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Abstract: Road extraction from high-resolution satellite images has become a significant focus in
the field of remote sensing image analysis. However, factors such as shadow occlusion and spectral
confusion hinder the accuracy and consistency of road extraction in satellite images. To overcome
these challenges, this paper presents a multi-scale fusion-based road extraction framework, HRU-Net,
which exploits the various scales and resolutions of image features generated during the encoding
and decoding processes. First, during the encoding phase, we develop a multi-scale feature fusion
module with upsampling capabilities (UMR module) to capture fine details, enhancing shadowed
areas and road boundaries. Next, in the decoding phase, we design a multi-feature fusion module
(MPF module) to obtain multi-scale spatial information, enabling better differentiation between
roads and objects with similar spectral characteristics. The network simultaneously integrates multi-
scale feature information during the downsampling process, producing high-resolution feature
maps through progressive cross-layer connections, thereby enabling more effective high-resolution
prediction tasks. We conduct comparative experiments and quantitative evaluations of the proposed
HRU-Net framework against existing algorithms (U-Net, ResNet, DeepLabV3, ResUnet, HRNet)
using the Massachusetts Road Dataset. On this basis, this paper selects three network models (U-
Net, HRNet, and HRU-Net) to conduct comparative experiments and quantitative evaluations on
the DeepGlobe Road Dataset. The experimental results demonstrate that the HRU-Net framework
outperforms its counterparts in terms of accuracy and mean intersection over union. In summary,
the HRU-Net model proposed in this paper skillfully exploits information from different resolution
feature maps, effectively addressing the challenges of discontinuous road extraction and reduced
accuracy caused by shadow occlusion and spectral confusion factors. In complex satellite image
scenarios, the model accurately extracts comprehensive road regions.

Keywords: high-resolution remote sensing images; road extraction; shadow occlusion; spectral
confusion; multi-scale fusion

1. Introduction

As an essential component of transportation, roadways exert a substantial impact
on various aspects of contemporary life, encompassing urban and rural development,
traffic management, and autonomous vehicle navigation [1]. In tandem with the evolution
of satellite remote sensing technology, high-resolution satellite imagery has arisen as a
crucial asset for digital image processing in the modern era [2]. As a result, the pursuit
of high-precision road extraction from high-resolution satellite imagery has attracted con-
siderable scholarly attention in recent years. However, complications from factors such
as illumination, shadow occlusion [3], and noise yield divergent features among identical
road targets, while spectral ambiguity resulting from the influence of neighboring materials
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(non-road targets displaying road-like properties) intensifies the difficulty of accurately
and comprehensively extracting roads from high-resolution satellite imagery [4].

Lately, in conjunction with the swift advancement of deep learning, an increasing
number of researchers have employed deep learning methods within the domains of image
categorization and semantic partitioning [5]. Convolutional neural networks have demon-
strated their efficacy in road extraction tasks due to their remarkable feature extraction
capabilities [6]. In comparison to conventional approaches requiring the manual extraction
of superficial features, deep learning methods not only enhance the precision of road
extraction but also display resilient performance in large-scale extraction efforts [7].

Mnih et al. [8] pioneered the implementation of deep learning techniques in road
extraction, proposing a method employing restricted Boltzmann machines for identifying
roads in high-resolution satellite imagery. Subsequently, Long et al. [9] presented fully
convolutional networks (FCNs), effectively addressing semantic segmentation in images.
By replacing fully connected layers with standard convolutions, FCNs enabled the shift
from elementary classification to pixel-level classification. Unfortunately, the continuous
downsampling operations in FCNs lead to the loss of numerous fine-grained details on
small feature maps, complicating the restoration of the original resolution and resulting
in segmentation challenges, such as blurred boundaries, indistinct edges, and insufficient
feature representation [10].

To counter these limitations, Ronneberger et al. introduced the U-Net, integrating
supplementary skip connections into an FCN to bolster the network’s ability to manage
intricate details. U-Net pioneered the encoder–decoder architecture, in which the encoder
reduces spatial dimensions and captures spatial detail information, while the decoder
reuses low-level features from the encoding stage to progressively restore input size and
recover spatial position information [11]. This approach adeptly retrieves a wealth of
spatial detail information and optimally exploits road texture information. However, as the
depth of the U-Net increases, issues such as gradient vanishing and explosion may occur.
Consequently, existing research focuses on enhancing network performance and stability by
leveraging the U-Net’s unique encoding and decoding architecture, while simultaneously
refining the network model [12]. For example, Zhang et al. [13] combined the advantages
of U-Net and ResNet to create the ResUNet, promoting information propagation through
abundant contract connections while fully capitalizing on the superior gradient propaga-
tion stability of the residual connection structure. Oktay et al. [14] incorporated an attention
mechanism into U-Net, yielding the attention U-Net model. This model highlights seg-
mented targets by suppressing feature responses in irrelevant background areas, thereby
improving segmentation accuracy and robustness. Furthermore, Zhou et al. [15] developed
the D-LinkNet model, which integrates dilated convolution modules into the U-Net model
to expand the receptive field and enhance the recognition capacity of large-scale objects in
the image by scaling and cropping the input image to various dimensions [16]. Nonetheless,
the capacity to discern multi-scale objects in the image remains insufficient, potentially
leading to the loss of road details, false positives, and false negatives, which negatively
impact the road segmentation outcome. To address these constraints, several empirical
studies [2,17–21] have demonstrated that road extraction algorithms can be improved
through the fusion of multi-scale spatial features.

For fixed-scale input images, the information acquired by feature extraction oper-
ators and classifiers remains constant. Insufficient information can result in improper
classification, while excessive information can impede target identification. Consequently,
Chen et al. [22] proposed the DeepLab series of networks, utilizing dilated convolutions
instead of upsampling and combining dilated convolutions with atrous spatial pyramid
pooling modules to augment the receptive field and obtain multi-scale features, thus
enhancing the model’s multi-scale prediction capabilities. However, the feature extrac-
tion method based on dilated convolutions can easily lose information related to small-
scale targets, as the convolution kernels solely extract features from restricted regions.
Wang et al. [23] introduced the HRNet, which employs a multi-branch structure to simulta-
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neously maintain high- and low-resolution features and repeatedly performs multi-scale
fusion to generate rich high-resolution representations. Nevertheless, in occluded images,
some resolutions may exhibit information deficits due to partial regions being obscured,
ultimately affecting the effectiveness of the resulting feature maps.

To effectively address the aforementioned challenges and further enhance road extrac-
tion performance, this paper presents a deep learning network model, HRU-Net, specifically
tailored for road features in remote sensing imagery, drawing inspiration from U-Net and
HRNet. The HRU-Net model inherits and incorporates the encoder–decoder architecture of
the U-Net, establishing an information propagation pathway for replicating low-level fea-
tures to their corresponding high-level representations, thus enriching high-level semantic
features with the finer details of low-level features. The model employs a parallel structure
within the sub-network to simultaneously preserve high- and low-resolution semantic
information. Concurrently, multiple UMR and MPF modules are designed between the
encoding and decoding components to optimally exploit multi-scale information. Both
modules progressively combine feature maps of different resolutions, integrating the global
contextual information of low-resolution feature maps with the robust detail information of
high-resolution feature maps to generate high-resolution feature map representations. Fur-
thermore, the different resolution feature maps acquired after fusion by the two modules
undergo frequent information exchange via a parallel structure, enhancing the utilization
of advantageous information, such as regions and boundaries, and mitigating the impact
of extraneous information, such as shadow occlusion. This process yields a high-resolution
feature map through consistent information interaction, ensuring the final prediction re-
sults closely approximate pixel-level accuracy and achieve a more precise local feature
discrimination capacity.

The proposed HRU-Net offers the following contributions: the design of UMR and
MPF modules within the network. The UMR module is a multi-scale fusion module
with upsampling functionality, merging features of varying resolutions post-upsampling
to generate larger resolution features for subsequent input into the subnet. In the MPF
module, features of identical resolution are combined and decoded synchronously via
upsampling. Simultaneously, the overarching network employs a parallel structure to
maintain the parallelism of low-resolution and high-resolution feature maps, continuously
executing multi-scale fusion operations to acquire multi-scale information and perpetually
exchanging information between different resolutions. Through incessant information
exchange, the model more effectively integrates multi-scale semantic information, consider-
ing the semantic information of high and low features, thereby augmenting the expressive
capacity of the network model. In comparison to existing models such as U-Net, ResNet,
DeepLabV3, ResUnet, and HRNet, the HRU-Net model’s unique parallel connection struc-
ture and continuous multi-scale feature integration and information exchange not only
preserve detailed information but also capture global features, achieving more accurate
road recognition.

The content arrangement of this paper in subsequent sections is as follows: Section 2
provides detailed information regarding the road detection network proposed in this paper;
Section 3 presents the experimental results, encompassing data introduction, experimental
settings, and result analysis; Section 4 constitutes the discussion segment; Section 5 offers
concluding remarks.

2. Methods
2.1. U-Net

The U-Net derives its name from its distinctive “U” shape structure, which was
conceived and adapted from the FCN network architecture [24]. In contrast to the FCN
network, the salient feature of the U-Net is its ability to generate a higher-precision image
segmentation model with a reduced quantity of training images, attributable to its unique
“U” shape structure. The left structure of the network constitutes the encoder, employing
convolution and pooling operations to downsample the input image, obtaining contextual
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information, and generating feature maps to extract rudimentary information. The right
structure represents the decoder, executing upsampling operations on the feature maps to
acquire more profound features. The central structure is the skip connection component,
fusing deep and shallow feature maps procured at the same stage to form a feature-
enhanced network. The network framework is implemented using convolution, pooling,
activation, and normalization techniques [25].

(1) Convolution: Convolution is the process of filtering the input image or feature map to
extract its feature information [26]. In the U-Net, convolution operations usually use
a 3 × 3 convolution kernel to convolve the input feature map and obtain the output
feature map. The convolution operation can be expressed by Equation (1):

y = f

(
n

∑
i=1

Xi ∗Wi + b

)
(1)

where Xi represents the input feature map, Wi represents the convolution kernel, b
represents the bias term, ∗ represents the convolution operation, n represents the
number of convolution kernels, and f represents the activation function.

(2) Pooling: Pooling operations involve the downsampling of input feature maps, de-
creasing the resolution and dimensions to enhance the computational efficiency and
diminish the complexity [27]. Pooling techniques can be categorized into two primary
types: max pooling and average pooling. Max pooling slides a fixed-size window
across the input feature map, selecting the maximum value within the window for
output. This operation accentuates prominent features while effectively reducing
spatial resolution. Conversely, average pooling utilizes the average value within the
window as output, smoothing the input feature map’s information and efficiently
lowering the spatial resolution. In the U-Net, 2× 2 max pooling is typically employed,
extracting the maximum value from four adjacent pixels in the input feature map.

(3) Activation Function: The activation function applies a nonlinear transformation to
the outcomes of convolution and pooling processes, bolstering their expressive capa-
bilities. Within the HRU-Net, the rectified linear unit (ReLU) function is employed,
offering rapid convergence and enhanced generalization capacity [28]. The ReLU
function can be expressed by Equation (2):

f (x) = max(0, x) (2)

(4) Normalization Layer: The normalization layer is a prevalent structure in neural networks,
responsible for normalizing the input data to stabilize and regulate the distribution. In
this study, batch normalization was employed, normalizing each layer’s input data within
the network [29]. This process results in more stable data distribution, facilitating model
training acceleration and enhancing generalization capabilities.

(5) Upsampling: Upsampling is the process of enlarging low-resolution feature maps
into high-resolution ones [30]. Typically, it is used alongside downsampling as a
conventional feature extraction technique. Within the realm of deep learning, two
principal techniques are utilized for the operation of upsampling, namely transposed
convolution (also referred to as deconvolution) and bilinear interpolation. In the
current investigation, our choice fell upon bilinear interpolation to serve as the up-
sampling module. This preference is rooted in several key factors: Firstly, bilinear
interpolation is more computationally efficient and faster compared to transposed
convolution. Secondly, bilinear interpolation is devoid of any parameters that require
learning, thereby simplifying the model and reducing the potential for overfitting.
Lastly, it avoids the so-called “checkerboard effect” that can result from transposed
convolution, thereby ensuring a smoother output image [31].

Thus, through employing bilinear interpolation for image enlargement in our research,
we have managed to preserve, to a certain extent, image smoothness and detail information.
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This has had the effect of enhancing the network’s resolution, thus augmenting the model’s
accuracy and stability.

2.2. HRNet

A high-resolution network (HRNet) is a convolutional neural network that was intro-
duced in 2019 for high-resolution image classification and segmentation. It enhances the
quality of feature representation through multi-resolution feature extraction and fusion
while bolstering computational efficiency via a cross-branch network structure [32]. HRNet
employs a parallel branch configuration, directing input images to multiple sub-networks
for feature extraction. Subsequently, it interacts with and fuses different resolution features,
performing classification or segmentation through global pooling and fully connected
layers [33]. HRNet’s exceptional performance stems from the application of techniques,
such as multi-resolution feature extraction and fusion, and cross-branch network structures,
which effectively elevate the quality of feature representation and computational efficiency.

2.3. HRU-Net
2.3.1. Multi-Feature Module Construction

In delivering greater road details, high-resolution remote sensing images also expose
distinctions among roads at varying levels, such as road materials, grades, and surrounding
environments. To further augment the network’s capacity for detail expression and feature
extraction, we initially contemplated utilizing a “U”-shaped network structure in construct-
ing our method. This structure performs four downsampling operations in the encoder,
broadening the receptive field range. It enables features to propagate between low-level
and high-level features more straightforwardly, fosters backpropagation in network model
training, and supplements additional detail information to high-level semantic features.
Nevertheless, while expanding the receptive field through downsampling, some road
detail information is lost, proving challenging to recover or even vanishing during forward
propagation in the network. Consequently, we designed the UMR and MRF modules to
concurrently consider multiple levels of semantic features, capture multiscale information,
and contemplate local road detail information.

(a) UMR Module

In this study, as the extraction level deepened, the semantic features obtained gradually
deepened and became more abstract. We designed four multi-feature fusion modules
(UMRs) in the encoding phase, which fused feature maps from different levels of the
network into a high-resolution feature map through upsampling techniques. This design
helps to capture and utilize abstract features at each level, thereby enhancing the model’s
feature expression capabilities.

As shown in Figure 1, the UMR module first received feature maps from the previous
and the same layer of the network as inputs. Subsequently, we performed bilinear interpo-
lation on the small-sized feature map from the next layer of the network, aligning its size
with the other inputs. Afterward, we performed a Concat operation on all adjusted feature
maps to merge and further extract features. During the forward propagation process of the
model, we used parallel downsampling strategies to process the high-resolution feature
map fused after four UMR modules, thereby reducing the size of the output feature map.
At the same time, we used the output of this module as the input for path 1 of the next
UMR module in order to repeat the Concat connection and downsampling operations,
gradually enhancing the resolution of the feature map.

(b) MRF Module

In the decoder part of our study, we set up four multi-resolution feature (MRF) mod-
ules to cascade feature maps at different levels for feature extraction. As depicted in
Figure 2, the MRF module receives the output feature map of the upsampling multi-feature
fusion (UMR) module at the same level in the encoder stage as the input through path 1
and receives the feature map upsampled in the decoder stage through path 2.
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Figure 1. This is the UMR module structure diagram. Different colored cubes represent feature
maps of different sizes. The numbers 1, 2, and 3 respectively signify feature map input connections
coming from the previous layer, the same layer, and the next layer in the network. Squares represent
feature maps.

Figure 2. This is the MRF module structure diagram. Different colored cubes represent feature maps
of different sizes. The numbers 1 and 2 respectively signify the feature map input connections coming
from the same layer and the next layer in the network. Squares represent feature maps.

Initially, two feature maps of the same size were input for a Concat operation, and
feature extraction was performed through a combination of two 3 × 3 convolutions and
ReLU activation functions. Subsequently, the output of this module was connected with
the output of the UMR module at the next level and used as the input for the next MRF
module for concatenation and feature extraction operations.

In this process, we chose the Concat operation over summation because concatenation
can retain the original information of the feature maps at each level, avoiding mutual
interference of features. Our choice of the combination of 3 × 3 convolution and the ReLU
activation function aimed to achieve a good feature extraction effect while keeping the
number of parameters under control.

This design allowed the decoder to effectively utilize multi-scale feature maps gener-
ated by the encoder, and the MRF modules iteratively fused and upsampled the feature
maps. By concatenating the feature maps at different levels, the network can better capture
both high-level semantic information and low-level detail information. This approach
enhanced the network’s ability to handle complex road scenarios in high-resolution remote
sensing images, leading to more accurate road extraction and segmentation results.

2.3.2. Realization Principle

The dual multi-tiered feature integration frameworks (UMR module and MRF mod-
ule) delineated in this study employ convolution, pooling, activation, and normalization
techniques to diminish the primary attributes of the image while utilizing upsampling to
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augment resolution and intricate specifics. These frameworks assimilate data from diverse
resolutions, merging the granular high-level semantic elements with delicate minutiae to
generate high-resolution feature mappings that concurrently contemplate both categories
of attributes.

2.3.3. Network Structure

The multi-feature fusion module was integrated into the standard U-Net architecture
to create a multi-scale fusion network—the HRU-Net. The HRU-Net structure is depicted
in Figure 3.

Figure 3. HRU-Net structure. Given a remote sensing image, abstract features are extracted from
the input to obtain the final pixel-wise road map prediction. Each blue box represents a multi-
channel feature map, with the number of channels annotated beneath the box. Gray boxes symbolize
operations from UMR modules, while orange-yellow boxes correspond to operations from MRF
modules. These are arranged in ascending order from the bottom of the model upwards, numbered 1,
2, 3, 4. Arrows indicate distinct operations.

3. Experiments and Results
3.1. Dataset Descriptions
3.1.1. Massachusetts Road Dataset

The Massachusetts Road Dataset, globally recognized as the most extensive road
dataset accessible to the public, was established by MiHn and Hinton [34]. This dataset
covers approximately 500 square kilometers, includes a diverse array of geographic regions
from urban to rural, and encompasses an assortment of road types such as highways,
rural dirt roads, and asphalt roads. Notably, it also includes confounding factors, such
as rivers and railways, which can mimic the appearance of roads. The dataset comprises
1171 images, each with a per-pixel resolution of 1.2 m and dimensions of 1500× 1500 pixels.
The dataset is categorized into 1108 training images, 14 validation images, and 49 test
images. The training and validation sets feature binary image labels, where road pixels are
denoted as 1 and background pixels as 0.

In light of hardware constraints and the necessity of optimizing model performance,
the utilization of large-sized images for training was deemed inefficient. Therefore, in
this study, the 1108 training images and their corresponding labels were segmented into
27,700 sub-images, each with dimensions of 256 × 256 pixels. The model was subjected to a
training–validation split at a 9:1 ratio. Consequently, the finalized training set encapsulated
20,776 images, each with dimensions of 256 × 256 pixels, whereas the validation set
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contained 6924 images of identical dimensions. To prevent overfitting and to guarantee a
comprehensive performance evaluation, a test set was compiled, incorporating 63 images
from the original dataset, including the 14 validation images and the 49 test images.

3.1.2. DeepGlobe Road Dataset

This dataset comprises images collected from Thailand, Indonesia, and India, cumu-
latively covering an area of 2220 square kilometers, which includes urban and suburban
locales. It consists of 6226 training images, each with a resolution of 1024 × 1024 pixels and
a spatial resolution of 0.5 m per pixel. In this dataset, roads are annotated as the foreground,
while other objects are marked as the background. The data are partitioned into training,
validation, and testing sets at an 8:1:1 ratio, adhering to standard academic practices.

3.2. Experimental Settings
3.2.1. Hyperparameter Settings

The experimental parameters for this study’s model were determined based on numer-
ous preliminary experiments and subsequently refined through extensive experimentation.
The training process employed cross-validation, wherein both the training and validation
sets were input into the model. After each training iteration on the training set, a batch
size of data was selected from the validation set to calculate the model’s loss and accuracy,
optimizing the model’s training. Due to GPU computing power constraints, the input
image size was adjusted to 256 × 256 pixels, and the computationally efficient Adam
optimizer was used to update network parameters. Each batch processed eight images.
The learning rate was initially set to 0.0001, with a minimum learning rate of 0.000001, and
the number of training iterations was set to 100.

The model in this study was a binary classification problem that performed pixel-
wise classification to determine whether each pixel is a road or background. Since roads
constitute approximately 10% of the total area in the remote sensing image, this study
considered the commonly used cross-entropy loss function for road extraction, while also
taking into account the Dice coefficient loss function, typically used in medical image
segmentation, to mitigate the issue of imbalanced samples [35].

In the case of binary classification, the calculation formula for the cross-entropy loss
function is shown in Equation (3):

LBCE = − 1
N ∑N

i=1

[
yi log

(
ˆ
yi

)
+ (1− yi) log

(
1− ˆ

yi

)]
(3)

where y represents the true pixel label value,
ˆ
yi represents the predicted label pixel value

by the model, and N represents the number of pixels.
The Dice loss function is a measure of set similarity, typically used to calculate the

similarity between two samples, with its values ranging from 0 to 1. In image segmentation
tasks, the Dice coefficient is often used to measure the consistency between the predicted
segmentation area and the actual segmentation area. The formula for the Dice coefficient as
a loss function is shown in Equation (4):

Ldice = 1− 2|X ∩Y|
|X|+ |Y| (4)

In the formula, X is the predicted image generated by the model, Y is the true label of
the input image, |X| represents the number of pixels in the predicted image, |Y| represents
the number of pixels in the true label, and |X ∩Y| represents the intersection between the
predicted image and the true label.

The Dice loss function is robust to imbalanced sample problems and can balance the
issue of sample imbalance. This is particularly relevant for road extraction tasks where there
is a significant imbalance between positive and negative samples. In such cases, if only
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pixel-level cross-entropy loss is used, the model may be biased towards predicting the class
with more samples. The Dice loss function can mitigate this problem to a certain extent.

Finally, in this experiment, the cross-entropy loss and the Dice coefficient loss were
combined by adding the two losses together as the loss function of this experiment, which
is shown in Equation (5):

Lloss = LBCE + Ldice (5)

The binary cross-entropy (BCE) loss and Dice loss are complementary to each other
to a certain extent. In the context of road extraction tasks, implementing this novel loss
function considers optimizing the substantial amount of background pixels via the BCE loss.
Simultaneously, it acknowledges the spatial relationship between positive and negative
samples as indicated by the Dice loss, thus effectively handling the issue of imbalanced
samples. In the early stages of prediction, when the discrepancy between the predicted
result and the true label is significant, the BCE loss can provide a considerable gradient
to help the model converge rapidly. As the prediction approaches the actual label, the
gradient of BCE loss diminishes. In contrast, the Dice loss can deliver a consistent gradient
at this stage, allowing for better optimization of the model. This complementary nature
aids in optimizing the model both globally and locally.

3.2.2. Training Environment Description

To evaluate the effectiveness of the proposed HRU-Net model for road extraction in
remote sensing images, training, validation, and testing were conducted using the Mas-
sachusetts Road Dataset. The experiment was designed within the Pytorch (version 1.11.0)
framework and developed using JetBrains PyCharm 2021. Python served as the pro-
gramming language, while the hardware configuration included an Intel(R) Core(TM)
i7-@2.50 GHz processor and an Nvidia GeForce RTX 3060 graphics card for acceleration.
The memory size was 12 GB, and the operating system employed was Windows 10.3.2.3.

3.2.3. Evaluation Metrics

To quantify the road extraction performance of our model, we employed a confusion
matrix to assess the model’s performance in binary classification problems. As shown in
Table 1, the labels were categorized into positive and negative samples, while the prediction
results were divided into true positives and true negatives (TPs and TNs), as well as false
positives and false negatives (FPs and FNs) to represent accurate and inaccurate predictions,
respectively. To thoroughly evaluate the model, this study utilized three evaluation metrics:
precision (P), recall (R), and intersection over union (IOU). These metrics served to assess
the road extraction performance of the network model.

Table 1. Differences between positive and negative samples.

Real Category
Predictive Results

Road Non-Road

Road True positive (TP) False negative (FN)

Non -road False positive (FP) True negative (TN)

Precision: This is the proportion of true positive instances amongst all instances
predicted by the model as the positive class. In other words, the precision reflects the
proportion of actual roads in all instances predicted as roads by the model.

Precision =
TP

TP + FP
(6)
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Recall: This is the proportion of actual positive samples that were correctly identified
by the model, indicating the proportion of correctly labeled roads by the model.

Recall =
TP

TP + FN
(7)

Intersection over Union (IoU): IoU is a commonly used evaluation metric in semantic
segmentation and object detection. It measures the accuracy of detecting ground objects
from a dataset and quantifies the degree of fit between the extracted results and the ground
truth labels. The higher the IoU value, the bigger the overlapping region between the
results and the ground truth.

IOU =
TP

TP + FP + FN
(8)

In this experiment, we evaluated the road extraction performance of the HRU-Net model
by calculating the precision, recall, and intersection over union (IOU), and compared the
experimental results with other advanced remote sensing image road extraction methods.

3.3. Results and Analysis

To assess the road extraction capability of the HRU-Net model, we carried out a
comparative analysis between HRU-Net and other cutting-edge segmentation algorithms,
such as U-Net, ResNet, DeepLabV3, ResUnet, and HRNet. Throughout the experiment,
each compared network, along with our proposed network, utilized the same virtual
environment and parameter settings during the training, validation, and prediction process.

3.3.1. Test on Massachusetts Road Dataset

The performance indicators for the six methodologies are presented in Table 2. From
the performance comparison table, it is evident that the relatively simple U-Net and
HRNet structures exhibited slightly inferior feature extraction performance compared
to the other more complex models in the table. The unique residual structure of the
ResNet and its deep layer hierarchy provided better semantic expression capabilities. The
ResUnet, which combined the residual network and U-Net, offered better network depth
than U-Net and superior high-to-low level information transmission ability compared
to ResNet, demonstrating enhanced performance in the average accuracy, recall, and
average intersection over union metrics. The HRU-Net structure proposed in this paper
outperformed all other models in every indicator.

Table 2. Quantitative evaluation of six methods conducted on the Massachusetts Dataset. The closer
the index value is to 1, the better the effect. IoU: Intersection over union.

Scheme Network Precision
(%) Recall (%) IoU (%)

One U-Net 78.82 83.76 77.67
Two ResNet 78.93 83.25 77.90

Three Deeplabv3 79.56 83.90 75.45
Four ResUnet 79.29 83.85 77.97
Five HRNet 77.96 83.90 77.54

Six HRU-Net (ours) 80.09 84.85 78.62

To more intuitively compare the road extraction effects of various network models,
this paper selected five 512 × 512 images from the test data for display and evaluation. To
emphasize the road details, we set the roads in the predicted images to be displayed in red.

Figure 4 displays the road extraction results from different networks. From top to bot-
tom, it presents the original remote sensing image, the original ground truth label, and the
predicted results of U-net (Scheme 1), ResNet (Scheme 2), DeepLabV3 (Scheme 3), ResUnet
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(Scheme 4), HRNet (Scheme 5), and HRU-Net (Scheme 6). The road extraction analysis
primarily consisted of the main road extraction analysis and the detail extraction analysis
of small roads. Shadow occlusion and spectral confusion caused by surrounding materials
similar to roads often impacted road extraction completeness. In Scheme 1, numerous
instances of inadequate edge detail extraction and disconnection occurred during road
extraction. Schemes 2–4 employed the residual network structure and attention mecha-
nism to concentrate on more road detail information, which improved the disconnection
situation in road extraction, but some roads remained unextracted. Scheme 5 utilized
a multi-scale parallel network structure to address incomplete extraction and enhance
road connectivity. Scheme 6, proposed in this paper, ensured the completeness of road
extraction and resolved the disconnection caused by shadow occlusion in positions 3 and 5,
guaranteeing the completeness of the extracted road at the intersection and significantly
improving road extraction efficiency and accuracy.

Figure 4. Comparison of road extraction effects of 6 schemes in 5 different test areas in Massachusetts
Road Dataset.

To more clearly analyze the effects, we annotated 11 representative road areas in
the images for analysis. Areas 1, 3, 7, and 8 were heavily affected by shadow occlusion;
Areas 2, 4, and 5 had significant spectral confusion issues; and Areas 6, 9, 10, and 11 were
difficult to extract due to the complexity of the road regions. In Scheme 1, the extraction
of the roads at Areas 2, 4, 7, 9, 10, and 11 was hindered by the influence of other objects
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in the surrounding area with similar materials to the roads. Schemes 2–4 incorporated
more road details, extracting roads to varying degrees at Areas 2, 4, 7, and 10. Schemes
5 and 6 frequently exchanged information among different scales, allowing them to fully
extract the roads at Area 11. In this paper, Scheme 6, after introducing the UMR and MRF
modules, was the only model capable of fully extracting the roads at Area 9 while also
fully extracting the roads in other areas. The proposed algorithm effectively recovered
disrupted roads and improved the completeness of road extraction, particularly in areas
with severe obstruction and similar spectral phenomena. In Areas 1 and 8, where the
road curvature changed significantly, Schemes 2–5 presented various degrees of noise and
misidentification, incorrectly identifying other objects as roads. However, Schemes 1 and 6,
which employed a “U” network structure, successfully extracted the roads, showcasing
good generalization capabilities. In the most complex area (Area 6) in the tested remote
sensing image, where two separate roads intersect at the center, Schemes 2–5 identified
the two roads as a single road. Scheme 1 successfully identified the two roads but merged
them with the lower left road. Scheme 6 not only separated the two roads better than
Scheme 1 but also solved the road merging problem in Schemes 1 and 5. In summary,
the proposed road extraction model HRU-Net, which uses a “U” network structure and
incorporates multiple UMR and MRF modules, exhibited excellent extraction accuracy and
completeness (including the extraction of roads with obstructions such as shadows, trees,
narrow rural roads, and road connectivity).

3.3.2. Test on DeepGlobe Road Dataset

In this study, we proposed the HRU-Net, an enhanced model building upon the estab-
lished foundations of the U-Net and HRNet. In order to further verify the effectiveness of
the HRU-Net model, we put these three methodologies to the test using the DeepGlobe
Road Extraction Dataset. The quantitative comparisons of the three methodologies, as
conducted on the DeepGlobe Road Extraction Dataset, are displayed in Table 3. As demon-
strated by the results, the HRU-Net model outperformed the others across all three metrics.
It achieved an accuracy increase of 4.55% over HRNet and 2.63% over U-Net. In terms of
recall, the HRU-Net model surpassed HRNet by 2.11% and U-Net by 1.75%. Regarding the
IoU metric, the model exhibited improvements of 4.00% and 1.87% compared to HRNet
and U-Net, respectively. These results underscore the superiority of our approach on the
DeepGlobe Road Extraction Dataset.

Table 3. Quantitative evaluation of six methods conducted on the DeepGlobe Dataset. The closer the
index value is to 1, the better the effect. IoU: Intersection over union.

Network Precision (%) Recall (%) IoU (%)

HRNet 81.55 83.09 73.23
U-Net 83.43 84.45 75.36

HRU-Net (ours) 86.06 85.2 77.23

Figure 5 presents selected examples from the DeepGlobe Road Extraction Dataset,
demonstrating the efficacy of different models. From top to bottom, the images show the
original input, followed by the results from the HRNet, U-Net, and our proposed HRU-Net,
respectively. In the first image, a blurred road scenario is depicted. Here, the HRNet and
HRU-Net models showcase commendable extraction capabilities, with the U-Net model
being the only one to exhibit over-extraction. The second image presents a case of severe
shadow occlusion on the road, where both the HRNet and U-Net struggled to maintain
road connectivity and the U-Net additionally failed to extract some road sections. In the
third image, we have an example of a well-defined road where, intriguingly, only the
HRU-Net model successfully avoided road disconnection when addressing the minor road
on the left. Lastly, the fourth image provides an example of a complex urban road system.
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In terms of road extraction integrity and continuity, the HRU-Net model demonstrated
superior performance over both the HRNet and U-Net models.

Figure 5. Comparison of road extraction effects of 3 schemes in 4 different test areas in DeepGlobe
Road Dataset.

3.4. Ablation Experiment
3.4.1. Exploring the Impact of Modules on the Network

To evaluate the roles of the UMR and MRF modules in the HRU-Net model, a series of
experiments was conducted, and a detailed analysis was carried out on their performance
in the task of road extraction.

Initially, both the experimental and control groups were designed for comparative
assessment. The control group consisted of the full HRU-Net model, incorporating both
the UMR and MRF modules, while the experimental group was modified by excluding
either the UMR or MRF module. All other experimental parameters and datasets were held
constant to ensure a fair comparison.

Throughout the experiment, a diverse set of high-resolution remote sensing images
was used, and identical training and validation procedures were applied to train and
evaluate the various models. Evaluation metrics, including precision (P), recall (R), and
intersection over union (IoU), were employed to gauge the performance of road extraction,
as detailed in the Table 4.

Table 4. UMR and MRF module performance accuracy comparison. The closer the index value is
to 1, the better the effect. IoU: Intersection over union.

Scheme Precision (%) Recall (%) IoU (%)

Remove UMR 78.92 83.14 77.91
Remove MRF 79.19 83.47 78.06

HRU-Net (ours) 80.09 84.85 78.62

In evaluating the UMR module, performance differences between the experimental
group (excluding the UMR module) and the control group (HRU-Net) were compared.
A similar comparison was carried out for the MRF module. The training was conducted
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using the same dataset and experimental parameters, with the performance results on the
Massachusetts Road Dataset shown in Figure 6.

Figure 6. Performance experiment comparison of UMR and MRF modules.

Following the exclusion of the MRF module, the model’s road edge extraction in
some complex scenes was observed to be less precise, with blurred edges, breaks, or omis-
sions. The MRF module played a key role in the HRU-Net model, effectively integrating
multi-feature fusion and information transmission. By introducing the MRF module at
the decoding stage, the model was better able to capture local road details and contex-
tual relationships, thus enhancing its road extraction performance. Simultaneously, road
discontinuities were observed when the UMR module was removed.

More specifically, in some complex scenes, the road continuity was disrupted, leading
to interruptions or incomplete road segmentation. This might be due to a weakened ability.

In conclusion, the inclusion of the UMR and MRF modules in the HRU-Net model
played a pivotal role in enhancing the performance of the road extraction task. Their design
philosophies and functions were complementary, synergistically boosting the model’s per-
ception capabilities, feature expression ability, and accuracy. Consequently, they provided
an effective solution for road extraction in high-resolution remote sensing images.
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3.4.2. Exploring the Effect of the Number of Modules on the Network

In the first round of ablation experiments, the effectiveness of both the UMR module
and the MRF module on the network was explored individually. To investigate the impact
of module quantity on the network model, we selected the network model, which only
retained the UMR1 module and MRF1 module, as the baseline network for the ablation
study, as shown in dashed box 1 in Figure 7.

Figure 7. Schematic diagram of the scheme exploring the effect of the number of modules on the
network. The dashed box only limits the number of UMR modules and MRF modules inside the box
and does not limit other operations outside the box.

The experimental design was as follows:
Plan One: On the basis of the baseline model, the UMR2 module and the MRF2 module

were added, corresponding to dashed box 2 in the figure.
Plan Two: Building on Plan One, the UMR3 module and MRF3 module were added,

corresponding to dashed box 3.
Choosing dashed box 4 refers to selecting the full HRU-Net model.
The quantitative evaluation of the DeepGlobe Road Dataset is presented in Table 5.

Table 5. Accuracy representation of different schemes on the DeepGlobe Road Dataset. The closer
the index value is to 1, the better the effect. IoU: Intersection over union.

Network Precision (%) Recall (%) IoU (%)

Baseline Model 83.91 84.76 75.83
Plan 1 84.45 85.03 76.32
Plan 2 85.76 85.12 76.71

HRU-Net (ours) 86.06 85.2 77.23

The experimental results show an improvement in model performance, including
the accuracy, recall, and IoU, as the number of UMR and MPF modules increased. This
indicates that the augmentation of module quantity aided the model in learning more
complex features and enhanced the network’s representational capacity. Moreover, the
UMR and MPF modules facilitated the capture of multi-scale features, enabling the model
to understand data at different scales, which was crucial for the task at hand.

The test results on the DeepGlobe Road Extraction Dataset are shown in Figure 8.
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Figure 8. The extraction results of different experimental schemes on the DeepGlobe Road
Extraction Dataset.

3.5. Computational Efficiency

In the field of deep learning, the number of parameters and floating point operations
per second (FLOPs) serve as crucial measures for evaluating the complexity and compu-
tational demands of a model. A higher number of parameters might indicate a model’s
ability to learn more intricate patterns, but it could also lead to overfitting and extended
training time. A comparison of the computational efficiency of different methods is shown
in Table 6. Our model, the HRU-Net, demonstrated a balanced attribute with respect to
both parameter quantity and FLOPs—neither being the simplest nor the most complex.
Therefore, while significantly improving segmentation performance, the HRU-Net did not
introduce an excessive number of parameters or noticeably increase the training time. This
reflects that our model not only prioritizes performance but also focuses on computational
efficiency and model generalizability.

Table 6. Comparison of computational efficiency of different methods.

Network Parameters (M) FLOPS (GLOPS)

U-Net 29.95 5.64
ResNet 25.56 5.40

Deeplabv3 5.87 6.61
ResUnet 38.52 8.64
HRNet 28.53 4.66

HRU-Net (ours) 32.78 6.06

4. Discussion

In this investigation, we assessed the efficacy of the HRU-Net model for road extraction
from high-resolution remote sensing imagery. The experimental findings lend credence to our
supposition that the HRU-Net model can proficiently delineate road information from these
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types of images. When appraised on the metrics of precision, recall, and intersection over
union (IoU), the HRU-Net model manifested a superior performance in comparison to other
cutting-edge methodologies employed for road extraction from remote sensing imagery, such
as U-Net, ResNet, DeepLabV3, ResUnet, and HRNet [36–38]. These comparative findings
portray the HRU-Net model as a promising candidate for implementing road extraction from
high-resolution remote sensing images. These results bear significant practical implications.
The competency to precisely delineate road information from high-resolution imagery can
influence a gamut of domains including urban planning, traffic management, and disaster
response [39]. The adeptness of the HRU-Net model could potentially transform these
domains by providing higher precision and detail in road information.

Notwithstanding, our study was constrained by certain limitations. The precision
of the HRU-Net model was compromised in certain intricate scenarios, as evidenced
by blurred edges, breaks, or omissions when the MRF module was omitted. Likewise,
the continuity of the road was disrupted, leading to interruptions or incomplete road
segmentation when the UMR module was excluded. These constraints imply that while
the HRU-Net model demonstrates promise, it requires further refinement to enhance its
performance in intricate scenarios.

Interestingly, our observations indicate that the quantity of network modules had a
consequential effect on the model’s performance. The incorporation of the UMR and MRF
modules into the HRU-Net model played an instrumental role in boosting the performance
of the road extraction endeavor. Their design principles and functionalities acted in unison,
thereby augmenting the model’s perceptual capabilities, feature expression competency,
and precision. Nevertheless, the escalation in the number of modules also culminated in an
increase in computational complexity, which could potentially impact the model’s efficiency.

For future investigations, we advocate for a deeper exploration into the UMR and
MRF modules. Our findings denote that these modules contribute significantly to the
enhancement of the road extraction task’s performance. Subsequent research could focus
on optimizing these modules to further ameliorate the model’s performance in intricate sce-
narios, while also keeping a check on the equilibrium between performance augmentation
and computational efficiency.

To summarize, our study provides substantial evidence that the HRU-Net model is
a potent tool for road extraction from high-resolution remote sensing images. Despite
the presence of certain limitations, the model demonstrated superior performance in
comparison to other advanced methodologies in our experiments. The UMR and MRF
modules, in particular, were critical in augmenting the model’s performance. These findings
not only contribute to the discipline of remote sensing image analysis but also lay the
groundwork for future investigations.

5. Conclusions

In summary, this article proposes a road extraction model called the HRU-Net, which is
based on the deep learning convolutional neural network model and adopts a “U” network
architecture. The model combines the upsampling multi-scale feature fusion module (UMR
module) and the multi-feature fusion module (MRF module) to enhance its ability to extract
roads from high-resolution remote sensing images. Also, we implemented a new loss
function to decrease the problem of class imbalance in our datasets and improved the result
of road segmentation.

The multi-scale fusion module in the HRU-Net performs upsampling on inputs with
different resolutions in the encoding stage and fuses feature maps of various scales for
convolution in the decoding stage. By maintaining multi-scale information in parallel and
preserving the parallelism of low-resolution and high-resolution feature maps, the network
repeatedly exchanges information among different resolutions throughout its operation.
This process enables the better fusion of multi-scale semantic information, the extraction of
global multi-scale features, and the improvement of the network model’s expression ability.
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The proposed HRU-Net model demonstrated significant performance improvements
when tested on the Massachusetts Road Dataset and the DeepGlobe Road Dataset. Its
ability to effectively extract roads from high-resolution remote sensing images makes it a
valuable tool for various road extraction tasks and applications.
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