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Featured Application: The developed deep-learning-based computer-aided detection system serves
as a powerful tool for the assessment of root dilaceration in dental panoramic radiographs.

Abstract: Understanding usual anatomical structures and unusual root formations is crucial for
root canal treatment and surgical treatments. Root dilaceration is a tooth formation with sharp
bends or curves, which causes dental treatments to fail, especially root canal treatments. The
aim of the study was to apply recent deep learning models to develop an artificial intelligence-
based computer-aided detection system for root dilaceration in panoramic radiographs. A total
of 983 objects in 636 anonymized panoramic radiographs were initially labelled by an oral and
maxillofacial radiologist and were then used to detect root dilacerations. A total of 19 state-of-the-art
deep learning models with distinct backbones or feature extractors were used with the integration
of alternative frameworks. Evaluation was carried out using Common Objects in Context (COCO)
detection evaluation metrics, mean average precision (mAP), accuracy, precision, recall, F1 score and
area under precision-recall curve (AUC). The duration of training was also noted for each model.
Considering the detection performance of all models, mAP, accuracy, precision, recall, and F1 scores
of up to 0.92, 0.72, 0.91, 0.87 and 0.83, respectively, were obtained. AUC were also analyzed to better
understand where errors originated. It was seen that background confusion limited performance.
The proposed system can facilitate root dilaceration assessment and alleviate the burden of clinicians,
especially for endodontists and surgeons.

Keywords: root dilaceration; deep learning; detection; panoramic; artificial intelligence

1. Introduction

Root dilaceration refers to an abnormality in tooth development, characterized by
a deviation from the longitudinal axis, a sharp bend, or curvature in the tooth’s root [1].
Initially identified by Tomes in 1848, this anomaly is recognized as an irregular deviation of
both the crown and roots [2]. The etiology of root dilacerations remains partially unknown,
with no broadly acknowledged theory or supporting scientific evidence to explain their
formation. However, several potential causes have been discussed in earlier studies,
including trauma, genetics, spatial constraints, proximity to cysts, tumors, or unanatomical
structures [1,3,4]. The most effective method for diagnosing root dilacerations is through
radiographic examination.

A high degree of root curvature is significantly risky as it can lead to increased force
and stress when occlusal forces are applied to the tooth, causing instability. Maintaining
control over dental instruments during endodontic treatment becomes vitally important,
particularly in the case of canal curvature. The occurrence of dilaceration is regarded as
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the key dental factor influencing the success of endodontic treatment. The extraordinary
angulation of the root can lead to complications such as ledge, transport, zipping, and
broken file [3,5,6]. Additionally, root resorption can occur during orthodontic treatment
in cases involving dilacerated roots [7]. It is also noteworthy that dilaceration is the most
common cause of eruption failure in permanent central incisors [8]. Consequently, it is
essential to monitor root development in terms of angulation, position, and shape, and
crucially, to diagnose any dilacerations prior to orthodontic, endodontic, and surgical
treatments. The reported prevalence of root dilacerations fluctuates greatly across studies,
with a range from 2.12% to 69.4% [9–14]. This variation arises due to differences in the
criteria used to define root dilaceration, methodologies employed, and other influential
factors such as trauma history, ethnicity, and gender [15–17]. Despite many studies, there
remains no consensus on the definition of dilaceration for determining the prevalence or
the specific location of the dilaceration. Chohayeb et al. defined dilaceration as apical
deviations greater than 20 degrees from the normal axis of the tooth in the roots; whereas,
Hamasha et al. and Malcic et al. and others considered the angle to be 90 degrees in the
anterior or posterior plane [1,5,6,9]. Schneider et. al. classified dilacerations into mild
(20–40 degrees), moderate (40–60 deg) and extreme (beyond 60 deg) according to the angle
of the root [18].

Deep learning, an integral branch of artificial intelligence (AI), is characterized by its
use of algorithms that can learn and improve from a vast array of input data. This capac-
ity for learning enables computer systems to resolve complex problems more efficiently,
making it a powerful tool in data-heavy fields. Transitioning to the realm of dentistry, the
potential and practicality of deep learning becomes increasingly clear. In this context, deep
learning has been successfully utilized to automate and refine a multitude of tasks [19–25].
Considering the time-consuming and complicated nature of recognizing all related signs of
dental conditions, deep-learning-based detection approaches are needed to save clinicians’
time and improve their work quality performance.

In this work, we aim to develop a computer-aided decision support system to auto-
matically detect root dilaceration in panoramic radiographs. A tooth was determined as
having root dilaceration if there was an angulation or curvature of 20 degrees or more
from the normal axis in the anterior or posterior plane. Anterior and posterior deviations
were examined in PRs. A total of 19 different state-of-the-art deep-learning-based detection
models were applied including Faster R-CNN, SSD, YOLO, and RetinaNet. Moreover,
various backbones and feature extractors, such as ResNet-50, ResNet-101 and DarkNet53,
were also employed together with the detectors. As an alternative to current detection
frameworks, the Side-Aware Boundary Localization approach, cascaded networks, and
Libra and Dynamic frameworks were also integrated to determine their effect on the detec-
tion results. Each model’s performance was evaluated using Common Objects in Context
(COCO) detection evaluation metrics, mean average precision (mAP), accuracy, precision,
recall, F1 score and precision-recall curve.

2. Materials and Methods

This study was carried out in accordance with the Helsinki Declaration standards.
It was approved by the Ethical Review Board of University (approval number 2023-78).
Digital PRs were taken from the same dental panoramic device, Planmeca oy, Helsinki,
Finland. This is a retrospective and exploratory study that investigates the role of artificial
intelligence in detecting root dilaceration. Figure 1 presents a step-by-step flowchart of
the study.

PRs were randomly chosen from images taken between 2022 and 2023 from patients
who were older than 18 years old. The inclusion criteria were the presence of root di-
laceration and exclusion criteria were metallic artifacts, position-based distortions and
incomplete root formations in the radiographs. Finally, 636 PRs with a total of 983 objects
were selected. They were all anonymized to remove identifying information.
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of experience in the field labelled the images. The smallest rectangular boxes covering the 
dilacerated roots were defined as the ground truth. The data were labelled again by the 
same expert after two weeks, which confirmed consistency with the previous step. 
LabelMe, the open annotation tool, was used to prepare the annotations. Training, valida-
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The only class defined was root dilaceration in PRs. After two weeks, all images were
examined again by the radiologist to confirm the presence of root dilaceration. Before the
labelling process, a calibration session was performed as a pilot on 48 PRs that were not
included in this study. An oral and maxillofacial radiologist (B.Ç.) with more than 6 years
of experience in the field labelled the images. The smallest rectangular boxes covering the
dilacerated roots were defined as the ground truth. The data were labelled again by the
same expert after two weeks, which confirmed consistency with the previous step. LabelMe,
the open annotation tool, was used to prepare the annotations. Training, validation, and
test folders were randomly created with ratios of 0.8, 0.1, and 0.1, respectively.

PyTorch and Google CoLab were mainly used to implement deep learning models
regarding root dilaceration detection. Figure 2 shows PRs with root dilaceration as an
example to show the inputs used for the proposed object detection solution. Before feeding
into the deep learning models, data were pre-processed, which included typical operations
such as resizing, flipping, normalizing and padding.

2.1. Object Detection and Detectors

This section briefly explains the object detection task and introduces the deep-learning-
based detectors used in this work. The object detection task basically tries to find where
object locations are, and which class object belongs to the images. Compared to traditional
techniques using hand-crafted features, deep-learning-based approaches take advantage
of hierarchical feature representation, high learning, and expressing capability and joint
optimization of classification and localization in a multitask learning approach thanks to a
hierarchical multistage deep structure. The two types of deep-learning-based generic object
detection frameworks are region proposal-based techniques and regression/classification-
based techniques. The former technique generates region proposals and later classifies
each proposal into object classes whereas the latter approximates object locations directly
without choosing interested parts. R-CNN, Fast R-CNN, and Faster R-CNN are region
proposal-based models; on the other hand, YOLO, SSD, and RetinaNet are regression-
based methods.

There are 19 state-of-the-art deep learning detection models including two-stage
and one-stage detectors. Faster RCNN and RCNN are two-stage techniques that need a
backbone as a feature extractor whereas SSD, YOLO, and RetinaNet perform detection in a
single-step. ResNet-50 and ResNet-101 and DarkNet-53 CNNs are used as a backbone for
detectors. In addition to detectors, models with new frameworks or approaches to improve
existing performance were also used. The training batch size was 8. The stochastic gradient
descent (SGD) optimization algorithm was used with a learning rate of 0.01, momentum of
0.9 and weight decay of 0.0001. A step learning rate scheduler was used as the optimizer.
Models were evaluated on mean average precision, accuracy, precision and recall metrics.
Outputs were analyzed using precision-recall curves for the best performing models.



Appl. Sci. 2023, 13, 8260 4 of 13

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 14 
 

Figure 1. Flowchart of the study. Collected data were refined according to criteria, then labelled and 
fed into deep learning models, resulting in their predictions in detecting root dilacerations. 

PRs were randomly chosen from images taken between 2022 and 2023 from patients 
who were older than 18 years old. The inclusion criteria were the presence of root dilacer-
ation and exclusion criteria were metallic artifacts, position-based distortions and incom-
plete root formations in the radiographs. Finally, 636 PRs with a total of 983 objects were 
selected. They were all anonymized to remove identifying information. 

The only class defined was root dilaceration in PRs. After two weeks, all images were 
examined again by the radiologist to confirm the presence of root dilaceration. Before the 
labelling process, a calibration session was performed as a pilot on 48 PRs that were not 
included in this study. An oral and maxillofacial radiologist (B.Ç.) with more than 6 years 
of experience in the field labelled the images. The smallest rectangular boxes covering the 
dilacerated roots were defined as the ground truth. The data were labelled again by the 
same expert after two weeks, which confirmed consistency with the previous step. 
LabelMe, the open annotation tool, was used to prepare the annotations. Training, valida-
tion, and test folders were randomly created with ratios of 0.8, 0.1, and 0.1, respectively. 

PyTorch and Google CoLab were mainly used to implement deep learning models 
regarding root dilaceration detection. Figure 2 shows PRs with root dilaceration as an ex-
ample to show the inputs used for the proposed object detection solution. Before feeding 
into the deep learning models, data were pre-processed, which included typical opera-
tions such as resizing, flipping, normalizing and padding. 

 

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 14 
 

 

 

Figure 2. Example PRs with root dilacerations. Red rectangular boxes indicate dilacerated roots that 
were also used as ground truths. Arrows show dilacerated roots. 

2.1. Object Detection and Detectors 
This section briefly explains the object detection task and introduces the deep-learn-

ing-based detectors used in this work. The object detection task basically tries to find 
where object locations are, and which class object belongs to the images. Compared to 
traditional techniques using hand-crafted features, deep-learning-based approaches take 
advantage of hierarchical feature representation, high learning, and expressing capability 
and joint optimization of classification and localization in a multitask learning approach 
thanks to a hierarchical multistage deep structure. The two types of deep-learning-based 
generic object detection frameworks are region proposal-based techniques and regres-
sion/classification-based techniques. The former technique generates region proposals 
and later classifies each proposal into object classes whereas the latter approximates object 
locations directly without choosing interested parts. R-CNN, Fast R-CNN, and Faster R-
CNN are region proposal-based models; on the other hand, YOLO, SSD, and RetinaNet 
are regression-based methods. 

There are 19 state-of-the-art deep learning detection models including two-stage and 
one-stage detectors. Faster RCNN and RCNN are two-stage techniques that need a back-
bone as a feature extractor whereas SSD, YOLO, and RetinaNet perform detection in a 
single-step. ResNet-50 and ResNet-101 and DarkNet-53 CNNs are used as a backbone for 
detectors. In addition to detectors, models with new frameworks or approaches to im-
prove existing performance were also used. The training batch size was 8. The stochastic 

Figure 2. Example PRs with root dilacerations. Red rectangular boxes indicate dilacerated roots that
were also used as ground truths. Arrows show dilacerated roots.

The Cascade R-CNN model was developed from improvements on the Faster R-CNN
model [26]. It outperforms Faster R-CNN in object detection and Mask R-CNN in the
segmentation task. In this study, a ResNet101 backbone was used for this model.

Faster R-CNN was obtained with the improvements on the Fast R-CNN model [27].
It combines the Region Proposal Network (RPN) and Fast R-CNN for object detection. A
ResNet101 backbone was used for this model.
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RetinaNet is a one-stage object detector developed by Lin et al. [28]. It is a single
network including a backbone and two task-specific subnetworks. It uses a focal loss
function for class imbalances. ResNet50 was used for this model.

YOLOv3 is an another one-stage model [29]. It has been updated based on the previous
version with its feature extractor that has skip connections and three prediction heads that
are each used for image processing at different spatial compressions.

The SSD (Single Shot MultiBox Detector) model is a one-stage deep learning model
developed by Liu et al. [30]. The significant improvement is the speed that is provided by
removing bounding box proposals and the feature resampling stage.

RegNetX is a convolutional network design space with simple, regular models that
parametrize populations of networks. RegNetX was implemented with Faster R-CNN.

Libra R-CNN is an object detection model focused on the training process [31]. It is a
simple and effective approach for balancing datasets by integrating IoU sampling, a feature
pyramid, and L1 loss. ResNeXt-101-FPN was used as a backbone.

Deformable convolutional networks, also known as deformable ConvNets, is a deep
learning model created by Dai et al. [32]. This model can augment the spatial sampling
locations in the modules with additional offsets and learn the offsets from the target tasks,
without additional supervision.

DetetoRS is a deep learning model created by Qiao et al. [33]. It provides a new
mechanism in the backbone design. This model uses Recursive Feature Pyramid and
Switchable Atrous Convolution. ResNet50 was used as backbone.

Dynamic R-CNN is a two-stage object detection model [34]. It addresses dynamic
training procedures to mitigate inconsistency problems between the fixed settings by ad-
justing the shape of regression loss function and the label assignment criteria automatically.
ResNet50 was used as a backbone.

NAS-FPN is a deep learning model developed by Ghiasi et al. [35]. It proposes a new
feature pyramid architecture to overcome the large search space of pyramidal architectures.
This model uses a combination of scalable search space and a neural architecture search
algorithm instead of manually designing architectures for pyramidal representations.

Grid R-CNN is a novel object detection model which adopts a grid-guided localization
mechanism for accurate object detection [36]. It gives better average precision on the COCO
benchmark compared to Faster R-CNN with a ResNet50 backbone and FPN architecture.
Resnext101 was used as a backbone.

The Hybrid Task Cascade (HTC) model was created by modifying the Cascade Mask
R-CNN model designed by Chen et al. [37]. It takes advantage of a powerful cascade
architecture. Faster RCNN with weight standardization was presented by Qiao et. al. [38].

FreeAnchor is an approach that updates the hand-crafted anchor assignment to free
anchor matching by formulating detector training as a maximum likelihood estimation
(MLE) procedure [39]. It allows objects to match anchors in a flexible manner. ResNet50
was used as a backbone.

FCOS (Fully Convolutional One-Stage Object Detector) is an object detection model
created by Tian et al. [40]. Most state-of-the-art object detectors rely on pre-defined anchor
boxes, but this model is anchor-box free, as well as proposal free. The elimination of anchor
boxes eliminates complicated computations. ResNet50 was used as a backbone.

Adaptive Training Sample Selection (ATSS) is a method of automatically selecting
positive and negative samples based on the statistical properties of the object [41]. This
method fills the gap between anchor-based (Faster R-CNN, YOLOv3 etc.) and anchor-free
detection (FCOS, FoveaBox etc.). ResNet101 was used as a backbone.

FoveaBox, like FCOS, is a completely anchor-free object detection model [42]. This
model directly learns the object’s existing possibility and the bounding box coordinates
without an anchor reference by predicting category-sensitive semantic maps for the object’s
existing possibility.
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Side-Aware Boundary Localization (SABL) is an approach developed by Wang et al. [43].
It proposes a two-step localization scheme, which first predicts a range of movement through
bucket prediction and then pinpoints the precise position within the predicted bucket.

We used a transfer learning concept in this work. Detectors that were pre-trained
on the COCO (Common Objects in Context) dataset were employed. Transfer learning
refers to leveraging feature representations from pre-trained models. Pre-trained models
were usually trained on a sufficient amount of data that was a standard benchmark for
computer vision applications. It allows the use of the weights of the pre-trained models
while initializing the weights for a new application, dental images in our case. Practically,
transferring information from previously learned tasks for the learning of new tasks has
the potential to significantly improve performance.

2.2. Evaluation Criteria

Object detection tasks are mainly evaluated by mean average precision (mAP), which
is a standard metric used to assess performances of object detection models in computer
vision. Many object detection algorithms and benchmark challenges use it to evaluate
models, for instance, detectors such as Faster R-CNN, YOLO, SSD, and MobileNet. On the
other hand, Pascal, VOC and COCO challenges utilize mAP.

Calculation of mAP is related to Intersection over Union (IOU). IOU refers to the
overlap of the predicted bounding box and the ground truth. Values close to 1 show how
close the predicted bounding box is to the ground truth.

IoU =
area(ground truth ∩ predicted)
area(ground truth ∪ predicted)

(1)

IOU is primarily used for a confusion matrix that is a table listing predictions and
ground truths for each class. It gives classifier performance with four values: true posi-
tive, true negative, false positive, and false negative. Evaluation metrics such as accuracy,
precision, recall and F1 score are calculated using a confusion matrix, as presented in
Table 1. Accuracy defines the number of correct predictions over all the predictions.
Precision measures how correct the positive predictions made are. Recall, or sensitivity,
measures how correct true positives are over all predictions. F1 score measures how correct
the model finds true positives over all predictions. It takes precision and recall together and
outputs a single metric that is more sensitive to a lower value, which makes it an optimal
confidence metric.

Table 1. Calculation of precision, recall, accuracy and F1 score based on confusion matrix.

Precision True Positive/True Positive + False Positive

Recall (sensitivity) True Positive/True Positive + False Negative

Accuracy True Positive + True Negative/All predictions

F1 Score 2 ∗ True Positive/2 ∗ True Positive + False Positive + False Negative

Object detection tasks make use of IOU to calculate precision in such a way that if an
object has a higher IOU with respect to ground truth than the IOU-threshold, mostly 0.5,
it is then classified as a true positive. Mean average precision (mAP), on the other hand,
refers to the average of average precision (AP) of each class. AP is calculated by the area
under precision-recall curve with distinct IOU thresholds as shown in Table 2.

Table 2. Equations for average precision and mean average precision.

Average Precision Mean Average Precision for n-Classes

APthreshold =
∫ 1

0 p(x)dx mAPthreshold = 1
n

n
∑

i=1
APi
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Some of the Common Objects in Context (COCO) metrics appear in the precision-recall
curve so that area under curve (AUC) is provided for different metrics as a figure legend.
Briefly, C75 and C50 indicate an AUC for IOU of 0.75 and 0.5, respectively. Loc cites AUC
ignoring localization errors. Sim, Oth and FN show AUC while removing super-category
class confusions, class confusions and all remaining errors, respectively.

3. Results

The performance evaluation process of the models can be analyzed in two different
parts. Detection performance is evaluated by mean average precision (mAP) and classifi-
cation is assessed by accuracy, precision, recall, and F1 score that were calculated by the
Intersection over Union of 0.5 for detection. Additionally, COCO metrics in addition to
precision-recall curve, AUC and loss graphs were also provided. Table 3 presents root
dilaceration detection results using Faster R-CNN, R-CNN, SSD, YOLOv3, RetinaNet,
anchor-free models and models with alternative frameworks applied to our dataset.

Table 3. Detection results of deep learning models for the presence of root dilaceration. mAP refers
mAP when IOU is 0.5. A, P and R stand for accuracy, precision and recall, respectively. T-Time refers
to how long it takes to train each model.

Detector—Backbone mAP A P R F1 Score T-Time

Cascade RCNN Resnet101 0.9 0.72 0.83 0.84 0.83 5 h-28 m

Faster RCNN Resnet101 0.84 0.62 0.91 0.66 0.77 4 h-11 m

RetinaNet Resnet50 0.89 0.72 0.9 0.78 0.83 2 h-54 m

Yolov3 DarkNet53 0.87 0.63 0.72 0.82 0.77 2 h-38 m

SSD 0.68 0.48 0.66 0.65 0.65 3 h-31 m

RegNetx 0.85 0.69 0.77 0.86 0.82 4 h-15 m

Libra RCNN Resnext101 0.87 0.67 0.91 0.72 0.80 16 h-02 m

Deformable CNs 0.83 0.62 0.76 0.77 0.76 8 h-52 m

DetectoRS Resnet50 0.83 0.64 0.83 0.74 0.78 13 h-55 m

Dynamic RCNN Resnet50 0.87 0.7 0.83 0.81 0.82 3 h-13 m

NAS FPN 0.85 0.69 0.88 0.76 0.81 2 h-32 m

Grid RCNN Resnext101 0.83 0.64 0.77 0.79 0.78 12 h-33 m

HTC RCNN Resnext101 0.89 0.67 0.79 0.81 0.80 11 h-00 m

Faster RCNN with WS BCN 0.85 0.64 0.71 0.87 0.78 3 h-47 m

FreeAnchor Resnet50 0.92 0.56 0.91 0.59 0.72 3 h-7 m

FCOS Resnet50 Caffe 0.89 0.62 0.72 0.81 0.76 7 h-31 m

ATSS Resnet101 0.92 0.66 0.81 0.78 0.8 7 h-14 m

FoveaBox 0.89 0.69 0.88 0.76 0.81 4 h-36 m

SABL 0.88 0.63 0.84 0.71 0.77 7 h-00 m

The detection performance of the models was analyzed by mAP that varied between
0.68 and 0.92. Except SSD, all other models successfully detected root dilacerations with a
success rate higher than 0.83. The best two models were FreeAnchor Resnet50 and Cascade
RCNN Resnet101 with 0.92 and 0.9. Accuracy varied between 0.48 and 0.72, and the best
accuracy was provided by the Cascade RCNN Resnet101 and RetinaNet Resnet50 models
with 0.72. Precision varied between 0.66 and 0.91. Faster RCNN Resnet101, Libra RCNN
Resnext101 and FreeAnchor Resnet50 showed the highest precision with 0.91. Recall varied
between 0.59 and 0.87. Faster RCNN with weight standardization (WS) and batch-channel
normalization (BCN) and RegNetx provided the highest recall with 0.87 and 0.86. F1 score
varied between 0.65 and 0.83. Cascade RCNN Resnet101 and RetinaNet Resnet50 were
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superior to the others with 0.83. The training time for each model is also given in Table 1.
Libra RCNN Resnext101 had the longest training time whereas RetinaNet Resnet50 was
trained at the earliest. Figure 3 illustrates model predictions for root dilacerations with
predicted bounding boxes and labels.
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Two models were chosen for further analysis of the results, Cascade RCNN with
ResNet101 as a backbone and RetinaNet with ResNet50. Precision-recall curve and training-
validation losses were presented.

The precision-recall curve is very useful to better understand where a corresponding
model needs to be improved, in other words, in which step it fails. Detection failures were
categorized into four classes, namely, object localization errors, class-based confusions, and
false-positives caused by background and missing detections as shown in Figure 4. It was
seen that the AUC values while IOU was equal to 0.5 were 0.839 and 0.887 for Cascade
RCNN and RetinaNet, respectively. They became 0.853 for Cascade RCNN and stayed the
same for RetinaNet when localization errors were corrected. Removal of class confusions
did not change the AUC for either of the models. It was seen that background confusion
limited the performance of the models. The AUC would have been 0.891 and 0.96 when
background confusions were removed.
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4. Discussion

As one of the most frequently used imaging modalities in routine dentistry, panoramic
radiographs scan a wider range of dental structures with relatively low radiation, which
makes them an essential tool for diagnosis in clinics [44,45]. Considering complex oral
structures, busy working conditions, and lack of time, deep-learning-based computer-aided
detection systems can advance the quality of daily routines and treatment planning by
providing instant image analysis for clinicians. In this context, we applied state-of-the-art
deep learning models to detect root dilaceration in panoramic radiographs.

To the best of our knowledge, this is the first and most comprehensive study on
detecting root dilaceration directly using deep learning. There is no other study that can
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directly be compared with this work. Previous studies are mostly based on evaluating the
prevalence of root dilaceration using different types of radiographs, including panoramic
radiographs, periapical radiographs and cone-beam computed tomography images, and
case reports on treatment management. Very limited previous studies that were indirectly
related to root dilaceration using artificial intelligence were also discussed as shown in
Table 4.

Table 4. Comparisons with previous studies. Task indicates what kind of application was performed
among classification, detection and segmentation. Metrics shows what kind of evaluation metrics
were reported in the corresponding studies.

Author Task Type of Image Model Data Size Metrics

Lee et al. Detection—dental
anomaly Panoramic Faster RCNN 23,000

Precision: between 42–74%
Sensitivity: between 27–100%
Specificity: between 89–99%

Welk Classification—dental
anomaly Panoramic

ResNet-18
VGG11
ResNet-50
VGG16
Inception v2
Inception v3

1964

Sensitivity (recall): 0.47
Specificity: 0.59
F1 score: 0.28
Accuracy: 0.57

This work Detection Panoramic
19 Deep
Learning
Models

636

mAP
Accuracy
Precision
Recall
F1 Score
Time Duration

Lee et al. used artificial intelligence to detect 17 fine-grained dental anomalies using
23,000 panoramic radiographs [46]. R-CNN and Detectron-2 were used for detection.
Root dilaceration was mentioned in the supernumerary tooth section of dental anomalies
category but was not specifically examined. Supernumerary teeth were shown to be
one of the causes of root dilaceration. Precision, sensitivity (recall) and specificity for
supernumerary tooth detection values were 0.32, 0.62 and 0.97, respectively. Compared to
this study, the proposed work provides superior results: detected root dilacerations with a
varying mAP of between 0.68 and 0.92. Precision and recall values were between 0.66 and
0.91 and 0.59 and 0.87, respectively.

Welk J. used machine learning to predict canine eruption and some other anomalies
in panoramic radiographs [47]. When mentioning the high incidence of maxillary canine
impaction and common etiologic aspects, root dilaceration was shown to be a localized
factor. The final results reported that the sensitivity (recall), specificity, F1 score, and
accuracy values were 0.479, 0.592, 0.28 and 0.572, respectively. Compared to the presented
findings, the proposed deep learning models showed better performance.

Software for accurate detection and assessment of root dilaceration holds great rele-
vance to the clinic due to its potential impact on improving patient outcomes and treatment
planning in dentistry. By applying deep learning techniques to panoramic radiographs
taken during routine imaging examinations, clinicians can benefit in several ways:

• Early Detection: Deep learning models can identify root dilacerations at an early
stage even if the patient is not there for a root dilaceration-related case, which allows
clinicians to promptly intervene and implement appropriate treatment strategies. Early
detection may prevent further complications, such as tooth impaction, misalignment,
or delayed eruption;

• Accurate Diagnosis: Deep learning algorithms can aid in accurately diagnosing root
dilacerations with high performance. This can reduce the risk of misinterpretation or
missed diagnoses, ensuring that patients receive timely and accurate treatment;
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• Treatment Planning: The detection of root dilacerations through deep learning can
significantly influence treatment planning decisions. Clinicians can better anticipate
the complexity and challenges associated with these conditions, leading to more
informed treatment plans, including orthodontic interventions, surgical approaches,
or alternative treatment options.

• Enhanced Patient Care: By leveraging deep learning technology, clinicians can de-
liver more personalized and tailored care to patients with root dilacerations. This
can lead to improved patient satisfaction, reduced treatment time, and enhanced
treatment outcomes.

Ultimately, it will provide increased efficiency and improved accuracy in dental healthcare.
There are several limitations of this study that can positively affect the proposed

results. The first limitation is the sample size. Considering the exclusion criteria, more data
could increase the models’ performances. Data augmentation techniques were not used
because it was thought that the orientation of the image and the aspect ratio inherent in the
PRs were unique for the detection of root dilaceration. On the other hand, this work was
performed using panoramic images. They were routinely used during the first examination
thanks to the wide range of scanning areas with very low radiation compared to 3D imaging
modalities. If needed, 3D imaging modalities could also be used for further examinations
to identify root dilaceration clinically. As a future perspective, there needs to be more
collaboration between dental researchers, AI specialists, and ethicists to develop efficient,
reliable, and ethical tools. Moreover, the creation of large, diverse, and high-quality datasets
for training AI models should be prioritized, alongside robust data security and privacy
measures. Lastly, further efforts should be made to integrate AI applications into dental
practice management software to improve workflow efficiency. In the future, it is planned
that models can be further improved with multi-centered large balanced datasets. Also,
results will be compared with human observations on different levels.

5. Conclusions

The present work demonstrates that deep learning models can be effectively used as a
computer-assisted tool to automatically identify root dilacerations in panoramic radiographs.
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