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Abstract: In the machining process for herringbone gears manufactured by numerical control gear-
shaping machines, out-of-tolerance problems of symmetry error generally exist. This paper proposed
a high-precision control of spatial symmetry error in the one-time forming machining for herringbone
gear. To improve the machining symmetry accuracy and quality of herringbone gear, a mathematical
model of measurement, evaluation and compensation for spatial symmetry error was established
based on the least square method. Meanwhile, a new shaping machining method based on spa-
tial symmetry error detection and compensation was proposed. The test results indicated that the
proposed method can maintain symmetry within 0.02 mm. This study provided a novel spatial
symmetry error detection and compensation machining method for herringbone gear that has advan-
tages compared to traditional methods in terms of machining accuracy, efficiency, and continuous
machining type.

Keywords: herringbone gear; spatial symmetry error; measurement; evaluation and compensation;
mathematical model; shaping machining

1. Introduction

Modern gear transmissions are being developed for higher speeds and heavier loads,
which pose higher requirements for the static accuracy and dynamic performance of
gears [1–3]. As an important transmission component, herringbone gears are widely used
in high-speed, heavy-duty, and high-power transmission systems such as aviation and
vessel transmission equipment and other mechanical transmission areas because of their
advantages in transmission stability and strong bearing capacity [4–6]. Therefore, high
accuracy in the manufacture of herringbone gears is increasingly required [7–10]. Even
more, the spatial symmetry of herringbone gears directly affects transmission errors, trans-
mission efficiency and service life, which are significant for transmission systems [11,12].
At present, tooth profile and tooth direction modifications are research priorities that can
improve the stability of and reduce vibrations in gear transmission systems [13–17]. Thus
far, manufacturers have lacked a high-precision and high-efficiency control processing
method for on-line detection and compensation of spatial symmetry errors in herringbone
gears [18].

In recent years, many scholars at home and abroad have conducted numerous related
studies on herringbone gear machining methods and the principles of processing error
influence on transmission characteristics. Meanwhile, advanced machining methods based
on online detection and compensation machining technology have great reference value.
Okafor et al. [19] proposed the development of kinematic error models accounting for
geometric and thermal errors in the vertical machining center, and used the error model
to calculate and predict the resultant error vector at the tool–workpiece interface for error
compensation. Kramer et al. [20] developed a feature-based inspection and control system
to realize completion of whole machining and detection and compensation processes on
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machine tools. Kang et al. [14] developed a new double-helical test setup for operating a
double-helical gear pair under realistic torque and speed ranges. Liu et al. [21] proposed
a dynamic model that includes friction and tooth profile error excitation for herringbone
gears and used the proposed model in the dynamic analysis of the variable speed pro-
cess of a herringbone gear transmission system. Guiassa et al. [22] proposed a cutting
compliance coefficient model to estimate corrections for the tool path at the finish cut
based on a finite number of measured errors at discrete locations for previous cuts, and
presented an integrated methodology for compensation errors detected with an on-machine
touch probe. Mao et al. [23] studied the influence mechanism of manufacturing error and
assembly error on the load sharing characteristics of a transmission system. Zhou et al. [24]
investigated the effects of centering error and angular misalignment on crack initiation life
in herringbone gears. Mallipeddi et al. [25] compared gear surface characteristics generated
by grinding, honing and superfinishing of case-hardened steel. Gao et al. [26] proposed
an error compensation machining method that improves complex surface components
based on analyzing the error factors influencing the inspection accuracy of on-machine
detection systems. Yang et al. [27] established a mathematical model of comprehensive
error compensation for complex thin-wall parts and performed machining tests of error
compensation. In a word, the above research findings developed on-line detection and
compensation machining technology to some degree. However, they had some limitations
that could not be effectively applied to real-time spatial symmetry error detection and
compensation machining processes for herringbone gears. Further, investigations reporting
on the measurement and evaluation of spatial symmetry errors in herringbone gears and
machining methods for their compensation have not been reported so far.

In this study, an accurate shaping machining method based on spatial symmetry error
detection and compensation (SSEDC) for herringbone gears is proposed. A mathematical
model of spatial symmetry error was established based on spatial projection and the least
square method (LSM). On the basis of analyzing symmetry out of tolerance as well as
methods of measurement and evaluation of spatial symmetry error, a new machining
method based on SSEDC is proposed for the first time. The test results indicate that the
machining method based on SSEDC can consistently keep symmetry within 0.02 mm.

2. Measurement, Evaluation and Compensation Model for Spatial Symmetry Errors
2.1. Measurement and Evaluation Model for Spatial Symmetry Errors

Spatial symmetry errors in herringbone gears come from deviations in the starting ma-
chining position between the upper and lower teeth. If the involute curve of a herringbone
gear is enlarged indefinitely, the shape of the herringbone gear will be similar to an oblique
gear rack, and the actual spatial symmetry error shown in Figure 1 will be the offset error
of the center position for the upper and lower teeth. Thus, the spatial symmetry error of the
herringbone gear shown in Figure 2 can be assumed to be a circular angle error. Therefore,
in order to identify a herringbone gear’s spatial symmetry error, it is important to calculate
and acquire the circular angle error of the upper and lower teeth through measurement
and calculation using a mathematic model.
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The phase error at the symmetrical position of the upper and lower helical teeth of
the herringbone gear is detected by the probe. After many tests, the measurement of the
spatial symmetry error value of the herringbone gear is completed.

To realize the detection and compensation of a herringbone gear’s spatial symmetry
error, the symmetry plane of the left and right revolving gear is defined as the symmetry
center plane O. As shown in Figure 3, the position measurements of planes A, B, C and D
are completed with the touch probe, and the n random points can be written as A1 ∼ An,
B1 ∼ Bn, C1 ∼ Cn and D1 ∼ Dn. Further, the position coordinates of midpoints connected
with corresponding points of the same height can be expressed as Ai(XAi, YAi, ZAi),
Bi(XBi, YBi, ZBi), Ci(XCi, YCi, ZCi) and Di(XDi, YDi, ZDi), i ∈ [1, n]. Using a plane fitting
method, the fitting symmetry plates E and F based on the position coordinates of the
midpoints are calculated respectively. Using a spatial projection method, the projection
line equations of plane E and F projecting on the plane O are calculated, respectively. As
shown in Figure 4, we ensure the two projection lines are parallel through approximate
processing of the projection line equations, and then calculate the linear distance e of the
two projection lines. In fact, the spatial symmetry error is usually relatively small in the
machining process. Thus, the deflection chord length, that is, spatial symmetry error, is
infinitely equivalent to the linear distance e.
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The sets of position coordinate midpoints connected with plane A and B corresponding
to points of the same height can be written as follows:

(xi, yi, zi) =

{(
XAi + XBi

2
,

YAi + YBi
2

,
ZAi + ZBi

2

)}
i ∈ [1, n] (1)

In the same way, the sets of position coordinate midpoints connected with plane C
and D corresponding to points of the same height can be written as follows:

(
x′i , y′i, z′i

)
=

{(
XCi + XDi

2
,

YCi + YDi
2

,
ZCi + ZDi

2

)}
i ∈ [1, n] (2)

The fitting symmetry plate E and F can be calculated based on spatial analytic geometry
and the calculated midpoint sets. The equations of plane E and F can be formulated
as follows:

z = a0x + a1y + a2 (3)

z′ = a′0x + a′1y + a′2 (4)

Utilizing LSM to calculate the fitting symmetry planes, the results can be calculated
as follows: a0

a1
a2

 =

 ∑ x2
i ∑ xiyi ∑ xi

∑ xiyi ∑ y2
i ∑ yi

∑ xi ∑ yi n

−1∑ xizi
∑ yizi
∑ zi

 (5)

a′0
a′1
a′2

 =

∑ x′i
2 ∑ x′iy

′
i ∑ x′i

∑ x′iy
′
i ∑ y′i

2 ∑ y′i
∑ x′i ∑ y′i n


−1∑ x′iz

′
i

∑ y′iz
′
i

∑ z′i

 (6)

The fitting planes E and F intersect with symmetry center plane O in the spatial, and
the intersection line equations can be calculated based on spatial analytic geometry. Further,
the two intersection lines should not be completely parallel in theory, but approximate pro-
cessing should be performed to ensure they are parallel in practice. Thus, the herringbone
gear’s spatial symmetry error is the X-axis coordinate distance e in XOY coordinate system
for the two intersection lines.

2.2. Compensation Model of Spatial Symmetry Error

On the basis of the proposed measurement and evaluation model for a herringbone
gear’ spatial symmetry error, the spatial symmetry error is translated into displacement
deviation e. In fact, the herringbone gear’s spatial symmetry error cannot be compensated
through rotating the gear or controlling the worktable’s rotating axis. To achieve compensa-
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tion of the spatial symmetry error, the controlled target is translated into the gear shaping
cutter according to the generating machining method. Thus, the movements involved in
the gear shaping cutter need to be analyzed.

As shown in Figure 5, the movements of the gear shaping cutter mainly include the
principal cutting movement (P), circular cutting motion of numerical control (NC) axis
C2 (C2), cutter back-off motion (B) and movement of oblique knife (S). Apparently, the
angle error compensation of the tangential direction cannot be realized through control-
ling movement P; moreover, the simplex control of movement C2 can make tangential
displacement in the gear machining process, and the motion B only involves the axial
direction because the spatial symmetry error is translated into displacement deviation e
at the X-axis coordinate. Therefore, the method of controlling movement S is proposed to
compensate for the displacement deviation e, and this method is viable to compensate for
the tangential displacement through approximation in theory. The compensation model
of the herringbone gear’s spatial symmetry error is shown in Figure 6. Finally, the whole
closed loop system of measurement and compensation machining on the herringbone
gear’s spatial symmetry error is realized.
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On the basis of the proposed compensation model for the herringbone gear’s spatial
symmetry error, the spatial symmetry error is translated into displacement deviation e and
can be written as follows. Further, the movement of the oblique knife is adjusted, and then
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the gear shaping cutter should be adjusted to confirm the mesh after compensating for the
spatial symmetry error. The angle α1 can be written as follows:

e ≈ mz
sin γ

cos β
=

dsin γ

2cos β
(7)

α1 ≈ arcsin
ecos β

MZ
= arcsin

2ecos β

D
(8)

where m, z, d, and γ are the herringbone gear’s module, tooth number, pitch diameter and
angle error, respectively, where M, Z, D and α1 are the gear shaping cutter’s module, tooth
number, pitch diameter and angle error, respectively.

Therefore, by setting up the measurement and evaluation and compensation model of
the herringbone gear’s spatial symmetry error, the machining process for on-line detection
and compensation of the herringbone gear’s spatial symmetry error can be intuitively
displayed, providing theoretical support for instance machining.

3. Herringbone Gear Machining Method Based on SSEDC
3.1. Machining Flow

Herringbone gears are composed of left and right screw surfaces. The left and right
screw surface intersection can constitute multiple planes. The plane symmetry to the gear
face is usually called the herringbone gear center plane. Because of restriction of the reducer
structure and normal meshing transmission requirement, the herringbone gear must set
the position when assembling, and positioning error of he plane must be controlled in the
allowed range of the assembly adjustment amount, which means that the symmetry of
the left- and right-hand gears must be well-maintained, and the position error should be
generally controlled within 0.05 mm.

According to the above analysis, a machining flow chart for a herringbone gear based
on SSEDC is proposed, combined with the machining process for the gear, as shown
in Figure 7. The key point in the machining process is to achieve detection through a
measuring device and control it to detect the phase symmetry of the upper right-hand
and lower left-hand groove center of the herringbone gear. Then, on the basis of the
proposed method, the spatial symmetry error can be calculated and compensated in the
machining process.
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Combined with the actual herringbone gear machining process, the basic machining
flow chart for the herringbone gear based on SSEDC is shown in Figure 8.
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3.2. Design of Fixture and On-Line Device for Spatial Symmetry Error Measurement

To clamp the herringbone gear and ensure the accuracy and efficiency of herringbone
gear machining, a general fixture for hydraulic drive self-clamping is designed; it is com-
posed of a pull rod, core clamper, spring, collect chuck, positioning sleeve, fixture body, etc.,
as shown in Figure 9. When the hydraulic cylinder drives the pull rod downward, the pull
rod drives the collect chuck to clamp the shaft diameter of the herringbone gear and ensures
that the positioning surface of the herringbone gear is attached to the positioning plane of
the fixture, in order to facilitate automatic clamping of the herringbone gear. Table 1 lists
the basic parameters of the herringbone gear.
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Table 1. Basic parameters of herringbone gear.

Module-m (mm) 1.65

Tooth-z 28

Pressure angle-α (◦) 20

Helix angle-β (◦) 15

Pitch diameter-d (mm) 56.172

Meanwhile, an on-line spatial symmetry error measuring device controlled by the
program of an NC system is designed to measure points on surfaces of the machining teeth.
The symmetry center plane can be calculated based on the proposed method. As shown
in Figure 9, the on-line measuring device is composed of a Marposs T25 probe and two
electric slides [28]. The horizontal and vertical electric slides allow multi-degree freedom of
movement of the Marposs probe. On that basis, measurements of gears of different heights
and sizes can be realized.

The detection principle and process of the device are as follows. The NC program
controls the electric slides to turn the measuring head into the left-handed slot of the gear
(as shown in Figure 9). After measuring the tooth centers of the up and down gears, an
initial processing angle will be compensated and corrected according to the center deviation
value to meet the requirements of symmetry.

4. Case Study
4.1. Measurement and Compensation of Spatial Symmetry Error

To improve machining efficiency in the detection and compensation process, actually,
the quantity of detected points can be reduced to two points for each tooth surface. Be-
cause the gear shaping cutter has high accuracy and the processed helix angle is constant,
the three-dimensional spatial symmetry error can be reduced to a one-dimensional dis-
placement deviation. Meanwhile, in order to compare and validate the detected data, it
is necessary to detect two points for each tooth surface. Hence, in the actual machining
process, the spatial symmetry error amount is calculated based on the data for a total of
eight detected points on four tooth surfaces.

As shown in Figure 10, the positioning end plane is defined as the reference plane, and
a total of four points whose heights are, respectively, h1, H− h1, h2 and H− h2 are detected
by the on-line measuring device. As shown in Figure 11, corresponding to the heights of h1,
−h1, h2 and H − h2, points A1(XA1, YA1, ZA1) and B1(XB1, YB1, ZB1), C1(XC1, YC1, ZC1)
and D1(XD1, YD1, ZD1), A2(XA2, YA2, ZA2) and B2(XB2, YB2, ZB2), C2(XC2, YC2, ZC2)
and D2(XD2, YD2, ZD2) are respectively detected. Based on the calculation and com-
pensation methods in the actual machining process, the X-axis coordinates are chosen to
calculate the spatial symmetry error. Therefore, the displacement error e1 and e2 can be
written as follows:

e1 =
XB1 − XA1

2
− XD1 − XC1

2
(9)

e2 =
XB2 − XA2

2
− XD2 − XC2

2
(10)

Then, through comparing the calculated error, the spatial symmetry error e in the
actual machining process can be written as follows:

e =
e1 + e2

2
(11)

The actual detection and compensation process is shown in Figure 12. The diagram of
the NC shaping machine drive system is shown in Figure 13.
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4.2. Machining and Accuracy

Shown in Figure 14 is a diagram of the herringbone gear machining process for a
special gear-shaping machine. Firstly, the NC program should be developed according to
the flow chart of the actual detection and compensation process, including the right- and
left-hand gear machining programs and symmetry error detection programs. Secondly,
the preparation work should be performed before the machining of herringbone gears,
including gear clamping, positioning, alignment, program debugging, etc. Then, the
numerical control program controls the gear shaper to complete the processing of the
right-handed gear and controls the Marposs probe to locate and determine the symmetrical
position of the calibration slot.
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After that, the herringbone gear is turned over and clamped, and the above steps
are repeated to complete the processing of the left-handed gear (without cutting to the
tooth depth). The numerical control program controls the Marposs probe to complete the
measurement of the left-handed tooth space position corresponding to the position of the
right-handed gear calibration slot. Finally, the calculation of the spatial symmetry error is
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completed, and the phase compensation processing is carried out. Based on the designed
special fixture, specific NC machining programs are developed and debugged, and three
types of herringbone gears are manufactured on this special NC gear-shaping machine.

The machining process for the measurement and compensation of herringbone gear
spatial symmetry error is shown in Figure 14, including NC program debugging, prepara-
tion work before machining, without shaping to the tooth depth, symmetry error detection
program debugging, detection of right- and left-hand gear errors, symmetry error compen-
sation machining and precision detection of spatial symmetry error.

Based on the proposed machining method, the results of the machining experiments
indicated that the symmetry can be reliably controlled within 0.015 mm. As shown in
Figure 15a, the machining instances for herringbone gear were extended to other sizes. As
shown in Figure 15b, the machining accuracy of symmetry detected by the coordinate mea-
suring machine can be controlled within 0.02 mm with SSEDC. Comparing the traditional
and novel machining methods, the contrasting results are shown in Table 2.
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Table 2. Comparison of herringbone gear machining accuracy and efficiency with different
machining methods.

Machining Method Machining Accuracy (mm) Efficiency (h) Batch Machining Feature

Traditional method 0.1~0.2 2.5 h/piece Machining with single piece repeat

Novel method 0.02 0.8 h/piece Continuous machining

5. Conclusions

We proposed a novel shaping and machining method based on SSEDC for herringbone
gears that can realize high-precision control of spatial symmetry error in a one-time forming
and machining process. First, a herringbone gear spatial symmetry error measurement
and evaluation model was initially established based on spatial projection and LSM. Then,
a herringbone gear spatial symmetry error compensation model was further established.
Finally, an online detection and compensation machining method for herringbone gear
spatial symmetry errors was first created.

Based on the established spatial symmetry error measurement, evolution and compen-
sation mathematical model, a general fixture and an on-line spatial symmetry error detec-
tion device were designed for automatic detection and control of spatial symmetry errors.
Additionally, to improve machining efficiency in the detection and compensation process,
three-dimensional spatial symmetry errors were reasonably reduced to one-dimensional
displacement deviations. Further, the specific processes of practical engineering were
proposed and applied.
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Numerous machining cases were performed based on the proposed SSEDC method
and extended to other, different sizes of herringbone gears. The machining cases indi-
cated that the proposed machining method could consistently maintain symmetry within
0.02 mm. Thus, the proposed SSEDC method for solving the out-of-tolerance problem of
spatial symmetry error shows reliability and stability.
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