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Abstract: Seismic response assessment requires reliable information about subsurface conditions,
including soil shear wave velocity (Vs). To properly assess seismic response, engineers need accurate
information about Vs, an essential parameter for evaluating the propagation of seismic waves.
However, measuring Vs is generally challenging due to the complex and time-consuming nature of
field and laboratory tests. This study aims to predict Vs using machine learning (ML) algorithms
from cone penetration test (CPT) data. The study utilized four ML algorithms, namely Random
Forests (RFs), Support Vector Machine (SVM), Decision Trees (DT), and eXtreme Gradient Boosting
(XGBoost), to predict Vs. These ML models were trained on 70% of the datasets, while their efficiency
and generalization ability were assessed on the remaining 30%. The hyperparameters for each
ML model were fine-tuned through Bayesian optimization with k-fold cross-validation techniques.
The performance of each ML model was evaluated using eight different metrics, including root
mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE),
coefficient of determination (R2), performance index (PI), scatter index (SI), A10− I, and U95. The
results demonstrated that the RF model consistently performed well across all metrics. It achieved
high accuracy and the lowest level of errors, indicating superior accuracy and precision in predicting
Vs. The SVM and XGBoost models also exhibited strong performance, with slightly higher error
metrics compared with the RF model. However, the DT model performed poorly, with higher error
rates and uncertainty in predicting Vs. Based on these results, we can conclude that the RF model is
highly effective at accurately predicting Vs using CPT data with minimal input features.

Keywords: shear wave velocity; cone penetration test; machine learning; Random Forests; support
vector machine; decision trees; eXtreme gradient boosting; regression

1. Introduction

Soil characterization plays a vital role in seismic response assessment and interpret-
ing subsurface conditions for large-scale engineering projects. To properly assess seismic
response, engineers need accurate and reliable information about subsurface conditions,
including soil shear wave velocity (Vs), an essential parameter for evaluating the propaga-
tion of seismic waves [1–6]. Seismic-refraction and reflection methods using geophysical
signal processing [7–10] measure Vs at various depths and precision to produce a profile
(preferably to bedrock) for later analysis. To measure Vs, an active source generates a wave
and its travel time to one or more receivers is measured. The velocity results from knowing
the time and distance traveled between the source and receiver. There are several Vs mea-
surement methods, including seismic cone penetration testing (SCPT) [7], Multi-Channel
Analysis of Surface Waves (MASW) [8], Cross-hole testing [8], and down-hole testing
methods. These techniques provide valuable information about subsurface conditions but
become more complex with increasing soil layering.

Additionally, laboratory tests such as bender element [11], triaxial test [12], and res-
onant column tests [13] measure Vs in different ways. These tests are conducted on soil
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samples collected from the site and offer a controlled environment for testing, providing
detailed information on soil behavior under varying stress conditions. However, retrieving
high-quality intact soil samples is a challenging task that requires specialist equipment [14].
Furthermore, it is important to note that the properties of collected samples may signifi-
cantly change over time due to variations in stress conditions, temperature fluctuations,
and moisture content.

A viable alternative is to correlate Vs to cone penetration test (CPT) data, a relatively
easier approach. Many empirical correlations have been developed over the past couple of
decades to estimate Vs from CPT data [15–19]. The CPT test involves pushing a cone-shaped
instrument into the ground at a constant rate while measuring the resistance of the soil.
Two measurements are typically taken during this test: cone tip resistance (qc) and sleeve
friction ( fs) [20,21]. The CPT test provides continuous and reliable soil data, making it an
efficient and cost-effective method in geotechnical engineering practice. This wealth of
CPT data has attracted the attention of many geotechnical researchers to further improve
the prediction accuracy of Vs employing machine learning (ML) algorithms [22–26]. ML
algorithms have shown great promise in accurately predicting Vs from CPT data. The
ML algorithms can learn complex relationships between input variables (e.g., qc and fs
records) and output variables (e.g., soil Vs) from large datasets without the need for explicit
mathematical models.

Many ML algorithms, such as gradient boosting, random forest, support vector ma-
chine (SVM) artificial neural network (ANN), and decision trees (DT), have been used in var-
ious geotechnical applications, including soil classification [27–33], Vs prediction [23–26,34],
liquefaction analysis [35–40], stability analysis [41–45], and settlement prediction [46–48].
The application of ML algorithms in geotechnical engineering has shown promising results
in terms of efficiency and accuracy. For example, Tsiaousi et al. [25] successfully employed
an ANN model to characterize soil stratigraphy and predict Vs. This study demonstrates
how ML approaches can be used to improve soil characterization and prediction of im-
portant geotechnical parameters. Assaf et al. [24] and Riyadi et al. [49] have also used
ML algorithms, including RF and XGBoost, to predict Vs. Their findings confirm that ML
models can achieve high accuracy and performance in predicting Vs. Previous research
has also shown that SVM performs well in predicting Vs [50,51]. These studies collectively
demonstrate the potential of ML algorithms in improving the accuracy of Vs prediction in
geotechnical engineering applications.

The aim of this study is to improve the prediction of Vs using various ML algorithms
with minimal input features. Four ML algorithms, namely RF, SVM, DT, and eXtreme gra-
dient boosting (XGBoost), are employed to predict Vs from CPT data. The study also aims
to minimize the need for expensive and time-consuming fields or laboratory measurements.
The development of ML models can lead to higher accuracy and performance in predicting
Vs. The improvement in the accuracy of Vs prediction has significant implications for site
response assessment and seismic risk reduction. By utilizing ML to predict VS, this study
has the potential to enhance existing knowledge and inspire future research in the field of
ML applications for soil characterization.

The rest of this document is organized as follows: Section 2 discusses dataset prepro-
cessing and visualization, Methodology and performance metrics are described in Section 3,
Section 4 describes the ML models, and Section 5 presents the results. Finally, Section 6
outlines the main results of the study and concludes by suggesting future research.

2. Datasets Preprocessing and Visualization

The dataset used in this study was obtained from a previously published dataset [52].
This study utilized 61 CPT soundings, each containing over 1000 qc and fs recordings.
These data sets were collected from various regions of Austria, including the Vienna Basin,
Gastein Valley, and Zell Basin. The data is publicly accessible and can be downloaded from
the following link: https://www.tugraz.at/en/institutes/ibg/research/computational-
geotechnics-group/database/ (accessed on 12 May 2023). The CPT datasets were pre-

https://www.tugraz.at/en/institutes/ibg/research/computational-geotechnics-group/database/
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processed before applying ML training and testing techniques. The preprocessing step
involved removing outliers from the data. Specifically, outliers were identified and removed
from both the qc and fs values in the raw CPT data. Any data point that exceeded twice the
interquartile range (IQR), where IQR is the difference between the third quartile (Q3) and
the first quartile (Q1), was considered an outlier. Next, the target variable, which in this
case was the shear wave velocity, Vs, was estimated using Equation (1) [16]. Subsequently,
the datasets were divided into a training set and a testing set, with a ratio of 0.7:0.3 for
training and testing purposes.

VS =

√(
qc − σv0

pa
× 100.55Ic+1.68

)
(1)

where qc represents cone tip resistance, σv0 represents total overburden pressure, pa rep-
resents atmospheric pressure, and Ic represents soil behavioral type index estimated as
follows:

Ic =
(

3.47− log((qc − σv0)/σ′v0)
2 + (logFr + 1.22)2

)0.5
(2)

Fr = fs/(qc − σv0)× 100 (3)

where fs represents sleeve friction, σ′v0 is the effective overburden stress, and Fr represents
normalized friction ratio.

The statistical summaries of both the training and testing datasets considered in this
study are presented in Table 1. To gain further insights into the relationship between the
input features and the target variable (Vs), scatter plots are presented in Figure 1. Each
scatter plot indicates the correlation between an individual input feature and the target
variable. In addition, Figure 2 shows the frequency distribution of the input features and
target variable, providing a visual representation of their distribution patterns. Furthermore,
box plots of both the input features and the target variable are presented in Figure 3, offering
an overview of their distribution.

Table 1. Statistical summary of training and testing datasets.

Features Unit Class
Training Dataset Testing Dataset

Mean SD Min Max Count Mean SD Min Max Count

D m Input 12.42 8.88 0.01 40 79,579 12.38 8.78 0.01 40 34,104
qc MPa Input 4.89 3.60 0.01 17 79,579 4.87 3.59 0.01 17 34,104
fs kPa Input 42.91 35.35 0.07 142 79,579 42.88 35.39 0.10 142 34,104

R f % Input 1.56 6.11 0.00 1121 79,579 1.57 6.28 0.00 1083 34,104
Vs m/s Target 166.76 55.89 10.06 322 79,579 166.55 55.57 9.93 322 34,104

The interdependencies among input features in ML models can lead to overfitting
and decreased efficiency. To assess the correlation between each input feature, a Pearson’s
correlation analysis was conducted. Figure 4 displays the correlation coefficients among
the input features in the dataset. The correlation coefficients range from −0.08 to 0.51,
indicating a combination of weak to moderate correlations among the features. The absence
of highly correlated features in the correlation analysis suggests a lower risk of overfitting,
as no redundant features were observed.
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3. Methodology

This section outlines the training and testing procedures for the ML models used to
predict Vs. Four ML models, namely RF, SVM, DT and XGBoost, were trained for this
purpose. Each ML model was trained on the training datasets, with qc, fs, friction ratio
(R f ), and soil depth (D) serving as input features and Vs as target variable (output). To
optimize the performance of these models, the hyperparameters of each model were fine-
tuned using a model-based Bayesian optimization technique. To ensure that the models
can generalize well to new data, the commonly used k-fold cross-validation techniques
were employed. This involves dividing the data into k subsets, training the model on
k-1 subsets, and evaluating their performance on the remaining subset. The root mean
squared error (RMSE) was used as the evaluation metric to assess the models’ accuracy.
In addition to hyperparameter tuning, permutation feature importance and/or recursive
feature elimination techniques were applied using the optimized models. This technique
was used for the identification and removal of irrelevant features, if present, in the input
features. Once the irrelevant features were eliminated, the hyperparameter tuning process
was repeated with the updated features to further enhance the models’ performance. Finally,
the performances of the optimized models were assessed using the testing dataset. The
entire process of training and testing the models is presented in Figure 5, providing a visual
representation of the workflow.

The performance of optimized ML models was evaluated using multiple statistical
metrics such as root mean squared error (RMSE), mean absolute error (MAE), mean abso-
lute percentage error (MAPE), coefficient of determination

(
R2), scatter index (SI), and

performance index (PI) (see Table 2). Many researchers utilized these indices to evaluate the
predictive performance of different ML models [53–60]. The RMSE measures the average
magnitude of the errors between the predicted and actual values, indicating the model’s
predictive accuracy. A lower RMSE indicates better model performance. MAE estimates
the average absolute difference between the predicted and actual values. Like RMSE, a
lower MAE indicates better model performance. MAPE represents the average percentage
difference between the predicted and actual values. A lower MAPE signifies better model
accuracy. R2 measures the proportion of the variance in the target variable (VS) that can be
explained by the model, with values closer to 1 indicating a better fit. Furthermore, a newly
proposed engineering index (A10− I) was used to evaluate the predictive performance
of the models [55,59,61–63]. In an ideal model, the value of A10− I is expected to be one.
The A10− I has significance in engineering as it represents the proportion of samples
that fall within ±10% deviation from the predicted values compared with the target value.
Additionally, the efficiency of the models was evaluated using uncertainty analysis at 95%
confidence level (U95) [64,65].

Table 2. Performance indices used to evaluate the efficiency of the models.

Metrics Best Performance Equations Equation No.

Root mean squared error Lower value
RMSE =

√
∑n

i=1

(
Xi−

_
Xi

)2

n
(4)

Mean absolute error Lower value MAE = 1
n ×

∣∣∣∣ n
∑

i=1
Xi −

_
Xi

∣∣∣∣ (5)

Mean absolute percentage error Lower value
MAPE = 1

n ×

∣∣∣∣∣∣ n
∑

i=1

(
Xi−

_
Xi

)
Xi

∣∣∣∣∣∣× 100%
(6)

Coefficient of determination unity
R2 = 1−

n
∑

i=1

(
Xi−

_
Xi

)2

(Xi−X)
2

(7)
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Table 2. Cont.

Metrics Best Performance Equations Equation No.

A10− I unity A10− I = n10
n (8)

Scatter index Lower value SI = RMSE
X

(9)
Performance index Lower value PI = RMSE

X×
√

R2+1
(10)

Uncertainty at 95% confidence level Lower value U95 =
√

SD2 + RMSE2 (11)

SI [64,65] SI < 0.05: excellent precision (EP), 0.05 < SI < 0.1: good precision (GP), 0.1 < SI < 0.15: fair
precision (FP), SI > 0.15: poor precision (PP)

n is total number of datasets, Xi is the actual value of the ith observation,
_
Xi is the predicted value of the ith

observation, and X is mean of target variable. n10 is the number of samples with actual/predicted value between
0.90 and 1.10, U95 is uncertainty with 95% confidence intervals, and SD is standard deviation of residuals (the
difference between target Vs and predicted Vs).
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4. Machine Learning Models
4.1. Random Forests

RF is an ML algorithm that has been widely used for classification and regression
tasks [66,67]. It is an ensemble method that combines multiple decision trees to improve
predictive accuracy and reduce overfitting. RF has several advantages over other machine
learning algorithms, including its ability to handle high-dimensional data, nonlinear rela-
tionships between variables, and missing values [68]. In addition, it provides measures of
variable importance that can be used for feature selection and interpretation [69].

RF classification and regression can be implemented in R using various packages such
as randomForest [68] and ranger [70]. The randomForest package is one of the most widely
used packages for RF classification and regression in R. It provides a simple interface for
building and evaluating RF models and supports both classification and regression tasks.
The ranger package is another popular package for RF classification and regression in R. It
is designed to be faster and more memory-efficient than the randomForest package, and
supports parallel processing [70].

The ranger package provides several hyperparameters that can be tuned to improve
the performance and robustness of RF models. To tune these hyperparameters, one common
approach is to use cross-validation. This involves splitting the data into training and test
sets, fitting the model on the training set with different combinations of hyperparameters,
and evaluating the performance on the validation set. Bayesian optimization is one of
the most efficient methods for hyperparameter tuning. It uses a probabilistic model to
predict the performance of different hyperparameter configurations based on previous
evaluations [71].

4.2. Support Vector Machine

SVMs have gained immense popularity in the field of machine learning due to their
ability to solve both classification and regression problems effectively. SVMs work by
constructing hyperplanes that can optimally separate data points belonging to different
classes or predict target variables with maximum margin. One of the most significant
advantages of using SVMs is their ability in handling high-dimensional datasets and
nonlinear relationships between variables [72].

In R, e1071 package [73] is commonly utilized to implement SVM models for regres-
sion and classification tasks. The package provides options for tuning hyperparameters
such as the kernel function, regularization parameter, and cost parameter. One important
consideration when using SVMs is their robustness to outliers and noise in the data. Out-
liers influence the position of the hyperplane and lead to poor generalization performance.
To address this issue, Bayesian optimization can be utilized to increase the model’s per-
formance and robustness. Bayesian optimization has been shown to be effective at tuning
hyperparameters in various machine-learning algorithms, including SVMs [71].

4.3. Decision Trees

The DT algorithm is commonly used for both classification and regression tasks. The
DT algorithms recursively partition data into subsets based on the values of input features
and then assign labels to each subset based on the majority class or average value of the
target variable. The resulting tree structure can be used to make predictions on new data by
traversing the tree from the root node to a leaf node that corresponds to a specific class or
value. According to Quinlan [74], decision trees are particularly useful for problems with
discrete-valued output variables and can handle both categorical and continuous input
features. They are also easy to interpret and visualize, making them a popular choice for
exploratory data analysis and decision-making tasks. Figure 6 presents a sample decision
tree structure to provide insights into the relationships and decision-making process within
the data, aiding in understanding and interpreting the model’s predictions. The node
numbers are depicted within the boxes, while the input features are represented by the
variables (see Sections 1 and 3). The green leaves in the figure represent the target value, Vs.
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The implementation of the DT algorithm for regression tasks is usually performed
using the rpart package [75]. The package provides ranges of DT hyperparameters, in-
cluding complexity parameters, maximum number of trees, minimum number of splits,
etc., that can be tuned through grid search or Bayesian optimization. DT algorithms have
been used for a variety of geotechnical applicatons, including classification [76,77] and soil
parameters predictions.

4.4. eXtreme Gradient Boosting

Recently, the XGBoost algorithm has gained popularity due to its high accuracy and
efficiency. XGBoost is an ensemble method that combines multiple weak learners such as
decision trees into a single strong learner [78,79]. The algorithm iteratively adds decision
trees to the model, with each tree attempting to correct the errors of the previous trees.

XGBoost package [78] is usually utilized to implement the XGBoost regression model
in R. The XGBoost package also offers support for hyperparameter tuning, which can
significantly improve the model’s performance. It provides a range of options for tuning its
hyperparameters, including learning rate (eta), maximum depth of each tree (max_depth),
number of trees, and regularization parameters (alpha and gamma). Bayesian optimization
can be used for hyperparameter tuning in XGBoost.

5. Results and Discussion

In Section 2, we indicated that the datasets were randomly split into training and
testing datasets. The training datasets were used to train the ML models, while the testing
datasets were used to evaluate the efficiency of each model in predicting Vs. In this section,
we will discuss the results obtained from training and testing ML models. All the ML
models were trained and tested using a personal computer with 8GB RAM and Intel(R)
Core(TM) i7-1065G7 CPU @ 1.30GHz 1.50 GHz processor (Intel Co., Santa Clara, CA, USA).
The performance of each ML model was evaluated using the multiple performance metrics
listed in Table 2.
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5.1. Hyperparameter Optimization Results

The hyperparameters of each model were fine-tuned using Bayesian optimization
with a k-fold cross-validation strategy. Specifically, we used 10-fold cross-validation with
the RMSE as the evaluation metric for fine-tuning the hyperparameters. The goal was to
minimize the RMSE, as lower values indicate better performance. The maximum number
of iterations for the fine-tuning process was set to 100 for each model. Figure 7 illustrates
the convergence behaviors of the ML models during the fine-tuning process. It shows how
the performance metric (RMSE) changed over the iterations. We observed that all the ML
models reached stable results within 100 iterations.
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Table 3 presents the hyperparameters of the ML models along with their optimized
values. The optimized values represent the set of hyperparameters that yielded the best
average performance according to the RMSE metric.

Table 3. Optimized hyperparameters.

ML Models
Tuned Hyperparameters

Names Ranges Optimized Values

RF

Number of variables, mtry 1–4 3
Minimum node of tree 1–30 2

Maximum depth of tree 2–100 64
Number of trees in the forest 1–30 12

SVM

Penalty parameter, Cost 0.1–100 58.75
Kernel coefficient, gamma 0.01–10 9.44

Margin of tolerance, Epsilon 0.01–1 0.026
Kernel type radial radial
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Table 3. Cont.

ML Models
Tuned Hyperparameters

Names Ranges Optimized Values

DT

Complexity parameter, cp 0.001–1 0.001
Maximum depth of trees 1–30 20

Minimum number of splits 2–20 5
Minimum number of

observations
at terminal node, minbucket

2–20 6

Maximum number of splits at
node, maxcompete 1–20 9

XGBoost

Learning rate, eta 0.01–1 0.26
Loss reduction term, gamma 0.01–10 3.79

L2 regularization term, lambda 0.01–1 0.38
L1 regularization term, alpha 0.01–1 0.83
Number of boosting rounds,

nrounds 1–100 84

Maximum depth of trees 2–10 9
Fraction of samples for each tree,

subsample 0.1–1 0.79

5.2. Performance of ML Models

Figure 8 illustrates actual Vs and predicted Vs using the optimized ML models, along
with ±10% error lines (red lines). The green lines show a match between actual and
predicted Vs values. The results demonstrate that all ML models, except for the DT model,
achieved excellent predictive accuracy on both training and testing datasets with high R2

and A10− I score values of 1. This shows that the RF, SVM, and XGBoost models can
explain all the variance in the Vs using the given features. Furthermore, the scatter plots for
these models show that many data points are closer to the error bounds, indicating that the
models performed well. In contrast, the DT model achieved lower R2 and A10− I values
ranging from 0.94 to 0.95 and from 0.77 to 0.78 on the testing and training data, respectively.
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Figure 8. Scatter plot illustrating the correlation between actual VS and predicted VS.

The residual plots of ML models are shown in Figure 9, illustrating a random distribu-
tion of points around the horizontal orange line at y = 0 (line of zero error). This indicates
that the model’s predictions are unbiased and have captured the underlying patterns in the
data. Additionally, the frequency distributions of residuals (green bars) are shown in the
figure. The distribution is approximately symmetric, indicating that the errors are normally
distributed, a desirable property. To gain more insight into the performance of the ML
models, a further comparison is carried out in the following subsection.
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5.3. Comparisons of ML Models

Table 4 provides a summary of the evaluation results for the ML models. Based on our
results, the DT model exhibited lower accuracy, as evidenced by a lower R2 on both training
and testing data. The DT model recorded RMSE of 13.06 and 13.16, MAE of 10.27 m/s and
10.34 m/s, MAPE of 7.27% and 7.31%, and R2 of 0.95 and 0.94 on the training and testing
datasets, respectively. Additionally, Spider charts were utilized to visualize and assess
each model’s efficiency relative to others (Figure 10). The spider chart shows that the DT
model significantly diverged towards higher RMSE, MAPE, and MAE on both training and
testing datasets in comparison to other ML models. The RF, SVM, and XGBoost models
outperform the DT model in terms of RMSE, MAE, MAPE, and R2. All RF, SVM, and
XGBoost models have lower error values and higher R2 scores, indicating higher accuracy
and better performance in predicting VS from the input features.

Table 4. Summary of evaluation results for each ML model using training and testing datasets.

Models
Train dataset

Rank
A10− I RMSE R2 PI SI MAE MAPE U95

RF 1 (1) 0.46 (1) 1 (1) 0.002 (1) 0.003 (1) 0.24 (1) 0.17 (1) 1.24 (1) 1
SVM 0.998 (2) 1.11 (2) 1 (1) 0.005 (2) 0.007 (2) 0.37 (2) 0.28 (2) 3.07 (2) 2
DT 0.78 (3) 13.1 (4) 0.95 (2) 0.06 (4) 0.08 (4) 10.27 (4) 7.23 (4) 36.20 (4) 4

XGBoost 1 (1) 1.68 (3) 1 (1) 0.007 (3) 0.01 (3) 1.29 (3) 0.87 (3) 4.65 (3) 3

Models
Test dataset

Rank
A10− I RMSE R2 PI SI MAE MAPE U95

RF 1 (1) 0.96 (1) 1 (1) 0.004 (1) 0.006 (1) 0.50 (2) 0.36 (2) 2.66 (2) 1
SVM 0.998 (2) 1.36 (2) 1 (1) 0.006 (2) 0.008 (2) 0.38 (1) 0.31 (1) 2.3 (1) 2
DT 0.77 (3) 13.2 (4) 0.94 (2) 0.06 (4) 0.08 (4) 10.34 (4) 7.31 (4) 36.48 (4) 4

XGBoost 1 (1) 1.86 (3) 1 (1) 0.008 (3) 0.01 (3) 1.40 (3) 0.94 (3) 5.16 (3) 3
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Figure 11 illustrates the performance of ML models in predicting 𝑉   as evaluated 
using four performance metrics: 𝑈  , 𝐴10 − 𝐼, 𝑃𝐼, and 𝑆𝐼. The results indicate that the DT 
model achieved lower performance in comparison to other models, as evidenced by its 
higher 𝑈  , 𝑃𝐼, and 𝑆𝐼 scores and lower 𝐴10 − 𝐼 values. On the other hand, the RF model 
demonstrated exceptional performance, outperforming the other models in terms of these 
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Figure 10. Spider plot showing the performance metrics of the different models.

Figure 11 illustrates the performance of ML models in predicting Vs as evaluated
using four performance metrics: U95 , A10− I, PI, and SI. The results indicate that the
DT model achieved lower performance in comparison to other models, as evidenced by
its higher U95 , PI, and SI scores and lower A10− I values. On the other hand, the RF
model demonstrated exceptional performance, outperforming the other models in terms of
these performance indicators. In terms of SI, the RF, SVM, and XGBoost models achieved
excellent precision (EP), with SI < 0.05 on both the training and testing datasets. In
contrast, the DT model achieved good precision with 0.05 < SI < 0.1 on the training and
testing datasets. Overall, the RF model ranked first, outperforming the other three ML
models, while the DT model ranked fourth. The SVM and XGBoost models ranked second
and third, respectively.

To further assess the performance of the ML models, a comparison was made between
model-predicted VS values and estimated VS values based on existing empirical correlation.
A correlation model was selected to estimate VS from CPT soundings. Equation (12) [80]
was utilized for the estimation of VS from CPT soundings.

VS = 100.31Ic+0.77 ×
√
(qc − σv0)/pa (12)

where VS is soil shear wave velocity, Ic is soil behavior type index, qc is cone tip resistance,
σv0 is total overburden pressure, and pa is atmospheric pressure.

This correlation model served as a benchmark for evaluating the accuracy and reli-
ability of the ML models’ predictions. Figure 12 illustrates the models’ predictions (red)
alongside the profiles of estimated VS values (black) based on the empirical correlations.
The results of this comparison indicate a high level of agreement between the predicted VS
values and the estimated VS values. This demonstrates that the ML models can produce
accurate predictions in line with the established correlations.
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6. Conclusions

This study utilized various ML algorithms, including RF, SVM, DT, and XGBoost, to
predict VS from CPT data. To train and test these ML models, we used a previously pub-
lished open-source CPT dataset. The hyperparameters of each ML model were fine-tuned
through Bayesian optimization with cross-validation techniques. Eight performance met-
rics, namely RMSE, MAE, MAPE, R2, A10− I, SI, PI and U95, provided quantitative
evaluation of the models. Based on our results, the following conclusion can be drawn:

• The RF model outperformed the other ML models, achieving the lowest error metrics
on both the training and testing datasets. Specifically, it achieved an RMSE of 0.46
and 0.96, an MAE of 0.24 m/s and 0.5 m/s, and an MAPE of 0.17% and 0.36%,
respectively. The model also demonstrated low scatter, with SI values of 0.003 and
0.006, and PI values of 0.002 and 0.004 on the training and testing datasets, respectively.
Additionally, the RF model achieved R2 and A10− I values of 1 on both datasets,
indicating a perfect fit. Furthermore, the RF model recorded the lowest uncertainty,
with a U95 value of 1.24 on the training dataset.

• The SVM and XGBoost models also exhibited strong performance, with slightly higher
error metrics compared with the RF model. These two models ranked second and
third, respectively, following the RF model, which achieved the highest performance.
However, the DT model performed poorly, with higher error rates and uncertainty in
predicting Vs.

• The RF model demonstrated its overall superior performance and high accuracy in
predicting soil Vs, even when trained with minimal input features. Hence, owing to its
excellent performance across multiple metrics, the RF model can be integrated into a
software package for rapid and accurate prediction of soil Vs.

• In summary, while this study relied solely on CPT data for training ML models, it is
important to recognize the limitations of the CPT, particularly its primary suitability
for fine-grained soils. To further enhance the application of ML models in soil char-
acterization, future research should consider incorporating experimental results and
data for coarse-grained soil types.
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A10− I Engineering index with ±10% deviation R2 Coefficient of determination
ANN Artificial neural network R f Friction ratio
CPT Cone penetration test RF Random forest
D Depth of soil (m) RMSE Root mean squared error
DT Decision trees SCPT Seismic cone penetration testing
Fr Normalized friction ratio SD Standard deviation
fs sleeve friction SI Scatter index
Ic Soil behavioral type index SVM Support vector machine
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IQR interquartile range U95 Uncertainty at
95% confidence interval

MAE Mean absolute error Vs Shear wave velocity
MAPE Mean absolute percentage error σv0 Total overburden stress
MASW Multi-Channel Analysis of Surface Waves σ′v0 Effective overburden stress
ML Machine learning Pa Atmospheric pressure
n Total number of datasets Q3 Third quartile
Pa Atmospheric pressure X Mean

PI Performance index
_
Xi Predicted value of ith observation

qc cone tip resistance Xi Actual value of ith observation
Q1 First quartile XGBoost Extreme gradient boosting
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