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Abstract: The structure of a model has an important impact on information dissemination. Many
information models of hypernetworks have been proposed in recent years, in which nodes and
hyperedges represent the individuals and the relationships between the individuals, respectively.
However, these models select old nodes based on preference attachment and ignore the effect of
aggregation. In real life, friends of friends are more likely to form friendships with each other, and
a social network should be a hypernetwork with an aggregation phenomenon. Therefore, a social
hypernetwork evolution model with adjustable clustering coefficients is proposed. Subsequently,
we use the SIS (susceptible–infectious–susceptible) model to describe the information propagation
process in the aggregation-phenomenon hypernetwork. In addition, we establish the relationship
between the density of informed nodes and the structural parameters of the hypernetwork in a steady
state using the mean field theory. Notably, modifications to the clustering coefficients do not impact
the hyperdegree distribution; however, an increase in the clustering coefficients results in a reduced
speed of information dissemination. It is further observed that the model can degenerate to a BA
(Barabási–Albert) hypernetwork by setting the clustering coefficient to zero. Thus, the aggregation-
phenomenon hypernetwork is an extension of the BA hypernetwork with stronger applicability.

Keywords: hypernetwork; social networks; information dissemination; clustering coefficient; SIS model

1. Introduction

The dissemination of information has greatly contributed to the advancement of
human society. As science and technology continue to evolve, the integration of the Internet
into people’s daily life leads to an increasing frequency of information exchange. In social
networks [1–4], users’ interdependence and cooperation serve as the basis for facilitating
information dissemination. Therefore, identifying the mechanisms and characteristics of
information diffusion is essential for both theoretical and practical purposes.

Information dissemination refers to the process of spreading information from a
source node to other nodes within a network, similar to how infectious diseases spread in
populations. Research on propagation has focused on the study of network models and
the study of propagation mechanisms. Network models include dynamic networks [5–7],
scale-free networks [8,9], node-weighted networks [10], edge-weighted networks [11],
variable-growth networks [12], and correlation networks [13]. The study of propagation
mechanisms includes SIS [14], SIR [15], etc. In cooperative complex networks, nodes
represent individuals and edges represent cooperative relationships between individuals,
such as scientific cooperative networks [16], corporate cooperative networks [17], and actor
cooperative networks [18].

Previous studies have made significant contributions to the advancement of the field
of spreading dynamics, and information propagation models based on complex networks
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have been extensively explored. However, the complexity of real-life systems is often higher
than what can be represented by the simple pairwise relations present in complex networks,
calling for more intricate relationship descriptions. As a result, complex networks may not
be able to fully capture the group characteristics in social networks.

An alternative model for information propagation is the hypernetwork [19], which is
constructed using the hypergraph theory. Unlike edges in conventional networks, hyper-
edges in hypernetworks can accommodate a wide range of nodes and depict higher-order
interactions among them. Estrada and Rodríguez-Velázquez [20] were the pioneers in
the development of hypernetworks. They first introduced the concept and extended the
notions of clustering coefficient and subgraph centrality to the hypernetwork model. Since
then, several extensions to the model have been proposed, including directed hypernet-
works by Antonio P. Volpentesta [21], hyperstructures by Criado [22], and node importance
metrics by Xiao [23]. Furthermore, the topological characteristics of hypernetworks have
been thoroughly investigated by Ma and Liu [24]. In terms of dynamic evolution models,
Guo [25] proposed a nonuniform evolving hypergraph model with a nonlinear preferential
attachment and an attractiveness. Wang [26] proposed a hypernetwork evolution model
that generated new hyperedges through the combination of an old node and several new
nodes, while Hu [27] presented a dynamic hypernetwork model that relied on growth
and preferential attachment mechanisms. Guo [28] later unified these models to propose a
novel hypernetwork evolutionary model where old and new nodes generate multiple new
hyperedges. Lastly, Shen [12] proposed variable-growth hypernetworks, which saw the
hyperedges and nodes undergo a growth over time.

The application of hypernetworks has led to significant progress in the field of infor-
mation propagation. However, the earlier works on hypernetwork models reviewed above
commonly extend the mechanisms of complex networks for evolution. In actual social
networks, clustering usually occurs. Friends of friends are more likely to form friendships,
and academics or research teams in the same field are more likely to collaborate, which is
not adequately captured by existing hypernetwork models. Thus, Shen [29] proposed a
hypernetwork model based on the aggregation phenomenon. However, this model only
considered the selection of one old node, while in reality, multiple old nodes and their
neighbors may be selected. Therefore, it holds significant importance to delve into and
explore the regulations of information dissemination based on this network model. In
this paper, we study the hyperdegree distribution and analyzed the relationship with the
clustering coefficient and focus on the structural parameters of the hypernetwork, including
the number of nodes, clustering coefficient, new nodes, old nodes, new hyperedges, as well
as the propagation parameters such as spreading rate, recovering rate, and spreading seed,
which all impact information propagation. We compare our model with the BA hypernet-
work and find that fundamentally, the BA hypernetwork is an aggregation-phenomenon
hypernetwork with a clustering coefficient of zero.

The structure of the paper is as follows. Section 2 introduces the concept of hypernet-
works, the evolution process of the agglomeration-phenomenon hypernetwork, and the
concepts of the SIS model. In Section 3, the information dissemination model is introduced,
and the hyperdegree distribution derivation and theoretical analysis are performed. The last
two sections of the paper elaborate on the simulation results and present our conclusions.

2. Theoretical Background
2.1. The Concept of Hypernetwork

Berge [30,31] proposed the concept of hypergraphs in 1970. The definition of a hyper-
graph is given below. Let V = {v1, v2, . . . , vn} be a finite set. If Ei 6= ∅ and

⋃e
i=1 Ei = V,

the pair H = (V, E) is called a hypergraph. Here, the elements v1, v2, . . . , vn of V are called
the nodes or vertices of the hypergraph. E = {E1, E2, . . . , Ee} is the set of edges of the
hypergraph. The elements of set Ei of set E (i = 1, 2, . . . , e) are called the hyperedges of
the hypergraph, and |Ei| denotes the cardinality of the set Ei. Moreover, H = (V, E) is a
k-uniform hypergraph if |Ei| = k.
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The definition of a hypernetwork [28] is as follows. Suppose that Ω = {(V, Eh)|(V, Eh)}
is a finite hypergraph and G is a map from T = [0,+∞) into Ω. Then, for a given t ≥ 0,
G(t) = (V(t), Eh(t)) is a finite hypergraph, where t denotes the time step. A collection of
hypergraphs is a hypernetwork {G(t), t ∈ T}. The number of hyperedges of the contained
node vi is the hyperdegree of vi. The hyperdegree distribution is the probability distribution
of the hyperdegree of all nodes in the hypernetwork.

2.2. The Evolution of Agglomeration-Phenomenon Hypernetwork

In a hypernetwork, when two or more nodes are present in the same hyperedge, it can
be suggested that they are adjacent to each other. The presence of a hyperedge between
neighbors of a node is called the clustering phenomenon. Social hypernetworks often
exhibit the phenomenon of agglomeration. Based on the characteristics of such hypernet-
works, we propose a hypernetwork model that considers the aggregation phenomenon.
The construction steps of the model are as follows:

(i) Initialization: a hyperedge in the hypernetwork contains m0 nodes.
(ii) At each time step t, m1 new nodes form a new hyperedge with m2 existing nodes, and

m nonrepeating hyperedges are constructed at each time step.
(iii) Hyperdegree preference attachment: The probability ∏(kh

iu(t)) that the m1 new nodes
connect to the uth old node of the ith batch is proportional to a function of the hyper-
degree kh

iu(t), such that:

∏(kh
iu(t)) =

kh
iu(t)

∑w kh
w(t)

(1)

The hyperdegree of the uth node in the ith batch at time t can be represented by kh
iu(t),

while the total number of hyperdegrees of all nodes at time t can be represented by
∑w kh

w(t). This process is repeated m2 times to select m2 old nodes.
(iv) Clustering attachment with probability p: If two old nodes u, v are selected in the

previous preferential attachment step to form a new hyperedge with new nodes, the
new nodes randomly select m2 neighbors of u or v to form a new hyperedge. If all
neighbors of u or v have been selected and no new nonrepeating hyperedge can be
formed, then the preferential attachment step is executed.

As shown in the schematic diagram in Figure 1, the hypernetwork model based on the
agglomeration phenomenon is constructed.

V1

V3

(a) (b)

V2

V4 V5

V6

V7

V8

V9

V10

V1

V3

V2

V4 V5

V6

V7

V8

V9

V10

Figure 1. Construction of the aggregation-phenomenon model. New nodes and hyperedges are
represented by a red color. At time step t, the selection preference attachment is performed as follows:
(a) New node v10 (m1 = 1) preferentially select the existing nodes v1 and v2 (m2 = 2) to form a new
hyperedge. (b) The new node randomly chooses neighbors v6 and v8 of v1 or v2 to form the second
hyperedge with parameter (m = 2). Blue nodes v4 and v5 in the figure indicate that they are not
available for selection by the new nodes since they are not neighbors of v1 or v2.

2.3. SIS Model

The process of information transmission is analogous to that of infectious diseases,
and the SIS model may be utilized to describe the propagation and evolution of information.
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In this model, individuals are categorized as susceptible (S-state) nodes or informed (I-
state) nodes. Whenever an S-state node contacts an I-state node, the information will be
transmitted to the I-state node with a probability of β, and subsequently, the I-state node
may revert to the S-state node with a probability of γ due to factors such as forgetting.
Additionally, a node restored to the S-state may still acquire information and become an
I-state node once again.

3. Information Dissemination Model Based on RP Strategy
3.1. Model Description

The agglomeration phenomenon is common in social systems and friendship networks,
and scientific cooperation hypernetworks are no exception. Nodes representing individuals
and hyperedges represent social groups formed by those individuals. In the reactive process
(RP) strategy, a node is initially selected as an I-state node, which can transmit information
to S-state nodes in all its neighbors, and its neighbors obtain information with a certain
probability. The dynamic transmission process of information is as follows:

1. Initialization: at t = 0, a node is selected as the I-state node, while the remaining
nodes are classified as S-state nodes.

2. Propagation: at each subsequent time step, the I-state node transmits information
to all neighbor nodes in the S-state. S-state nodes change to I-state nodes with a
probability of β. Conversely, I-state nodes may transition back to the S-state node
with a probability of γ due to factors such as forgetfulness.

3. Steady state: with the continuous spread of information, the density of nodes in the
I-state gradually stabilizes and fluctuates slightly around this stable density, signifying
that information propagation in the network has reached a steady state.

The description of the information transmission process is shown in Figure 2.

(a) (b) (c) (d)

Figure 2. Description of the global information transmission process. Red nodes represent I-state
individuals and hollow nodes represent S-state individuals. (a) At the initial moment, all nodes are
in the S-state. (b) When t = 1, the v1 node is set as the spreading seed (I-state). (c) When t = 2, the
neighbor nodes v3, v7, v8, and v10 of v1 are notified to change to the I-state. (d) When t = 3, nodes v4,
v5, and v9 transition to the I-state, whereas nodes v1 and v8 revert to the S-state.

3.2. Theoretical Analysis

By employing techniques of the mean field theory, the following dynamical equation
can be derived for kh

ij(t) at the preferential attachment step

∂tkh
ij

∂t
= λ[m− (m− 1)p]m2

kh
ij

∑w kh
w

(2)

where λ is the rate of node batches’ arrival. If (m − 1)p is the number of hyperedges
generated by the clustering attachment, then m− (m− 1)p is the number of hyperedges
generated by the preferential attachment, and the above equation multiplied by m2 is the
total number of old nodes selected by the preferential attachment.

When a new node connects with an old node u and the old node is also a neighbor of
another node j, the second node j is selected at random to form a new hyperedge with the
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new node. During this process, kh
ij(t) is governed by the following dynamical equation at

the aggregation attachment step:

∂tkh
ij

∂t
= λ(m− 1)pm2 ∑

u∈j
Ωj

kh
iu

∑w kh
w

1
(m1 − 1)kh

iu
= λ(m− 1)pm2

kh
ij

∑w kh
w

(3)

where Ωj represents the set of neighbors of node j. Similar to the idea discussed in
Equation (2), (m − 1)pm2 is the total number of old nodes selected for the clustering
attachment.

Utilizing Equations (2) and (3), the dynamical equation for the total rate of change in
the hyperdegree of node j within a single time step can be derived:

∂tkh
ij

∂t
= λ[m− (m− 1)p]m2

kh
ij

∑w kh
w
+ λ(m− 1)pm2

kh
ij

∑w kh
w
= λmm2

kh
ij

∑w kh
w

(4)

If m1 new nodes and m2 existing nodes form a new hyperedge, the hyperdegree of
the respective node increases by (m1 + m2) at each time step. At moment t, a total of
m new hyperedges are formed. Using the notation ∑ij kh

ij(t) ≈ m(m1 + m2)E[N(t)] =
λm(m1 + m2)t, it follows that

∂tkh
ij

∂t
= λmm2

kh
ij

m(m1 + m2)t
=

m2kh
ij

(m1 + m2)t
(5)

The initial condition for Equation (5) conforms to the following equation:

kh
ij(ti) = m (6)

where ti represent the time at which the ith batch node enters the hypernetwork. Further-
more, the node of the ith batch emerges at time ti. Therefore, kh

ij(ti) denotes the hyperdegree
of the jth node in the ith batch at the moment of emergence.

Using Equation (6), we can obtain the solution to Equation (5) as follows

kh
ij(ti) = m(

t
ti
)

m2
m1+m2 (7)

Through Equation (7), we obtain

P(kh
ij(t) ≥ k) = P(m((

t
ti
)

m2
m1+m2 ) ≥ k) = P(ti ≤ (

m
k
)

m1
m2

+1t) (8)

It is worth observing that the process of node batch arrivals follows a Poisson process
with rate λ. Thus, the time ti follows a gamma distribution with parameters (i, λ), which
leads to the following expression

P(kh
ij(t) ≥ k) = P(m((

t
ti
)

m2
m1+m2 ) ≥ k) = P(ti ≤ (

m
k
)

m1
m2

+1t) (9)

By using Equations (8) and (9), we have

P(ti ≤ (
m
k
)

m1
m2

+1t) = 1− e−(
m
k )

m1
m2

+1
λt

i−1

∑
l=0

[(m
k )

m1
m2

+1
λt]l

l!
(10)
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By substituting Equation (10) into the expression, the transient hyperdegree distribu-
tion of this hypernetwork can be derived as follows

P{kh
ij, t} ≈ 1

m1E[N(t)] ∑
ij

P(kh
ij(t) = k)

= (
m1

m2
+ 1)(

m
k
)

m1
m2

+2 λt
m

(λt(m/k)
m1
m2

+1
)i−1

(i− 1)!
e−λt(m

k )
m1
m2

+1

(11)

Using Equation (11), we can express the average hyperdegree distribution of the
clustered hypernetwork as

P(k) ≈ lim
n→∞

m1E[N(t)]∑
ij

P(kh
ij(t) = k) =

1
m
(

m1

m2
+ 1)(

m
k
)

m1
m2

+2
(12)

We then proceed by assuming that the dynamical mean-field reaction rate equation
based on the mean-field theory model [19] can be expressed as

∂tρk(t) = −γρk(t) + βk(m1 + m2 − 1)[1− ρk(t)]Θ(ρk(t)) (13)

where ρk is the relative density of I-state nodes with hyperdegree k. The left side of the
equation is the rate of change in the density of the node in the I-state with hyperdegree k
at time step t. The first term on the right is the annihilation term, which indicates that the
I-state node with hyperdegree k reverts to the S-state with probability γ. The second term
is the generation term, which indicates that the S-state(1− ρk(t)) node with hyperdegree k
acquires information to become an I-state node with probability β.

In steady state, ∂tρk(t) = 0, and Equation (13) can be written as

ρk =
βk(m1 + m2 − 1)Θ(β, γ)

γ + βk(m1 + m2 − 1)Θ(β, γ)
(14)

where the probability of a hyperedge linking to an informed node is

Θ(β, γ) = ∑
k

kP(k)ρk

∑s sP(s) (15)

Bringing Equation (14) into Equation (15), we obtain

Θ(β, γ) = ∑
k

kP(k)
∑s sP(s)

βk(m1 + m2 − 1)Θ(β, γ)

γ + βk(m1 + m2 − 1)Θ(β, γ)

=
∫ ∞

m

kP(k)
∑s sP(s)

βk(m1 + m2 − 1)Θ(β, γ)

γ + βk(m1 + m2 − 1)Θ(β, γ)
dk

(16)

In Equation (16), ∑s sP(s) = 〈k〉, 〈k〉 =
∫ ∞

m kP(k)dk = (m1+m2)m
m1

. Taking Equation (12)
and 〈k〉 into Equation (16), we obtain

Θ(β, γ) =
∫ ∞

m

m1

(m1 + m2)m
k

1
m
(

m1

m2
+ 1)(

m
k
)

m1
m2

+2 βk(m1 + m2 − 1)Θ(β, γ)

γ + βk(m1 + m2 − 1)Θ(β, γ)
(17)

We simplify Equation (17) to obtain

m2

m1m
m1
m2 β(m1 + m2 − 1)

=
∫ ∞

m

1

k
m1
m2

1
γ + βk(m1 + m2 − 1)Θ(β, γ)

dk (18)
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Substituting Equations (12) and (14) into ρ(t) = ∑k P(k)ρk(t), we have

ρ =
∫ ∞

m

1
m
(

m1

m2
+ 1)(

m
k
)

m1
m2

+2 βk(m1 + m2 − 1)Θ(β, γ)

γ + βk(m1 + m2 − 1)Θ(β, γ)
dk

=
1
m
(

m1

m2
+ 1)m

m1
m2

+2
β(m1 + m2 − 1)Θ(β, γ)(

∫ ∞

m

1
γ

1

k
m1
m2

+1
dk

− β(m1 + m2 − 1)Θ(β, γ)

γ

∫ ∞

m

1

k
m1
m2

1
γ + βk(m1 + m2 − 1)Θ(β, γ)

dk)

(19)

From Equation (18), the solution of Equation (19) is

ρ =
m(m1 + m2)(m1 + m2 − 1)βΘ(β, γ)(1−Θ(β, γ))

γm1
(20)

Equation (20) indicates that the informed node density ρ at the steady state is a function
that is not influenced by the clustering coefficient p or the time step t. Since there is m1
in the denominator of Equation (20), the effect of m2 is greater than the effect of m1. We
set the effective propagation rate λ = β/γ, and λ is proportional to ρ. ρ can be calculated
from the structural parameters of the hypernetwork as well as the spreading rate and the
recovering rate.

4. Simulation Results and Analysis

This section is a comparison of theoretical and simulation results, aiming at verifying
the hyperdegree distribution of aggregation-phenomenon hypernetworks and exploring
the information propagation law.

4.1. Hyperdegree Distribution Results

To verify the correctness of the hyperdegree distribution, the parameters were set
as follows: N = 5000, m0 = m1 = m2 = 3, and p = 0.5. The simulation plot in double-
logarithmic coordinates is shown in Figure 3. The dispersion points represent the simulation
results, and the straight lines are the results of the theoretical analysis. The theoretical anal-
ysis is consistent with the simulation results and suggests that the hyperdegree distribution
follows a linear trend with scale-free characteristics.

Figure 3. Hyperdegree distribution of the hypernetwork with p = 0.5. The black line is the result of
the theoretical analysis and the blue dots are the simulation results.
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Moreover, the hyperdegree distribution shows that the power law index is not influ-
enced by the clustering coefficient p. Therefore, we set p = 0, 0.2, 0.4, 0.6, 0.8, and 1 for
the simulation. The simulation plot in double-logarithmic coordinates is shown in Figure 4.
The simulation results of the hyperdegree with different parameters p overlap each other.
It can be seen that the power-law exponent of our theoretical prediction of the hyperdegree
distribution agrees well with the simulation results. This result shows that the aggregation
phenomenon does not affect the scale-free property of the social hypernetworks and sup-
ports the argument of Section 3.2 that the hyperdegree distribution is independent of the
clustering coefficient p.

Figure 4. The hyperdegree distributions of hypernetworks with varying clustering coefficients p.
The black line is the result of the theoretical analysis, and the blue dots with different shapes are the
simulation results of different clustering coefficients.

4.2. The Results of Information Communication Theory Analysis

To verify the validity of the model, the theoretical results were compared with the
results obtained from stochastic simulations in the hypernetwork. We also investigated the
effects of several parameters, such as the hypernetwork scale, the spreading and recovering
rates, the initial propagation seed, and the structural parameters of the hypernetwork, on
the information propagation. The hypernetworks were generated based on the construction
method described in Section 2.2. Since scholars generally engage in stable collaborations,
we assumed that the hypernetwork was static. Initially, one node was selected as the I-state
node, and information propagation continued until the system stabilized. To eliminate
stochastic effects, the results of each simulation were obtained by averaging the outcomes
of 100 independent runs under similar conditions. In order to depict the dynamic process
of information flow within the hypernetwork, we determined the trend of the I-state node
density as a function of time.

4.2.1. The Simulation Result of the Density of I-State Nodes under Steady State

The values of the parameters were chosen as follows: m1 = 1, 3, 5, m2 = 3, m = 3,
γ = 0.1, and p = 0.6. The curves in Figure 5 show the theoretical results obtained by using
Equation (20), while the density of I-state nodes in the steady state, ρ, is depicted by discrete
points. Our findings show that information spreads throughout the whole hypernetwork,
even if its effective propagation rate λ is low. Therefore, the propagation threshold of the
RP strategy does not exist.
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Figure 5. Comparison of theoretical analysis and simulation results of informed node density ρ in the
steady state.

4.2.2. The Impact of Hypernetwork Scale

Figure 6 displays information propagation curves of the density of I-state nodes with
respect to time, for various scales of the hypernetwork. The following parameter values
were utilized: m0 = 6, m1 = 3, m2 = 3, m = 3, β = 0.1, γ = 0.1, and p = 0.6. The curves
demonstrate that the system takes the same time and reaches the same density of I-state
nodes in the steady state, regardless of the hypernetwork scale. This result suggests that
the hypernetwork scale has a minor impact on information propagation. Consequently, for
the following simulation experiments, the number of nodes was set to N = 1000.

Figure 6. Simulation results are displayed for various scales of the hypernetwork.
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4.2.3. The Influence of the Spreading Seed

Fixed parameters of m0 = 6, m1 = 3, m2 = 3, m = 3, β = 0.1, γ = 0.1, and
p = 0.6 were utilized to investigate the effect of the initial spreading seed on the process
of propagation. The node with the largest, the average, and the smallest hyperdegree in
the hypernetwork were chosen as the initial I-state nodes. The corresponding propagation
curves are illustrated in Figure 7. The results show that the spreading seed with the largest
hyperdegree is chosen to have the shortest time to reach the steady state. It is noteworthy
that the three curves converge to the same value in the steady state. Therefore, the more
extensive the socialization of individuals, the faster the information spreads.

Figure 7. Simulation outcomes with various initial spreading seeds.

4.2.4. Effect of Clustering Coefficient

To analyze the effect of clustering coefficient p on information propagation, we set the
hypernetwork construction parameters as m0 = 6, m1 = 3, m2 = 3, m = 3, β = 0.1, γ = 0.1,
and p = 0, 0.2, 0.4, 0.6, 0.8, 1. The information propagation curves for different clustering
coefficients are presented in Figure 8. As demonstrated, the information propagation rate
slows down with increasing p, but all the curves tend to reach the same steady state value.
The larger the value of p, the fewer direct connections between nodes and therefore, the
slower the rate of information dissemination. However, when the steady state is reached,
all curves converge to the same value, thus confirming the argument that ρ is independent
of p made in Section 3.2. To enhance the scientific validity of the simulation, all subsequent
experiments were set with p = 0.6 as the clustering coefficient.
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Figure 8. Information dissemination curves with different clustering coefficients.

4.2.5. Impact of Spreading Rate and Recovering Rate
To assess the impact of spreading rate and recovering rate, the following parameters

were set: m0 = 6, m1 = 3, m2 = 3, m = 3, and p = 0.6.

(i) Effect of β

By setting the spreading rate β to 0.05, 0.1, and 0.2, while keeping the recovering
rate γ = 0.1 and the other parameters constant, we obtained the information diffusion
graph presented in Figure 9. The dissemination rate depicts a person’s capability to spread
information. The propagation rate affects not only the speed of information dissemination
but also the density of I-state nodes at the steady state. The spreading rate is proportional
to the propagation speed as well as the steady-state value.

Figure 9. Information diffusion curve with various spreading rates.
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(ii) Effect of γ

We set β = 0.1 and γ = 0.05, 0.10, and 0.20, to obtain the information propagation
curve depicted in Figure 10. The recovering rate reflects a person’s ability to resist or forget
information. As demonstrated in the figure, the three curves take almost the same amount
of time to reach the maximum point, and the slope of the curves hardly varies when the
recovering rate changes. This disparity indicates that the recovering rate has a small effect
on the rate of information diffusion. Larger recovering rates result in lower densities of
I-state nodes at the steady state.

Figure 10. Information diffusion curve with various recovering rates.

4.2.6. The Influence of Structural Parameters m1, m2, and m

(i) Effect of m1

In this paper, m1 denotes the number of new nodes that join the hypernetwork at
each time step. In order to investigate how m1 influences the propagation process, the
following parameters were established: m0 = 4, m1 = 1, 3, 5, m2 = 3, m = 3, β = 0.1,
γ = 0.1, and p = 0.6. The information propagation curves for various m1 values are
presented in Figure 11. As depicted in the figure, the curves exhibit slight differences, and
the information propagation accelerates with increasing m1 values. It can be concluded
that an increase in m1 can promote information dissemination, but the change is not
very significant.

(ii) Effect of m2

Here, m2 denotes the quantity of old nodes chosen when new nodes enter the network.
To evaluate the effect of m2 on the information spreading process, the following parameters
were set: m0 = 6, m1 = 3, m2 = 1, 3, 5, m = 3, β = 0.1, γ = 0.1, and p = 0.6. The
information propagation curves for different m2’s are depicted in Figure 12. The increase in
the number of selected old nodes means that the average hyperdegree of the supernetwork
then increases. As the simulation results indicate, the closer the relationship between
individuals and society, the higher the average hyperdegree, the more quickly information
spreads, and the more widely information disseminates.
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Figure 11. Information propagation curves of different m1’s.

Figure 12. Information propagation curves of different m2’s.

(iii) Effect of m1 + m2

The number of neighboring nodes for a specific node is directly connected to both
the dissemination process and outcomes of information, which are jointly determined by
m1 and m2. Therefore, we set the parameters as m0 = 6, m1 = 1, 3, 5, m2 = 1, 3, 5, m = 3,
β = 0.1, γ = 0.1, and p = 0.6 to explore the impact of m1 and m2. The information dissemi-
nation curves for different m1 + m2 values are presented in Figure 13a. As demonstrated,
the larger the value of m1 + m2, the shorter the amount of time needed for the information
to reach a stable state, and the larger the value of the steady-state phase. Additionally,
we set identical values for m1 + m2 but different values for m1 and m2, as shown below:
m1 = 1, 3, 5, m2 = 5, 3, 1. The information propagation curve is presented in Figure 13b. As
seen in the figure, the density of I-state nodes is almost the same in the steady-state phase
in the three cases. Importantly, for the same m1 + m2 value, higher m2 values result in a
faster system to reach the steady state. This discovery implies that an increased number of
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neighboring nodes of I-state nodes accelerates the rate of information propagation. This
observation aligns with the theoretical analysis presented in Section 3.2.

(a) m1 = m2; m1 + m2 curves have different values.

(b) m1 6= m2; m1 + m2 curves have the same value.

Figure 13. The evolution of information dissemination with different values of m1 + m2.

(iv) Effect of m

Here, m signifies the number of generated hyperedges generated every time a new
node is added. To explore how m affects the propagation process, we set m0 = 6, m1 = 3,
m2 = 3, β = 0.1, γ = 0.1, p = 0.6, and m = 1, 3, 5. The information propagation graph is
presented in Figure 14. As the number of hyperedges generated per new node addition
increases, nodes become more closely connected, and the entire network becomes more
interconnected. Therefore, larger m values boost the information propagation efficiency,
resulting in higher steady-state values.
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Figure 14. Information propagation curves of different m’s.

4.2.7. Compare with BA Hypernetwork

To analyze the process of information propagation under diverse hypernetwork struc-
tures, two hypernetworks were generated with N = 1000: the aggregation-phenomenon
hypernetwork and the BA scale-free hypernetwork. The network structure parameters
were set as m0 = 6, m1 = 3, m2 = 3, m = 3, β = 0.1, and γ = 0.1, and the clustering
coefficient of the aggregation-phenomenon hypernetwork was p = 0. Figure 15 illustrates
the comparison between the aggregation-phenomenon hypernetwork and the conventional
hypernetwork under the same parameters, where the curves of the propagation rate and
steady-state values are almost identical. In fact, when the clustering coefficient p = 0, the
model becomes the BA hypernetwork model, which the simulation results corroborate.
Thus, the model introduced in this paper is a generalization of the BA hypernetwork model.
Moreover, in social hypernetworks, friends of friends are more likely to build friendships.
Consequently, the hypernetwork structure of aggregation phenomena better reflects reality,
providing a distinctive advantage that cannot be achieved by BA hypernetworks.

Figure 15. Comparison of information propagation curves for BA hypernetwork and aggregation-
phenomenon hypernetwork.
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4.3. Summary of the Experimental Results

To present the experimental results more clearly, we have tabulated the comparison
results of various parameters as shown in Table 1.

Table 1. Comparison of experimental results for different parameters.

Parameters
The Density of Informed Nodes (ρ)

Non-Steady State Steady State

Nodes (N 6= N′) ρN ≈ ρN′ ρN ≈ ρN′

Spreading seed ρmaxDi > ρavgDi > ρminDi ρmaxDi = ρavgDi = ρminDi
Clustering coefficient (P < P′) ρP > ρP′ ρP = ρP′

Clustering coefficient (P = 0) ρAP
1 = ρBA ρAP = ρBA

Spreading rate (β < β′) ρβ < ρβ′ ρβ < ρβ′

Recovering rate (γ < γ′) ργ ≈ ργ′ ργ > ργ′

New nodes (m1 < m1
′) ρm1 > ρm1

′ ρm1 ≈ ρm1
′

Old nodes (m2 < m2
′) ρm2 < ρm2

′ ρm2 < ρm2
′

New hyperedges (m < m′) ρm < ρm′ ρm < ρm′

m1 = m2, (m1 + m2) < (m1 + m2)
′ ρ(m1+m2) < ρ(m1+m2)′ ρ(m1+m2) < ρ(m1+m2)′

m1 6= m2, (m1 + m2) = (m1 + m2)
′ ρm1=∗,m2min < ρm1=∗,m2max ρ(m1+m2) = ρ(m1+m2)′

1 We abbreviated the aggregation-phenomenon hypernetwork as AP.

The tabulated data reveal that the simulation and theoretical predictions are consistent.
Additionally, it is noteworthy that while the clustering coefficient has no effect on the
density of informed nodes in the steady state, it does impact the density of informed nodes
before the steady state is reached. This means that the clustering coefficient affects the
rate of information propagation, with higher clustering coefficients leading to a slower
information spread. Importantly, this conclusion cannot be derived from the theoretical
analysis alone.

5. Conclusions and Prospect

In order to study the characteristics of information propagation in real social hyper-
networks, a hypernetwork model and SIS propagation model based on the aggregation
phenomenon were constructed. A theoretical analysis and simulation experiments were
used to verify the hyperdegree distribution and the information propagation law under the
aggregation phenomenon. The theoretical analysis and simulation experiments were in
complete agreement. Although the proposed model clustering coefficients had no effect
on the scalar law of the hyperdegree distribution, we know that in many real systems,
especially social hypernetworks, power-law and high-aggregation phenomena often co-
exist. Most notably, the information propagation rate decreased with the increase in the
clustering coefficient. The global dissemination of information was not significantly im-
pacted by the magnitude of the hypernetwork scale, while individuals with more neighbors
had a higher information dissemination ability, which had a greater impact on the early
stage of information dissemination. Both spreading rate and recovering rate affected the
information dissemination ability. The larger the spreading rate, the faster the information
spread and the larger the steady-state value. The larger the recovering rate, the smaller the
steady-state value, and the recovering rate had less influence on the rate of information
dissemination. By analyzing the parameters of the network structure, it was found that the
larger the number of newly added nodes, the larger the number of old nodes selected, the
larger the number of new hyperedges generated each time, and the faster the information
propagation. The effect of the number of old nodes was greater than the effect of the
number of new nodes.

This paper introduced a new research direction in information dissemination for
hypernetwork models and developed a theoretical system for hypernetwork information
dissemination, offering innovative ideas for hypernetwork studies. However, further
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investigation into the dissemination process is required to complement the current research.
Thus, several potential future research directions are proposed as follows:

1. The hypernetwork structure is based on k-uniform hypergraphs. The number of
individuals in a social hypernetwork is usually different, and it remains to be further
investigated whether there are unique information dissemination characteristics on
nonuniform hypergraphs based on aggregation phenomena.

2. The information dissemination discussed in this paper is based on a static hypernet-
work. However, the cooperative relationships between individuals change accord-
ing to social activities. Thus, the next consideration is to extend the aggregation-
phenomenon hypernetworks to dynamic hypernetworks.

3. The validation of the current theory requires empirical data to support the proposed
theoretical model.

4. The information dissemination can be influenced by various intricate factors, includ-
ing misunderstanding, loss, and addition of information, which will be a key research
direction in the future.
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