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Abstract: Fruit quality assessment plays a crucial role in determining their market value, consumer
acceptance, and post-harvest management. In recent years, spectroscopic techniques have gained
significant attention as non-destructive methods for evaluating fruit quality. In this study, we pro-
pose a novel deep-learning network, called GCNN-LSTM-AT, for the prediction of five important
parameters of tangerines using visible and near-infrared spectroscopy (Vis–NIR). The quality at-
tributes include soluble solid content (SSC), total acidity (TA), acid–sugar ratio (A/S), firmness,
and Vitamin C (VC). The proposed model combines the strengths of graph convolutional network
(GCN), convolutional neural networks (CNNs), and long short-term memory (LSTM) to capture both
spatial and sequential dependencies in the spectra data, and incorporates an attention mechanism
to enhance the discriminative ability of the model. To investigate the effectiveness and stability
of the model, comparisons with three traditional machine-learning algorithms—moving window
partial least squares (MWPLS), random forest (RF), and support vector regression (SVR)—and two
deep neural networks—DeepSpectra2D and CNN-AT—are provided. The results have shown that
the GCNN-LSTM-AT network outperforms other algorithms and models, achieving accurate pre-
dictions for SSC (R2: 0.9885, RMSECV: 0.1430 ◦Brix), TA (R2: 0.8075, RMSECV: 0.0868%), A/S
(R2: 0.9014, RMSECV: 1.9984), firmness (R2: 0.9472, RMSECV: 0.0294 kg), and VC (R2: 0.7386,
RMSECV: 29.4104 mg/100 g) of tangerines.

Keywords: deep learning; Vis–NIR spectroscopy; food-quality assessment

1. Introduction

Fruit is known for its nutritional value and pleasant taste. Evaluating the quality of
fruit, using parameters such as soluble solid content (SSC), total acidity (TA), acid–sugar
ratio (A/S), firmness, and Vitamin C (VC) is essential for ensuring customer satisfaction
and improving fruit production processes. Many traditional methods for assessing these
parameters are destructive and time-consuming, making them impractical for large-scale
applications. With the rapid development of spectroscopic instruments, scientists and
engineers are now able to probe the properties of matter with unprecedented precision
and accuracy. Spectroscopy is a powerful technique for studying the interaction between
light and matter, allowing researchers to obtain detailed information about the composi-
tion, structure, and dynamics of materials [1]. In recent years, visible and near-infrared
(Vis–NIR) spectroscopy has emerged as a promising non-destructive tool for quality as-
sessment in agricultural products [2–5]. Traditional machine-learning algorithms such as
partial least squares regression (PLSR) [6], support vector regression (SVR) [7], and random
forest (RF) [8,9] are commonly employed for regression problems. Spectral data typically
consists of thousands of wavelengths, which often leads to collinearity and redundancies
rather than providing relevant and effective information. The performance of traditional
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machine-learning methods depends on engineered features, while deep-learning neural
networks can automatically learn effective feature representations by applying nonlinear
transformations to raw data. As a result, deep network architectures are becoming in-
creasingly prevalent [10–12]. Deep neural networks are composed of multiple layers of
artificial neurons, which can learn to extract complex features from data [13]. This allows
DNNs to model highly nonlinear relationships between inputs and outputs, making them
particularly well-suited for various tasks [14]. One key development has been the use
of convolutional neural networks (CNNs), which have shown strong fitting capability
and have been widely employed [15]. CNNs learn to hierarchically extract high-level
representations from low-level features while preserving the inherent spatial relationships.
To analyze near-infrared data, a CNN architecture called DeepSpectra was presented
in [16], which comprises three convolution layers and an inception module. The inception
module consists of parallel convolution layers with a variety of kernel sizes to enhance its
generalization capacity. Zhang et al. [10] used CNN models and a deep auto-encoder as
supervised and unsupervised feature extraction methods to determine total phenolics, total
flavonoids, and total anthocyanins in dry black goji berries. The CNN yielded the most
favorable outcome, producing a high R2 of 0.897 in predicting total anthocyanin levels.

Another important development in artificial intelligence is the use of recurrent neural
networks (RNNs) for sequence modeling. As a result of overtones and combination tones
coupling in the Vis–NIR spectra, there may be potential associations between different
characteristic peaks. In the field of Vis–NIR spectroscopy, most studies on classification
and regression models are based on one-dimensional CNNs (1D CNN), while a few have
applied RNNs. Long Short-Term Memory (LSTM) is a variant of RNN, which is designed
to grasp long-distance dependencies and can overcome the RNN’s gradient vanishing and
exploding difficulties [17,18]. LSTM is a promising option for Vis–NIR analysis, given that
spectral data arranged by wavelength exhibits similar characteristics to time–frequency
sequences [19]. The attention mechanism is a powerful technique used to improve the
performance of neural networks, particularly in the field of sequence modeling [20]. In this
mechanism, the model can dynamically adjust the attention given to different positions in
the output sequence based on the information of the input sequence [21]. This mechanism
can help the model better handle long sequences, avoid information loss and repetition, and
improve its performance. Currently, some researchers suggest that attention mechanisms
can be utilized to achieve efficient band selection in hyperspectral imaging [22].

Unlike most spectra-related studies that focus on the 1D-CNN [23] and analyze one-
dimensional spectral data for each sample, our model takes advantage of the spatial and
sequential characteristics present in the data. The transmittance spectra of 12 locations are
collected for each tangerine and the dependencies across sequential spectra are carefully
considered. Compared to high-dimensional hyperspectral imaging, which is expensive in
both collection and processing, and another type of data that averages the spectra values
taken from multiple sampling points, the method of using 12 characteristic locations for
each tangerine has the advantage of utilizing both sparse spatial features and rich spectral
features. To predict the quality parameters of tangerines based on the two-dimensional
Vis–NIR spectra, in this paper, we propose a novel deep-learning network combining graph
convolutional network (GCN), two-dimensional CNNs, bidirectional LSTM (Bi-LSTM),
and attention mechanism, which shows efficient and accurate performance. The findings
of this study have significant implications for the tangerine industry, enabling the rapid
and non-destructive assessment of tangerine quality.

2. Materials and Methods
2.1. Spectra Collection and Processing

The focus of this study is on Yongquan tangerines, which are primarily grown in
Yongquan, Linhai, Taizhou, and Zhejiang, China. A total of 150 tangerines were purchased
from the same farmer in November 2022, with the requirement that the tangerines be of
similar size and that no more than 20 tangerines be picked from the same tree, to ensure
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the diversity of the samples. During the experiment, some tangerines were damaged,
so the number of valid samples is 118. The tangerines were gently wiped with a paper
towel, numbered, and stored at room temperature (around 23 ◦C). The 118 samples were
measured in batches, and for each batch, the collection of spectra and the determination
of quality parameters were completed on the same day. The spectra measurement system
was set up consisting of the QE Pro spectrometer (Ocean Optics, Dunedin, FL, USA),
two fibers, the Halogen light source (HLG-150W), and a personal computer. The spectral
resolution of the QE Pro is 0.798 nm, and the integration time was set as 0.2 s. The dark
noise correction and nonlinear correction were enabled in the OceanView software, and
the average sliding width was set as 2, to reduce the effect of noises associated with the
whole system. The wavelength is in the Vis–NIR range, specifically between 348.311 nm
and 1137.377 nm, containing 1044 wavelengths. The transmittance spectra were acquired
as depicted in Figure 1, where for each tangerine sample, the spectra of 12 locations were
collected, including four around the equatorial position, four around the top area, and four
around the bottom area. Therefore, a total of 118× 12 measurements were conducted. The
emission of the light source HLG-150W is depicted in Figure 2.

4

3

2

8

6

HLG-150

1

9

QE Pro

1 2 3 4 5 6 7 8 9Light Fiber Focus lens Table Tangerine Black box Collimator lenses  QE Pro PC

5

77
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Figure 1. Schematic of the set-up for measuring the transmittance spectra of tangerines.

Figure 2. The emission of the light source.
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The raw spectra are converted to absorbance values according to Equation (1):

A = − log10(T) = − log10

(
I
I0

)
(1)

where I0 represents the background spectra taken without the sample present, I represents
the amount of light that reaches the detector, and consequently, and I/I0 is the fraction of
the incident light that penetrated the sample and detected [24]. The two ends of Vis–NIR
spectra are eliminated where the signal-to-noise ratio is low and spectra between 550 nm
and 1100 nm are retained, thus the shape of the spectra data is 118 samples, 12 locations,
701 wavelengths. The absorbance of 118 tangerines is depicted in Figure 3.

Figure 3. The absorbance of 118 tangerines.

2.2. Internal Quality Attributes Assessment

Destructive analysis of tangerines was performed at room temperature of approxi-
mately 23 ◦C. The tangerine samples were peeled after spectra collection. First, to measure
the firmness of tangerines, the probe of the GY-4 fruit firmness tester (HANDPI, Wen-
zhou, China) was inserted into the pulp of eight different parts of each tangerine and
the mean value is taken as the final firmness of the tangerine. Next, each tangerine was
squeezed individually in an automatic squeezer. The juice was then filtered and the total
soluble solid content (SSC), total acidity (TA), and acid–sugar ratio (A/S) were measured
using a digital refractometer (Atago Model PAL-BX|ACID F5, Tokyo, Japan). The de-
termination of Vitamin C (VC) was conducted using the 2,6-dichlorophenolindophenol
(DCPIP) titration method. This method relies on the oxidation-reduction titration of the
acidic extract of the sample containing L(+)-ascorbic acid with a standard solution of
2,6-dichlorophenolindophenol. The reaction between ascorbic acid and DCPIP results
in a color change, allowing for the quantitative determination of Vitamin C content
(mg/100 g) [25]. The statistical information of the tangerine samples is listed in
Table 1 and the histograms for the five quality parameters are shown in Figure 4.

Table 1. The statistical information of the tangerine samples.

Target Min Max Mean STD Measurement Accuracy

SSC (◦Brix) 10.2 15.9 12.697 1.3615 ±0.2%
TA (%) 0.42 1.28 0.8037 0.1866 ±0.1%

A/S 10.3 36.05 16.974 5.7591 ±0.3%
Firmness (kg) 0.2802 0.8304 0.4958 0.1003 ±1%

VC (mg/100 g) 425.5319 884.6154 608.9775 81.9140 ±2%
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(a) (b)

(c) (d)

(e)

Figure 4. Histograms for the five quality parameters of the 118 tangerines. (a) SSC, the bins are set at
0.1 ◦Brix, (b) TA, the bins are set at 0.03%, (c) A/S, the bins are set at 0.8, (d) Firmness, the bins are set
at 0.01 kg, (e) VC, the bins are set at 10 (mg/100 g).

2.3. Preprocessing Methods

Data preprocessing methods are essential to separate signal from noise and improve
the signal-to-noise ratio in Vis–NIR spectra. The multiplicative scatter correction (MSC)
method was introduced by Martens et al. [26], which is one of the most widely applied
NIR preprocessing techniques. The primary objective of MSC is to mitigate spectral
discrepancies associated with varying scattering levels present in the acquired spectral
data, enhancing the correlation between spectral data and the target variables. By fitting a
first-order function between the recorded spectra xraw and a reference standard xre f , the
MSC technique can eliminate additive and multiplicative linear imperfections:

xraw = b0 + b1 · xre f + e (2)
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where b0 represents the additive part and b1 the multiplicative part. Generally, the reference
spectrum employed is the average spectrum obtained from the sample set. The scatter-
corrected spectra xcorr is thus calculated as:

xcorr =
xraw − b0

b1
(3)

To prevent the amplification of noise within imperfect data, Savitzky–Golay (SG)
derivatization [27] was used in most cases. This method involves fitting a symmetric
polynomial function around neighboring data for each point in the spectrum, generating a
smoothed spectrum that retains its characteristic features. In this experiment, SG smooth-
ing parameters were set to second-degree polynomial and 11 smoothing points, and the
second-order derivative was computed. StandardScaler (SS) is a preprocessing technique
commonly used in machine-learning and neural-network applications. SS transforms the
input data so that it has zero mean and unit variance. This is carried out by subtracting the
mean of each feature and dividing it by its standard deviation.

The most suitable preprocessing methods in this study are performed in this or-
der: Savitzky–Golay 2nd-derivatization (SG), multiplicative scatter correction (MSC), and
standard scaling (SS). Through preprocessing, the impact of noise disturbances can be
effectively reduced.

3. Neural Networks

To demonstrate the superiority of the proposed algorithm, which combines GCN, 2D-
CNN, and Bi-LSTM with attention mechanism, it is compared with two other deep-learning
networks, DeepSpectra2D and CNN-AT.

3.1. DeepSpectra2D

DeepSpectra2D is based on the DeepSpectra [16] network, with appropriate modifica-
tions and improvements made to better suit the tasks and the characteristics of the input
data in this study. The hyperparameters of this network were set to the best combination
that was tried via experiments. The structure of DeepSpectra2D for tangerine regression is
depicted in Figure 5.
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Figure 5. The structure of DeepSpectra2D.

The Inception modules (InceptionA and InceptionB) incorporate multiple parallel
convolutional pathways with different kernel sizes (1 × 1, 3 × 3, 5 × 5) to capture features
at different scales and enrich the representation. The framework of the Inception module is
shown in Figure 6.

In contrast to the inception module in [16], here, the 5 × 5 kernel is replaced by
two layers of 3× 3 kernel, which is better and was proposed in InceptionV2 [28]. The
short-cut part was added, which is an idea proposed in the Residual Network [29] and
widely used in deep learning. In DeepSpectra2D, each Conv2d layer is followed by max
pooling to downsample the feature maps, reducing dimensions while preserving important
features. The output from the InceptionB is flattened and fed into a fully connected layer
to generate the final regression results. DeepSpectra2D utilizes multiple two-dimensional
CNN layers and inserts Inception modules to hierarchically extract features from the
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spectra. This enables the network to learn complex relationships and capture both local and
global patterns.

Previous layer

Conv2d

h@1×1

Conv2d

h@1×1

Conv2d
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Conv2d
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Conv2d
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Conv2d
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Conv2d

h@3×3

Maxpool

3×3

Channel 

concat

Conv2d

4h@1×1

Next layer

Figure 6. The framework of the Inception module.

3.2. CNN-AT

CNN-AT is the combination of three blocks of hierarchical CNNs and an attention
mechanism followed by a multi-layer perceptron (MLP). The flowchart of CNN-AT is
shown in Figure 7.
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Figure 7. The framework of CNN-AT algorithm.

CNN-AT consists of three CNN blocks (CONV1, CONV2, and CONV3) with diverse
kernel sizes and different numbers of filters. Specifically, Conv2d in CONV1 possesses
8 filters with kernel size 1× 25, Conv2d in CONV2 has 16 filters with kernel size 1× 15
and Conv2d in CONV3 contains 32 filters with kernel size 1× 11. Other compositions are
the same in the three blocks: each Conv2d layer is followed by instance normalization
(IN), parametric rectified linear unit activation (PReLU) [30], dropout, and max-pooling
operations. The CNN-AT network incorporates an attention mechanism after the CNN
blocks to selectively attend to specific parts of the input features. The output of the attention
mechanism is then flattened and fed into MLP for further feature extraction and regression
prediction. The MLP includes two fully connected layers (hidden size = 128), IN, PReLU,
and a dropout rate of 0.2.

3.3. GCNN-LSTM-AT Network

This paper proposes an improved deep network called GCNN-LSTM-AT, which
combines two-dimensional CNNs and LSTM, augmented by graph features and attention
mechanism. The overall architecture is shown in Figure 8.

3.3.1. Graph Convolutional Network (GCN)

The application of GCN allows the model to capture the graph structure in the input
data [31]. By leveraging the connections between nodes in the input data, GCN can capture
the interactions and dependencies among nodes. This is particularly beneficial in dealing
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with data that exhibits complex correlations. The 12 locations on each tangerine have their
own contextual information to some extent, while also being interdependent. To extract the
relations between the 12 spectra, GCN processes the input data by generating graph-based
features before putting it into the two-dimensional CNNs. The GCN is a layer-to-layer
propagation, which is computed as:

Hl+1 = σ
(

D̂−
1
2 ÂD̂−

1
2 HlW l

)
(4)

where σ denotes the activation function (e.g., ReLU), W l is the trainable weights, Hl is the
matrix activation in layer l and H0 = X. Â = A + I, A refers to the adjacency matrix, I is
the identity matrix and D̂ii = ∑j Âij.
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Figure 8. The overall architecture of GCNN-LSTM-AT Network.

The given input X ∈ RN×D represents N nodes with D features. The adjacency matrix
A is calculated in a weighted way using the k-nearest neighbors algorithm
(N = 12, D = 701, k = 3). In this study, a two-layer GCN was employed, which is
computed as:

Z = f (X, A) =
(

D̂−
1
2 ÂD̂−

1
2 ReLU

(
D̂−

1
2 ÂD̂−

1
2 XW0

)
W1
)

(5)

The output feature vector Z is duplicated two times and concatenated with the original
spectra X (which is duplicated three times), obtaining an augmented feature of shape
(n, 60, 701). This information propagation mechanism enables the model to utilize global
information for inference and prediction, rather than relying solely on local features of
each node.

3.3.2. Feature Extraction with CNNs

The second block employs two-dimensional CNNs and receives augmented spec-
tra features from GCN as input. Two convolution layers are applied, aiming to capture
spatial dependencies within the concatenated spectral features. The first layer performs
convolution with a kernel size of [5, 26] and a stride of 1. The second layer performs
convolution with a kernel size of [3, 27] and a stride of 1. After each convolution layer,
Instance Normalization normalizes the output feature maps across the channel dimension
for each individual sample in the batch. The PReLU activation function is used after each in-
stance normalization layer. To promote the generalization of the model, dropout is applied
after each activation function. Max pooling is employed following the dropout layer to
reduce feature dimensionality and extract dominant features from the data. The CNN block
allows the network to learn spatially local patterns and extract higher-level representations
from the spectra data, output features of shape (n, 1, 13, 156). The specific choices of
kernel sizes, activation functions, and regularization parameters have been determined
through experimentation to achieve the desired balance between model complexity and
generalization performance.



Appl. Sci. 2023, 13, 8221 9 of 15

3.3.3. Sequential Modeling with LSTM

In the third block, a two-layer bidirectional long short-term memory (Bi-LSTM) is
applied to capture features based on wavelength sequences. The Bi-LSTM processes the
input both forward and backward in sequence steps to capture context from both directions.
For each element in the input sequence, each LSTM layer computes the following functions:

it = σ(Wiixt + bii + Whiht−1 + bhi) (6)

ft = σ
(

Wi f xt + bi f + Wh f ht−1 + bh f

)
(7)

gt = tanh
(

Wigxt + big + Whght−1 + bhg

)
(8)

ot = σ(Wioxt + bio + Whoht−1 + bho) (9)

ct = ft � ct−1 + it � gt (10)

ht = ot � tanh(ct) (11)

where xt, ht, and ct are the input, hidden state, and cell state at step t, respectively. ft, gt,
ot are the forget, cell, and output gates, respectively. σ is the sigmoid function and � is
the Hadamard product. In a multi-layer LSTM, the input xl

t of the lth layer (l ≥ 2) is the
hidden state hl−1

t of the previous layer.
In a Bi-LSTM, the hidden states of the forward and backward LSTM are concatenated

at each time step, creating a more expressive feature representation. This allows the model
to capture and utilize information from both directions, leading to a better representation
and understanding of the sequence. In the implementation of this block, the input tensor
is squeezed into the shape of (n, 13, 156). Each Bi-LSTM layer has 64 hidden units, so the
output shape is (n, 13, 128).

3.3.4. Attention Mechanism

Bi-LSTM outputs a series of hidden states at each time step for downstream tasks.
The self-attention mechanism [20] is employed to assign different weights to the hidden
states of all time steps in the Bi-LSTM output, aiming to extract more informative feature
representations for the regression task.

For each time step, given the output of Bi-LSTM with the shape of (n, 13, 128), the
features are split into two parts—the forward hidden states h f (t) and the backward hidden
states hb(t)—with the same shape of (n, 13, 64). Features after self-attention are given by:

s =
T

∑
t

α(t)h f (t) (12)

where a(t) is the weight learned by attention to measure the importance of the backward
hidden states and is calculated as:

α(t) = so f tmax(v(t)) (13)

v(t) = W × hb(t) + b (14)

where W and b are learnable weights and bias.
Finally, the output of the attention mechanism is flattened and passed through a

fully connected layer to produce the regression results. The fully connected layer maps
the learned features to the desired output dimension, enabling the network to predict
continuous values for regression tasks.
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4. Results and Discussion
4.1. Model Evaluation

The performance of each model is evaluated by root mean squared error of cross-
validation (RMSECV), coefficient of determination (R2), and mean absolute error (MAE).
Their calculations are shown in Equations (15)–(17).

RMSECV =

√√√√∑N
n=1

[
(yn − ŷn)

2
]

N
(15)

R2 =
∑N

n=1(ŷn − yn)
2

∑N
n=1(ȳ− yn)

2 (16)

MAE =
∑N

n=1|yn − ŷn|
N

(17)

where yn and ŷn are true target values and predicted values, respectively. N is the number
of samples and ȳ is the arithmetic mean of yn. The aforementioned metrics are averaged
after obtaining 10-fold cross-validation results.

All the algorithms are implemented on the Python platform using PyTorch and Scikit-
learn library, which are run on Windows 10 with 32 GB of RAM, and an Nvidia GeForce
RTX 2060 (12 GB) (Nvidia, Santa Clara, CA, USA).

4.2. Comparison with Conventional Machine-Learning Approaches and Two Deep Networks

To compare the proposed GCNN-LSTM-AT model with conventional machine-learning
approaches, three popular linear and nonlinear methods are taken into consideration,
namely Moving Window Partial Least Squares (MWPLS) [32], Random Forest Regression
(RF), and Support Vector Regression (SVR). Parameters of these methods have been op-
timized. For the SVR approach, GridSearch is employed to choose the kernel function
from [‘linear’, ‘poly’, ‘rbf’], the penalty parameter from [0.001, 0.01, 0.1, 1, 10, 100, 1000],
and the poly degree from [2, 3, 5]. MWPLS incorporates the concept of moving windows
analysis to capture local variations, which performs better than PLS. RF combines the
strength of decision trees and ensemble learning. GridSearch is employed in RF to select the
number of estimators from range (50, 300) in step 50, the maximum depth from [5, 10, 20],
the minimum split of sample from [2, 4, 8] and the minimum leaf of sample from [1, 2, 4].
The compared two other deep networks—DeepSpectra2D and CNN-AT—are already in-
troduced in detail in the above section. The overall results for predicting the five target
qualities of tangerines using all six algorithms are listed in Table 2. The results in the table
are sorted in descending order by the value of R2.

As can be concluded from the table, the proposed GCNN-LSTM-AT model outper-
forms the three conventional approaches and two other deep networks in almost all
scenarios in this study, except that it is a little worse than DeepSpectra2D for predicting
VC. For the prediction of SSC (◦Brix), various algorithms demonstrate good performance.
Among them, GCN-LSTM-AT achieves the best performance with the lowest RMSECV
(0.1430 ◦Brix), the highest R2 (0.9885), and the smallest MAE (0.1197 ◦Brix). CNN-AT
obtains the second-best performance, which achieves R2 0.9300, RMSECV 0.4413 ◦Brix
and MAE 0.4034 ◦Brix). The worst results are obtained by RF. In the evaluation of TA (%)
prediction, GCN-LSTM-AT demonstrates better performance than other methods with R2

0.8075, RMSECV 0.0868% and MAE 0.0721%. RF based on GridSearch provides the second-
best prediction (R2 is 0.7085, RMSECV is 0.106826%, and MAE is 0.09584% in optimal
case). When predicting A/S, R2 can be improved to 0.901365 by GCN-LSTM-AT, which is
much higher than the second-best method of 0.669026 based on the CNN-AT. The RMSECV
of GCN-LSTM-AT is reduced to 1.998381, which is 44.81% less compared to CNN-AT.
Regarding the target firmness (kg), GCN-LSTM-AT outperforms the other methods in
terms of the highest R2 (0.9472), while DeepSpectra2D obtains a lower R2 (0.8203). The
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worst results are from SVR with R2 0.19752. Results from the VC (mg/100 g) prediction
reveal the good performance of DeepSpectra2D. It achieves the lowest RMSECV of 28.9411
(mg/100 g) and the highest R2 of 0.74686 while GCN-LSTM-AT obtains the smallest MAE
of 23.131868 (mg/100 g) and a slightly lower R2 of 0.7386 than DeepSpectra2D, and the
RMSECV is 29.410427 (mg/100 g). Despite being just slightly inferior to DeepSpectra2D in
the prediction of VC, GCN-LSTM-AT shows significant improvement compared to other
algorithms and performs consistently satisfactorily.

Table 2. Performance of six models on the five qualities of tangerines. The quality parameters are
soluble solid content (SSC), total acidity (TA), acid–sugar ratio (A/S), firmness, and Vitamin C (VC).

Target Method RMSECV R2 MAE

SSC (◦Brix)

GCNN-LSTM-AT 0.143019 0.988546 0.119733
CNN-AT 0.441304 0.930002 0.403427
MWPLS 0.630621 0.857062 0.564087

DeepSpectra2D 0.633972 0.855539 0.523082
SVR 0.635088 0.855030 0.550726
RF 0.637721 0.853826 0.545897

TA (%)

GCNN-LSTM-AT 0.086817 0.807487 0.072121
RF 0.106826 0.708527 0.095840

CNN-AT 0.11266 0.67582 0.080944
DeepSpectra2D 0.116552 0.653038 0.097312

SVR 0.128481 0.578378 0.115217
MWPLS 0.132757 0.549845 0.110507

A/S

GCNN-LSTM-AT 1.998381 0.901365 1.600419
CNN-AT 3.621092 0.669026 2.897637

RF 3.66037 0.661807 3.025368
SVR 3.787508 0.637906 2.619833

DeepSpectra2D 4.172031 0.560651 3.241931
MWPLS 4.234571 0.547381 3.200423

Firmness (kg)

GCNN-LSTM-AT 0.029408 0.947206 0.020084
DeepSpectra2D 0.038597 0.820301 0.027363

MWPLS 0.043178 0.775109 0.035490
CNN-AT 0.048934 0.711151 0.038188

RF 0.064057 0.505032 0.052835
SVR 0.090967 0.19752 0.073538

VC (mg/100 g)

DeepSpectra2D 28.941088 0.746859 27.861427
GCNN-LSTM-AT 29.410427 0.738583 23.131868

MWPLS 35.492973 0.619271 25.987210
CNN-AT 36.66847 0.593635 30.667585

RF 43.01874 0.440698 31.808692
SVR 45.583222 0.372027 33.289951

One notable observation from results of traditional algorithms is that the optimal
hyperparameters for RF and SVR varied across different prediction targets. This finding
underscores the sensitivity of RF and SVR to specific characteristics of the prediction task
at hand. For MWPLS, the choice of window size is critical and can impact the model
performance. Determining the optimal window size requires careful consideration and
experimentation. Also, MWPLS involves performing PLS regression multiple times within
different windows, which increases the computational complexity. In contrast, our pro-
posed algorithm GCNN-LSTM-AT demonstrates a distinct advantage in this regard. Unlike
RF, which requires meticulous tuning of hyperparameters for each prediction target, our
algorithm exhibits robustness and adaptability, consistently showing competitive perfor-
mance across a range of prediction tasks.

In comparison to the two deep networks, GCNN-LSTM-AT demonstrates stable and
satisfactory performance in all five prediction tasks. DeepSpectra2D and CNN-AT have
shown good performance in certain tasks, but they achieve unsatisfactory results at times.
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It indicates that GCNN-LSTM-AT can adapt well to various task characteristics and has
better generalization ability. GCNN-LSTM-AT combines the advantage of GCN, diverse
CNN kernels, Bi-LSTM, and the attention mechanism. GCN propagates node features
and aggregates graph information, CNN is used to extract local features in the spatial
dimension, while Bi-LSTM models the spectral sequential characteristics. This hierarchical
representation learning enables the model to capture various relationships and patterns,
enhancing the model’s expressive ability.

Figure 9 depicts the predictive performance of the proposed GCNN-LSTM-AT algo-
rithm for five quality parameters on all tangerines. The x-axis of each dot in the figures
is the actual measured value, and the y-axis is the predicted value of the model. The
dispersion of each point is demonstrated by the color bar, where dark blue represents a
small dispersion and yellow represents a larger dispersion. The red line is the fitting line
between the predicted values and the true values, the slope and intercept of which are
labeled in the figures. The blue line is the reference line, which is y = x. From the five
scatter plots, it can be seen that the proposed algorithm can predict the SSC, TA, A/S,
firmness, and VC of tangerines with relatively high accuracy, indicating good applicability.
Among them, the prediction performance for SSC is the best, with the smallest prediction
error and the highest degree of fit. Although the R2 of VC is only 0.7386, the fitting line in
Figure 9e looks good. This is partly because the range of VC and the interval value of axes
are relatively large. In addition, existing literature has pointed out that R2 can measure
the goodness of fit in regression models, but it cannot compare the accuracy of model
predictions, so R2, RMSECV and MAE should be taken into account in a combined way
[33–35]. In Figure 9b, the red fitting line almost coincides with the blue reference line, but
the degree of dispersion between each point and the fitting line is notable. The fitting lines
between the predicted values and the true values plotted in the figures are employed as
a reference to visually show the prediction performance of the model. The specific slope
and intercept values of the fitting lines are independent for different datasets and it is not
comparable when predicting different targets.

(a) (b)

(c) (d)

Figure 9. Cont.
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(e)

Figure 9. Predictions of the proposed GCNN-LSTM-AT algorithm on the test set for five quality
parameters of tangerines. (a) Soluble solid content (SSC) results. (b) Total acidity (TA) results.
(c) Acid–sugar ratio (A/S) results. (d) Firmness results. (e) Vitamin C (VC) results.

5. Conclusions

In this study, we propose a novel GCNN-LSTM-AT network for the prediction of five
quality parameters of tangerines using Vis–NIR spectroscopy. GCNN-LSTM-AT combines
two-dimensional CNN and Bi-LSTM networks, aided by graph features and the attention
mechanism, to effectively capture the spatial and wavelength sequential dependencies in
spectra data. Experimental results demonstrate the superior performance of the proposed
network compared to other traditional algorithms and two deep neural networks, Deep-
Spectra2D and CNN-AT. The GCNN-LSTM-AT network achieves the lowest RMSECV,
highest R2, and smallest MAE prediction of SSC, TA, A/S, and firmness. Although it
is slightly inferior to DeepSpectra2D in the evaluation of VC, GCNN-LSTM-AT obtains
more outstanding performance overall and shows better generalization ability than the
other algorithms for diverse prediction targets. These results suggest that our method
has strong potential for application on packing lines, allowing for the assessment of up to
10 fruits per second, quickly and accurately. However, in the future, more work ought to be
conducted on online systems, which are specific to post-harvest applications, in which fruit
of different qualities need to be graded and packed according to sorting categories. Future
work should consider a dedicated design for an online application including a mechanical
subsystem, communication subsystem, and spectral detection subsystem that prioritizes
easy maintenance, easy modification for different products, and high working efficiency.
For online systems, obtaining accurate spectral data from samples is difficult due to the
complex working conditions and external parameters. It is, therefore, necessary to consider
these parameters when establishing the whole system.
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