtained an acceptable accuracy of 88.15%
using only 50 samples but also achieved a percentage of 98.05% for 250 samples, reduc-
ing the amount of data to process. Compared to related works, our method shows high
classification results using electrical current acquired from an induction motor, avoiding
high-computational-cost classifiers and optimizing the number of samples.

This method could include additional motor faults that the proposed multi-displacement
analysis of textures can easily characterize. As a future work, this method could include
multiple motor faults by considering three-phase current signals to detect short circuits
in the motor coils and impedance estimation by analyzing the offset between voltage and
current signals.
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