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Abstract: To improve the accuracy of material identification under low contrast conditions, this
paper proposes an improved YOLOv4-tiny target detection method based on an adaptive self-order
piecewise enhancement and multiscale feature optimization. The model first constructs an adaptive
self-rank piecewise enhancement algorithm to enhance low-contrast images and then considers the
fast detection ability of the YOLOv4-tiny network. To make the detection network have a higher
accuracy, this paper adds an SE channel attention mechanism and an SPP module to this lightweight
backbone network to increase the receptive field of the model and enrich the expression ability of the
feature map. The network can pay more attention to salient information, suppress edge information,
and effectively improve the training accuracy of the model. At the same time, to better fuse the
features of different scales, the FPN multiscale feature fusion structure is redesigned to strengthen
the fusion of semantic information at all levels of the network, enhance the ability of network feature
extraction, and improve the overall detection accuracy of the model. The experimental results show
that compared with the mainstream network framework, the improved YOLOv4-tiny network in
this paper effectively improves the running speed and target detection accuracy of the model, and its
mAP index reaches 98.85%, achieving better detection results.

Keywords: deep learning; target detection; adaptive self-order piecewise enhancement; multiscale
feature optimization

1. Introduction

With the development of science and technology and the maturity of artificial intel-
ligence technology, All industries are moving in the direction of intelligence. As one of
the important pillar industries in China, construction machinery has played a vital role
in the development of construction infrastructure in China [1]. Construction machinery
covers infrastructure, mining, and other fields. The working environment is relatively
bad, often accompanied by a high temperature, dust, vibration, etc. The complex working
environment poses a serious threat to the safety of workers; part of the work of construc-
tion machinery is highly repetitive, and the working area is relatively fixed. Therefore,
reducing the safety risk caused by construction machinery operation, saving labor cost, and
developing unmanned and intelligent construction machinery have an important practical
significance. According to the work requirements of construction machinery, this paper
carried out research on technology for the intelligent identification of engineering materials
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in complex environments, realized the intelligent identification of construction machinery
and material categories by loaders, and made independent decisions according to the
surrounding environment to improve work efficiency and ensure the work safety of staff.

In recent years, with the development of computer hardware, target detection algo-
rithms based on deep convolution neural network [2,3] have developed rapidly and have
been widely used in various industries. These kinds of algorithms can learn target features
from a large number of images and have the characteristics of a high detection accuracy and
a good robustness. It is an important research direction in the field of computer vision. In
the process of material identification, the material features are not prominent and obvious,
which directly affects the final identification accuracy. Therefore, to fully mine the details
of the image to ensure the accuracy of recognition, it is necessary to enhance the contrast
of low-contrast image to improve the quality of the image. After increasing its clarity,
the image is combined with a convolution neural network to improve the accuracy of
recognition. To date, many experts and scholars have proposed many contrast enhance-
ment algorithms based on different theoretical foundations. Most of these algorithms can
effectively enhance the contrast of the image, thereby improving the visual effect of the
image [4]. For example, the wavelet-based homomorphic filter proposed by Zhang et al. [5],
the S-function image contrast enhancement algorithm based on human eye brightness per-
ception proposed by Wang et al. [6], and the low-illumination image contrast enhancement
algorithm based on the retinex theory proposed by Zhang et al. [7] have achieved good
results in processing image contrast. This provides a good theoretical basis for the adaptive
color scale enhancement algorithm proposed in this paper. This model mainly performs a
color scale enhancement pretreatment on the collected data such as foggy days and dark
environments, highlighting the target features in the scene, and providing a good basis
for neural network training. The target detection algorithm based on convolutional neural
network is mainly divided into a two-stage target detection algorithm and a one-stage
target monitoring algorithm. A two-stage target detection algorithm first forms a target
candidate frame and then detects the target through a convolution neural network. The
detection accuracy is high, but the real-time performance is poor. Representative methods
include R-CNN [8], Fast R-CNN [9], etc. A single-stage detection algorithm detects the
target directly by a convolution neural network without generating the target candidate
frame in advance. The detection accuracy of that method is lower than that of a two-stage
algorithm, but the detection speed is faster. Representative methods include YOLO [10],
SSD [11], etc.

At present, the YOLO algorithm is applied in practical projects by more and more peo-
ple because of its excellent detection speed. Wu et al. applied the improved YOLOv4-tiny to
the target recognition of a transmission line [12], redesigned the network for the problems
of large-scale changes of targets around transmission lines, many small targets, and easy-
to-miss reports, effectively improving the detection accuracy of the model. Fu Bowen et al.
applied the improved YOLOv4-tiny to the rapid detection of face key points [13]. Com-
pared with other methods, the proposed model had a higher recognition efficiency and
lower configuration requirements based on ensuring the recognition accuracy. Zhao et al.
applied the improved YOLOv4 algorithm to vehicle detection [14]. Aiming at the prob-
lem of the low detection accuracy in complex environments, the void convolution and
focal loss function were introduced into the network to effectively solve the problem of a
large difference between positive and negative samples in the detection process, and the
accuracy was improved by 7.31% compared with that of the original method. Leng et al.
applied an improved YOLOv4 in their research on traffic sign recognition [15], which
effectively alleviated the problem of the low recognition accuracy caused by small targets
and a complex background of traffic sign targets, and the average accuracy rate was nine
percentage points higher than that of the original YOLOv4. Sun et al. applied an improved
YOLOv4-tiny to pedestrian target detection in a school [16] and replaced the deep sepa-
rable convolution with an ordinary convolution, reducing the complexity of the model.
Compared with the original method, that method had the advantages of a high accuracy,



Appl. Sci. 2023, 13, 8177 3 of 20

fast speed, less parameters, and it could be applied to embedded devices. Liu et al. applied
an improved YOLOv4-tiny to solder joint detection [17]. Compared with the original
method, the average accuracy of the improved algorithm reached 99.3%, and the detection
speed reached 91 f/s. Liu et al. proposed a lightweight contraband detection method
based on YOLOv4 for X-ray security inspection, which utilized MobilenetV3 to replace
the backbone network of YOLOv4, while optimizing the neck and head of YOLOv4 using
a depth-separable convolution, significantly reducing the computational and parametric
quantities [18]. Yu et al. proposed YOLOv4-FPM for the real-time detection of bridge
cracks, using a pruning algorithm to simplify the network and speed up the detection, with
an mAP of 97.6% and a reduced model size and number of parameters [19]. Zhang et al.
combined GhostNet with coordinate attention to improve YOLOv4 and improved the mAP
by 3.45% and the detection speed by 5.7 FPS on a dense apple detection task [20].

In order to be able to meet the work needs of unmanned loaders, it is important to
study a material recognition algorithm that can be used in complex working conditions.
At present, the YOLOv4-tiny algorithm, as a first-stage target detection algorithm, has
greater advantages in detection speed and detection accuracy. However, the detection
capability of YOLOv4-tiny is affected by low-contrast environments such as dark scenes
and rainy and foggy weather, and the lower the contrast, the worse the detection effect is,
which can cause the detection to fail. In order to enhance the problem of a poor detection
of construction machinery and materials in low-contrast environments, we propose to
enhance the collected low-contrast images by using an adaptive self-order segmentation
enhancement algorithm, which makes the processed images clearer and the target contours
more obvious. Then, we improve the YOLOv4-tiny network structure, the backbone feature
extraction network by using an SE attention mechanism and an SPP module, and the
FPN feature fusion structure to further improve the detection of construction machinery
and materials.

The main contributions of this paper are as follows:

(1) In the processing of image contrast, the adaptive piecewise self-order enhancement
model proposed in this paper has a remarkable effect. The image color scale infor-
mation is completely corrected, the target contrast is clear, the peak signal-to-noise
ratio (PSNR) of the image before and after correction reaches more than 145, and the
structural similarity of the image before and after correction can reach more than 95%.

(2) By adding a spatial pyramid pooling module to the algorithmic feature extraction
network, the feature information under different sense field sizes can be fused, and the
fused feature maps contain different levels of semantic information, which is helpful
to improve the abstract expression of features.

(3) An attention mechanism is incorporated in the network, which can adaptively adjust
the weights of each channel, enabling the network to focus more on important infor-
mation and suppress irrelevant information in the channel dimension, increasing de-
tection accuracy while ensuring an almost constant training time and detection speed.

(4) The FPN feature pyramid fusion structure is improved, and a fusion mode is added
to the original basis to realize a bidirectional connection, enhance the effective fusion
of shallow and deep information, improve the utilization of multiscale features, and
enrich the information in the feature map.

(5) Finally, compared with the original algorithm, the improved YOLOv4-tiny target
detection algorithm shows some improvement in the average precision of detection.
The mAP reaches 98.85%.

2. Adaptive Piecewise Self-Order Enhancement Algorithm

To improve the detection rate of the algorithm, we carried out an adaptive self-order
color scale enhancement on the collected low-contrast images to improve the images’ clarity
and highlight the contour features of the target. The relevant enhancement principles are
as follows.
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2.1. Principle of Traditional Piecewise Enhancement Algorithm

The traditional piecewise enhancement algorithm divides the gray level of the image
into three parts through the maximum and minimum gray limits of the image gray level.
When the pixel value is less than the minimum gray value, the pixel gray value is assigned
to 0, indicating that the pixel has no color component in the gray class, so as to weaken
the gray level. If the pixel gray level is greater than the maximum gray value, the pixel is
assigned a value of 255 to achieve the purpose of enhancing the gray level. When the pixel
is larger than the minimum gray level but smaller than the maximum gray level, the gray
level of the pixel is normalized to complete the gray level enhancement of the image. The
specific model is as follows:

map(i + 1) =


0 , i < min(R)
uint8

(
(i−min(R))

(max(R)−min(R))

)
× 255 , min(R) ≤ i ≤ max(R)

255 , i > max(R)
(1)

where map represents the defined pixel size, the i of map(i + 1) represents a pixel in image
I, max(R) and min(R), respectively, represent the maximum and minimum gray values of
the image.

2.2. Adaptive Piecewise Self-Order Enhancement Algorithm

In the image gray level enhancement algorithm of the traditional self-ranking algo-
rithm, the image pixel enhancement is mainly based on the maximum interclass difference
of the image gray level. In the study of Formula (1) above, it is found that the simple algo-
rithm for the gray level enhancement that adjusts the relevant fixed parameters through
prior knowledge uniformly uses a simple normalization to enhance the pixels between the
minimum gray level and the maximum gray level. The utilization rate of the interclass
gray level information of the image is not high, resulting in a poor image enhancement
effect, and the distinction between dark and bright gray levels in the image is polarized.
Therefore, in view of the shortcomings of the image enhancement produced by the simple
processing in the above formula, this paper constructed a self-order matrix reorganization
analysis model to perform an interclass enhancement on the gray levels of the intermediate
stage. The image can be enhanced according to different gray intensities, and the gray
difference information between each gray level can be fully used to improve the quality of
the image after the enhancement. The specific model is as follows:

map(i + 1) =


255 , i > max(R)
data , min(R) ≤ i ≤ max(R)
0 , i < min(R)

(2)

In the formula, data[] refers to the pixel stored between the minimum pixel and the
maximum pixel. Other definitions are as shown in Formula (1). In this operation, all pixels
smaller than the minimum and larger than the maximum are defined as 0 and 255 gray
levels. For pixels larger than the minimum and smaller than the maximum, the defined
reorganization model is as follows:

Data = reshape(data, m, n) (3)

In the formula, Data represents the pixel matrix after the matrix reorganization of the
image gray levels, reshape represents the element reorganization function, data represents
the result in Formula (2), (m, n) represents the pixel matrix with a size of the element
reorganization of m×n. In order to effectively use the gray level between the minimum
value and the maximum value of a pixel to reflect the interclass difference between the gray
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levels of each pixel and finally realize the gray level enhancement of the pixel, firstly, the
histogram analysis of the reconstructed gray pixel is as follows:

DataR = imshist(Data)/(m× n) (4)

In the formula, DataR represents the histogram after image normalization, and the
other parameters are defined as above. The interclass coefficient of the gray level µT in
the histogram can be determined by defining the gray level colorlevel = 256 of the pixel
according to the image as follows:

µT = µT + colorlevel(j)× DataR(j) (5)

In the formula, µT refers to the gray level coefficient in the range from the minimum
gray level to the maximum gray level. The initial value is defined as 0, which means the
defined gray level is from 1 to 256. In order to achieve the adaptive gray level enhance-
ment, the difference between pixel classes must be adjusted by determining various gray
level enhancement parameters µ1, µ2, α1, α2 adaptively according to the defined gray level
colorlevel. The model for determining each parameter is as follows:{

α1 = α1 + DataR(j1)
α2 = 1− α1

(6)


µ1 = µ1 + (j2 − 1)× DataR(j2) (j2 < Th)
µ2 = µ2 + (j2 − 1)× DataR(j2) (j2 > Th)
µ1 = µ1/α1
µ2 = µ2/α2

(7)

In the formula, µ1, µ2, α1, and α2 represent the difference between adaptive gray levels
according to the image information, Th represents the adaptive gray level value, DataR
represents the result of the operation in Formula (4), j1 and j2 represent the cyclic operation
parameters of the gray level colorlevel, where j1 = 1 ∼ (th − 1), (Th = colorlevel − 1),
j2 = 1 ∼ colorlevel.

Finally, the interclass variance of the output image of Formulas (5)–(7) is used as the
judgment condition for the enhancement, and its mathematical model is as follows:

σFF = α1 × (µ1 − µT)
2 + α2 × (µ2 − µT)

2 (8)

µT represents the gray scale coefficient calculated in Formula (5) from the minimum gray
scale to the maximum gray scale. Other definitions are as follows.

In order to make effective use of the information of the interclass gray level of the
image for the enhancement, this paper proposes an adaptive light–dark perception model
to build the model based on the parameters of the adjustment of the interclass difference,
the variance of the interclass difference, and the original light–dark difference of the image.
The specific model is as follows:

Highlight =


σFF × 1.5 , 100 ≤ σFF < 150
σFF × 4.5 , σFF ≥ 150
σFF × 4 , σFF < 100

(9)

In the formula, σFF is the maximum gray value of each gray category calculated in
Formula (8) in the original image. Because this paper focused on the gray enhancement of
dark night scenes with a low contrast and foggy weather scenes with a high brightness,
it makes sense to choose different Highlight parameters for the operation of grayscale
enhancement according to the brightness of different scenes. At the same time, this paper
used the brightness difference of each gray level in the original image to reflect the shadow
characteristics between each gray level and obtained the brightness difference of the overall
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image through the difference between the highest brightness level of the image and the
overall shadow coefficient of the image. The overall brightness difference of the image and
the brightness difference between the image’s gray classes were combined and normalized
to increase the information utilization rate of the image. The perception model of shadow
parameters in this paper was as follows:

Shadow = ceil
(

max(all(σFF))

min(all(σFF))

)
(10)

In the formula, ceil it is the upward rounding function, and all(σFF) represents the
interclass variance value of all gray levels of the image. In addition, in order to effectively
improve the information utilization rate and image enhancement effect, this paper also
set the corresponding fine-tuning parameters to adapt the fine-tuning image enhancement
effect based on different brightness levels and different scenes. The specific model was
as follows:

MiT =

{
Highlight/1000 , Highlight ≥ 200
1 , Highlight < 200

(11)

In the formula, Highlight represents the overall brightness of the image. When it is
a foggy scene, the gray levels of the pixels are similar, so the fine adjustment coefficient
MiT should be far less than 1. In a dark scene, there is a large difference between the gray
level of the target pixel and the overall background, so it is necessary to improve the fine
adjustment coefficient MiT to enhance the color scale recovery effect. This paper defined
its value as 1.

In combination with the parameters established by the above corresponding models,
the enhancement model proposed in this paper is as follows:

D(i, j) =
{

Highlight− (σFF)/255 , min[data(:)] ≤ Data(i, j) ≤ max[data(:)]
Highlight− Shadow

(12)

Dr(i, j) =


Data(i, j)− (σFF)/255 , D(i, j) = Highlight− (σFF)/255
Data(i, j)− Shadow , D(i, j) = Highlight− Shadow
0 , Dr ≤ 0

(13)

Result(i, j) =
(

Dr(i, j)
D(i, j)

)( 1
MiT )×255

(14)

In the formula, Data(i, j) means that the grayscale value of the image between the
maximum and minimum grayscale, min[data(:)], max[data(:)] means the minimum and
maximum gray levels of the image, respectively. Highlight represents the brightness of
the image, Shadow represents the shadow parameter of the image, D(i, j) represents the
brightness difference of a certain gray level in the whole image, σFF denotes the operation
result of Formula (8), Dr represents the average gray level difference of the gray level, (i, j)
denotes the coordinates of the image element, and Result(i, j) is the final enhancement
result of the gray level. The overall process and pseudocode of the algorithm are as follows:

As shown in Figure 1 below, the image enhancement effect of the algorithm proposed
in this paper is obtained after preliminary verification. It can be seen from the figure that
the image enhancement effect of the algorithm proposed in this paper is obvious. The
pseudocode of the overall algorithm is shown in Table 1:
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Input image
Maximum gray 

scale of image

Minimum gray 

scale of image

Minimum to maximum 

gray range

The pixels in the minimum to 

maximum gray range are 

reorganized into (m, n) matrix

Self-order piecewise 

matrix reorganization 

model

Determine the enhancement 

factor T
μ 1 2 1 2

μ ,μ ,α ,α

Establish the adjustment 

parameters for the 

difference between pixels

The interclass variance 

value of the minimum to 

maximum gray scale 

interval of the image F F
σ

Determination 

coefficient

Trim factor

Adaptive light and dark 

coefficient perception model

Highlight
Shadow

MiT

Adaptive gray level 

interclass self-

enhancement model
Output image

Figure 1. Adaptive self-order segmentation enhancement algorithm flow.

Table 1. Proposed algorithm pseudocode.

Step 1. Input image I;

Step 2. Use Formula (1) to obtain the histogram of the pixel gray distribution in input image I and
calculate its maximum and minimum values min R;

Step 3. On the basis of step 2, combine Formula (2) to count and normalize the pixels in the range
from the minimum pixel to the maximum pixel values of each gray level category in the image;

Step 4. Reorganize the pixel whose gray level is in the minimum to maximum range into a new
operational matrix Data using Formula (3);

Step 5. Calculate the result of step 4 and Formulas (4)–(8), and output the adaptive self-order
parameters of gray scale σF

Step 6. Combine Formulas (9)–(11) to determine the adaptive brightness parameters Highlight,
scene shadows Shadow, and fine-tune parameters MiT for different scenes;

Step 7. Combining the operation results and Formulas (12)–(14) in steps 5 and 6, complete the
preliminary image preprocessing to achieve the purpose of darkening the foggy image and for a
preliminary enhancement of the dark night image;

Step 8. Defining the image brightness parameter Highlight = 50, the scene shadow Shadow is
defined as the result of Formula (9) divided by 65,535, and the fine-tuning parameter is defined as
Mi0.8;

Step 9. Combine the results in steps 7 and 8 with those in steps 3, 4, and 5 to output the
corresponding adaptive parameters, and then combine them with Formulas (12)–(14) to output the
final enhancement results.
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3. Improved YOLOv4-Tiny Detection Model
3.1. Basic Principle of YOLOv4-Tiny

The YOLO algorithm is a popular one-stage detection algorithm. The algorithm treats
the target detection problem as a regression problem. The convolution neural network
structure can directly predict the location and category of the target, it runs fast, and it
can achieve real-time detection. YOLOv4 [21], as one of the most advanced algorithms
in the current YOLO series, is an improvement of YOLOv3 [22]. It has strong real-time
performance and a high accuracy and has been widely used in practical projects. YOLOv4-
tiny is a lightweight network version of YOLOv4, which simplifies the network structure
and parameter quantity. Its detection accuracy is lower than that of YOLOv4 but it has a
higher detection speed. It also has obvious advantages in detection speed and accuracy
compared with other versions of the YOLOv4 lightweight network. Its network structure
is shown in Figure 2. The research goal of this paper was to achieve the classification and
detection tasks of 9 types of targets. The detection speed and accuracy of the algorithm
were high. Because the target scale of construction machinery and materials is large, and
the number of categories is small, it does not need too deep a convolution neural network,
so we chose to improve the YOLOv4-tiny algorithm.

Figure 2. YOLOv4-tiny algorithm network structure.

YOLOv4-tiny uses CSP Darknet53-tiny as the backbone network, with a (416 × 416)-
size image used as input. The backbone network is mainly composed of the CBL module
and CSPBlock residual module. The CBL module is composed of a common convolution
layer (Conv), batch standardization (BN), and leaky ReLu activation function. The CSPBlock
module divides the input features into two parts. When stacking the residual blocks, a large
residual edge is introduced. Finally, the two feature maps are spliced and the combined
feature maps are downsampled using maximum pooling. This structure can effectively
reduce the number of calculations. After downsampling 16 times and 32 times, the high-
level and low-level feature information are fused using the idea of a feature pyramid [23]
to improve the network-free feature extraction ability, and the final output size is 13 × 13
and 26 × 26 for the target detection.

The YOLOv4-tiny algorithm first extracts the features of the input image through the
feature extraction network and then divides it into S × S grid cells. If the center point of a
target falls in the grid cell, the grid is responsible for predicting the target. Each grid cell
needs to predict three boundary boxes. Each boundary box contains information on four
positions, x, y, w, and h, as well as the confidence and probability of a category. Multiple
grid cells may predict the same target, Therefore the results are filtered using non-maximum
suppression to get the coordinates and categories of the detected targets.

YOLOv4-tiny’s loss function refers to the difference between the predicted value of
the model and the real value. The smaller the value of the loss function, the higher the
prediction accuracy and the better the robustness of the model. YOLOv4-tiny’s loss function
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includes three parts, namely, the position loss, the confidence loss, and the category loss.
The loss function is shown in Equation (15).

Loss = LCIOU + Lconf + Lcls (15)

LCIOU = λcoord

K×K

∑
i=0

M

∑
j=0

Iobj
ij (2− wi × hi)(1− CIOU) (16)

CIOU = IOU − ρ2(b, bgt)

c2 − βv (17)

β =
v

1− IOU + v
(18)

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(19)

Lcon f =
K×K
∑

i=0

M
∑

j=0
Iobj
ij

[_
Ci log(Ci) + (1−

_

Ci) log(1− Ci)
]
−

λnoobj
K×K
∑

i=0

M
∑

j=0
Inoobj
ij

[_
Ci log(Ci) + (1−

_

Ci) log(1− Ci)
] (20)

Lcls = −
K×K

∑
i=0

M

∑
j=0

Iobj
ij ∑

c∈classes

[
_pi(c) log(pi(c)) +

(
1− _pi(c)

)
log(1− pi(c))

]
(21)

In the above formula, LCIOU is the location loss, Lcon f is the confidence loss, and Lcls

is the category loss. In LCIOU , λcoord is the weight coefficient of positive samples,
K×K
∑

i=0

M
∑

j=0

means traversing all the prediction boxes, Iobj
ij determines whether the sample is positive

or not, where a positive sample is 1 and a negative sample is 0. ρ2(b, bgt) denotes the
Euclidean distance between the prediction frame and the center point of the real frame. c
denotes the diagonal distance of the smallest closed region containing both the predicted
and real boxes, β is a parameter measuring the consistency of the aspect ratio, and v is the
trade-off parameter. (2− wi × hi) is the penalty term, wi and hi are the width and height of
the center point of the prediction box, wgt and hgt are the width and height of the real frame,
and w and h are the width and height of the prediction box. Lcon f and Lcls are calculated

using the cross-entropy loss, Inoobj
ij is used to determine whether the judgment is a negative

sample, where the negative sample is 1 and the positive sample is 0. λnoobj is the negative
sample weighting factor.

3.2. Improved YOLOv4-Tiny Algorithm

Because the detection algorithm in this paper was aimed at the detection and clas-
sification of construction machinery and materials, the target scale changed little, the
category was small and had obvious characteristic information. The deep convolution
neural network model had too many parameters and a long training time, which was not
suitable for this project. Therefore, we chose to improve YOLOv4-tiny, a lightweight model,
in order to achieve a higher detection accuracy under the condition of ensuring a faster
detection speed.

The improved YOLOv4-tiny in this paper added a channel attention SE module [24]
and a spatial pyramid pooling module to the original network and improved the FPN
feature fusion part of the network. The details are as follows: (1) At the neck of the network
structure, this paper added an SPP module [25]. The SPP module is composed of four
parallel branches, each with a convolution core size of 5 × 5, 9 × 9, 13 × 13, and a jump



Appl. Sci. 2023, 13, 8177 10 of 20

connection. Finally, the feature maps of the four branches are spliced and transferred to
the next layer. The SPP module draws on the idea of the spatial pyramid, which enables
the convolutional neural network to input images of arbitrary size, use different sliding
window sizes and step sizes for different output scales, and finally output a fixed-length
vector, realizing the fusion of local features and global features. Moreover, the fused feature
map contains different levels of semantic information, which is conducive to improving
the abstract expression of features and enhancing the sensitivity of features to high-level
semantic concepts. (2) To make the detection network have higher accuracy, we inserted a
channel attention mechanism SE module between the backbone feature extraction network
and the feature fusion network. The SE module first performs a squeeze operation through
a global average pooling to compress the input feature map of each channel into a scalar.
This process can be regarded as feature extraction for each channel to obtain the importance
of the channel. Then, the squeezed feature vector is input into two fully connected layers
through the excitation operation. One fully connected layer is used to learn the weights
between channels, and the other fully connected layer is used to learn the activation
function. Then, the outputs of the two fully connected layers are multiplied to obtain
a channel attention vector. Finally, the channel attention vector is applied to the input
feature map to enhance useful features and weaken useless features. Its main advantages
are that it can adaptively adjust the weight of each channel so that useful features get a
higher weight and useless features get a lower weight, thereby improving the accuracy and
robustness of the model. It can effectively improve the accuracy of the target detection with
a small increase in the number of parameters. (3) In YOLOv4-tiny, the main role of the FPN
structure is to solve the multiscale target detection problem in target detection by extracting
multiscale features from different levels of feature maps, so that targets of different sizes
can be detected. To be able to better fuse the features of different scales, we redesigned the
FPN multiscale feature fusion structure. In the original structure, the multiscale features
were fused only once. In this algorithm, we used a top-down and bottom-up bidirectional
fusion based on the original fusion, using upsampling and downsampling to unify the
features to the same size and adding jump connections between same-scale feature maps to
realize the fusion of higher-level feature maps with lower-level feature maps, so that the
information in the lower-level feature maps can be reused. This improved the utilization
of multiscale features, enriched the information in the feature map, and improved the
accuracy and robustness of the model. The improved structure is shown in Figure 3.

Figure 3. Algorithm flow of the network proposed in this paper.

The input size of the image are automatically converted to 416 × 416, The image is
first downsampled by three convolutions with a stride size of 2, then go through three
CSP structures for the feature extraction, and at the same time, uses maximum pooling for
downsampling. After the third CSP structure, the feature map enters the SE module to
screen out important feature information, strengthen the attention to important features,
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and then use the SPP structure to improve the expression ability of features. Finally,
the multiscale feature fusion structure fully integrates the deep information and shallow
information and outputs 13 × 13 and 26 × 26 feature maps, respectively. The size of the
feature map predicts the test results.

3.3. Algorithm Summary

Intending to effectively improve the detection accuracy of engineering materials in low-
contrast scenes, an adaptive self-order enhancement algorithm was established to enhance
low-contrast images; then, the SPP and SE modules were introduced into the YOLOv4-Tiny
network framework. At the same time, a new FPN multiscale feature fusion structure was
designed to enhance the fusion of semantic information at all levels of the network and
improve the overall detection accuracy of the model. The proposed algorithm’s flow chart
is shown in Figure 4.

Adaptive Self-order 

Piecewise  Enhancement 

Model

Adaptive Self-order 

Piecewise Enhancement 

Model

Improved v4 detection modelImproved v4 detection model
Whether the accuracy 

meets the requirements

Whether the accuracy 

meets the requirements
Yes

Nokache:0.95

Figure 4. Algorithm’s flow chart.

4. Experiment and Analysis
4.1. Data Set Introduction

In this paper, LabelImg was used to label the collected images, and the labels were
converted to the standard PASCAL VOC2007 format. In order to better train the target
detection model, we divided the data set into training set, verification set, and test set
according to the ratio of 7:2:1. The training set was used to train the target detection
model and update the model parameters. The validation set was used to adjust the
superparameters of the model and preliminarily evaluate the capability of the model. The
test set was used to evaluate the generalization ability of the final model and test the
performance of the model. The categories and quantities of all data sets are shown in
Table 2.

Table 2. Number of data set images.

Classification Excavating
Machinery Loader Lorry Loess Gobbet Cobblestone Fine Sand Paling Cone

Barrel Total

Number of
images 752 1118 2124 2015 4565 2021 6109 4591 2377 25,672

4.2. Evaluation Indicators

In order to effectively evaluate the effect of low-contrast image before and after en-
hancement, this paper used the structural similarity (SSIM), mean squared error (MSE),
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and peak signal-to-noise ratio (PSNR) to evaluate the image after the self-order enhance-
ment. At the same time, on the basis of image enhancement, this paper used the accuracy,
recall, F1 score, and average accuracy (mAP) to evaluate the detection accuracy of different
algorithms and drew PR curves to compare and analyze the results with those of other al-
gorithms. Among them, the mathematical evaluation model of the color scale enhancement
is as follows [26,27]:

EF = 1
MN ∑M

i=1 ∑N
j=1 F(i, j), EF′ =

1
MN ∑M

i=1 ∑N
j=1 F′(i, j)

µF =
√

1
MN−1 ∑M

i=1 ∑N
j=1[F(i, j)− EF]

2

µF′ =
√

1
MN−1 ∑M

i=1 ∑N
j=1[F′(i, j)− EF′ ]

2

µFF = 1
MN−1 ∑M

i=1 ∑N
j=1[F(i, j)− EF][F′(i, j)− EF′ ]

SSIM =
(2EFEF′+ε1)(2σFF′+ε2)
(E2

F+E2
F′+ε1)(σ2

F+σ2
F′+ε2)

(22)

where M and N are the image row and column numbers; F is the original image; F′ is the
predicted image; EF is the mean value of the original image; EF′ is the mean value of the
predicted image; µF is the standard deviation of the original image; µF′ is the standard
deviation of the predicted image; µFF is the covariance of the original image and the
predicted image; and ε1 and ε2 are constants, generally 0.01.

MSE =
1

MN

M

∑
i=1

N

∑
j=1

[
F(i, j)− F′(i, j)

]2 (23)

where M and N are the image row and column numbers; F is the original image; and F′ is
the predicted image. The peak signal-to-noise ratio model expression is as follows [28]:

PSNR = 10 log10
(2r− 1)2

MSE
= 20 log10

2r− 1
MSE

(24)

where r represents the pixel value of the image and MSE represents the mean squared
error. Among the target detection accuracy evaluation indicators, the accuracy, recall, F1
score, and average accuracy (mAP) evaluation metrics are as follows [29]:

Recall =
TP

TP + FN
(25)

Precision = TP/(TP + FP) (26)

F1 = 2(precisionrecall)/(precision + recall) (27)

AP =
∫ 1

0
P(R)dR (28)

mAP =
1
C

C

∑
i=1

APi (29)

In the formula, TP denotes the number of actual positive samples among the targets
detected by the algorithm, FP denotes the number of actual negative samples among the
targets detected by the algorithm, and FN denotes the number of targets missed by the
algorithm. Precision reflects the proportion of the real targets in the detection results, and
the higher the value, the more accurate the detection effect is. Recall reflects the proportion
of the real targets detected, and the higher the value, the more comprehensive the detection
effect is. Recall reflects the proportion of real targets detected, the higher the value, the
more comprehensive the detection effect. The F1 score represents a balanced index between
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model precision and recall. The higher the value, the better the model. AP denotes the
area under the precision-recall curve calculated separately for each category, reflecting
the predictive performance of each category. The mAP is the mean of the AP values of
all categories, reflecting the overall predictive performance of the model. P− R curve is
Precision-Recall curve, with Recall as the horizontal coordinate and Precision as the vertical
coordinate, the area below the curve (i.e., AP) reflects the detection performance of the
category. The larger the area under the curve, the better the categorization.

4.3. Experimental Results
4.3.1. Enhanced Processing Qualitative Analysis

In this paper, some scenes were selected to carry out experiments on the adaptive
autostep enhancement algorithm. The relevant experimental results are shown in Figure 5
below. The adaptive autostep enhancement algorithm proposed in this paper had an
obvious effect and could significantly improve the image clarity in image defogging, laying
the groundwork for subsequent target detection. In the dark night scene, the algorithm
proposed in this paper could achieve a better self-enhancement, and the target in the image
was obvious, which showed that the algorithm in this paper had a good feasibility to a
certain extent.

Figure 5. Image enhancement results of automatic color scale algorithm.

4.3.2. Quantitative Analysis of Enhancement Treatment

In order to analyze the enhancement effect of the self-order enhancement algorithm
proposed in this paper from a quantitative point of view, structural similarity (SSIM), mean
square error (MSE), and peak signal-to-noise ratio (PSNR) are chosen to evaluate the images
of different scenes.In the experimental process, two types of data are used for experimental
validation: one type is to use the same camera to collect data for daytime and nighttime
hours respectively, and the data of sunny daytime hours are treated as the standard dataset;
the other type is to use the simulated nighttime data for validation, i.e., the data of the
daytime hours are treated as the nighttime pictures after the blackening process, and then
the enhancement correction is carried out by using the correction algorithm in this paper.
Finally, these two types of data are used to evaluate the indicators of the data before and
after enhancement. The different scene data are shown in Figure 6 below, the first column
is the different scene data collected during the daytime hours, the second column is part
of the real collected nighttime data and part of the nighttime simulation data, The third
column is the resultant graph after image enhancement by the algorithm of this paper.
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Figure 6. Self -order correction results.

As shown in Figure 6, it can be observed that the algorithm proposed in this paper for
an adaptive self-scale enhancement had good color-scale correction results for dark night
scenes, and the corresponding evaluation indicators are shown in Table 3.

Table 3. Evaluation indicators of a night scene.

Frames\Index MSE PSNR SSIM

1 3.8660 132.7543 0.9579

2 9.2540 125.1968 0.8887

3 0.4662 151.1310 0.9591

4 1.0076 144.6581 0.9622

5 0.7584 147.4115 0.9865

6 0.6850 147.9944 0.9884

7 0.7231 147.3809 0.9868

8 1.4195 141.5466 0.9853

As shown in Table 4, the values of the mean square error (MSE), peak signal-to-noise
ratio (PSNR), and structural similarity (SSIM) of the self-order enhancement algorithm
proposed in this paper in foggy days were good, which indicates the algorithm greatly
preserved the original information of the image while improving the image quality and
achieved the image enhancement target. In the dark scene, because the pixel distribution in
the original scene was relatively uniform, the contrast of the image was greatly improved
after the image enhancement, the original background of the scene was well preserved,
and its MSE, SSIM, PSNR values performed well to achieve the self-correction of the dark
field image.

Table 4. Assessment indicators of foggy scenes.

Frames\Index MSE PSNR SSIM

1 0.1658 193.8824 0.9591

2 0.0063 202.5396 0.9991

3 0.0063 203.6259 0.9996

4 0.6299 148.9663 0.9921

5 2.6259 136.1131 0.9695

6 5.5518 129.6057 0.9554
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4.3.3. Detection Results of Different Scenes under Low Contrast

During the experiment, the model superparameters were set to a batch size of 64, 8
subdivisions 8, max batches of 20,000, and a momentum and weight decay of 0.9 and 0.0005,
respectively. The adaptive matrix estimation algorithm (Adam) was used to optimize the
model, and the initial learning rate was set to 0.0025. When the maximum iteration was
80%, the learning rate was reduced by 10 times; When the maximum iteration was 90%, the
learning rate was reduced by 10 times every time, and the weight was saved once every
10,000 training iterations of the model. The information on the experimental platform is
shown in Table 5. The improved model proposed in this paper was applied to the detection
of nine categories in different environments, as shown in Figure 7. From Figure 7, it can be
seen that all categories were successfully detected and had a high recognition rate.

Table 5. Development platform information.

Platform Configuration

Operating System Ubuntu 18.04

CPU I5-12400F

GPU RTX3060

Memory 12G

Cuda 11.3

Cudnn 8.2.1

Figure 7. Detection results of different scenes under low contrast.

4.3.4. Comparative Analysis of PR Curves

The algorithm in this paper is based on an improvement of YOLOv4-tiny, so this
paper compared the performance of the improved algorithm with the PR curve of the
YOLOv4-tiny algorithm. As can be seen from Figure 8, the performance of the improved
algorithm in this paper was better than that of the algorithm before the improvement, with
a better accuracy and recall rate and a stronger robustness. According to the PR curve,
the algorithm applied to fine sand performed the worst. The reason was that a large part
of the fine-sand data-set samples were collected in a dark environment, and the images’
distinguishable features were not obvious, resulting in a certain deviation, a low recall rate,
and a small performance improvement for this type of images.
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Figure 8. PR curves of the YOLOv4-tiny algorithm and the improved algorithm.

To compare the two algorithms in more detail, we compared each category of the
two algorithms separately. The PR curve is shown in the figure. According to Figure 9,
the improved algorithm in this paper was better than the original algorithm in terms of
comprehensive performance. Therefore, the improved algorithm in this paper met the
task requirements.

Figure 9. Comparison of PR curves from the same category between the YOLOv4-tiny algorithm and
the improved algorithm.

4.3.5. Ablation Experiments

To verify the effectiveness of the module proposed in this paper, we designed ablation
experiments, as shown in Table 6. From Table 6, we can see that the SPP module improved
the precision and mAP, but the I decreased slightly, while the SE attention mechanism im-
proved the F1 score and mAP, but the precision and recall remained unchanged. Improving
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the FPN structure had the most obvious effect, improving the four performance indexes
(precision, recall, F1, and mAP). In summary, the improved method proposed in this paper
achieved good results and can effectively improve the detection algorithm’s performance.

Table 6. Ablation experiments.

Method Precision Recall F1 mAP

Baseline 92.00% 97.00% 95.00% 98.23%

Baseline + SPP 94.00% 96.00% 95.00% 98.27%

Baseline + SPP + SE 94.00% 96.00% 96.00% 98.30%

Baseline + SPP + SE + FPN 96.00% 97.00% 97.00% 98.79%

Considering that the learning rate has some influence on the training results, we
conducted a relevant experimental validation. The experimental results are shown in
Table 7. We adjusted the learning rate within the interval from 0.002 to 0.003, based on
the default learning rate. As can be seen from the table, precision and recall were almost
unchanged with different learning rates, and the mAP and F1 scores did not change much.
mAP was the highest at a learning rate of 0.0025, and the F1 score was the highest at the
default parameter of 0.00261. We chose 0.0025 as the learning rate.

Table 7. Learning rate comparison experiment.

Learning Rate Precision Recall F1 mAP

0.003 96.00% 97.00% 96.00% 98.81%

0.0027 96.00% 97.00% 96.00% 98.71%

0.00261 96.00% 97.00% 97.00% 98.79%

0.0025 96.00% 97.00% 96.00% 98.85%

0.0023 96.00% 97.00% 96.00% 98.72%

0.002 96.00% 97.00% 96.00% 98.80%

4.3.6. Detection Results of Different Algorithms under Low Contrast

In this paper, the performance of the improved algorithm was compared with that
of SSD, YOLOv3-tiny, and YOLOv4-tiny, respectively, and we calculated the precision,
recall, F1 score, and mAP for each algorithm with the IOU threshold set to 0.5 and 0.75, as
shown in Table 8. IOU indicates the overlap between the prediction frame and the real
frame. The higher the IOU is, the higher the judgment standard is. From the table, it can
be seen that when the IOU was 0.5, the recall of the YOLOv4-tiny algorithm was higher
than its precision, and the proposed method significantly improved the precision, better
balanced the precision and recall indexes, and the F1 score and mAP were also significantly
improved. When the IOU was 0.75, the accuracy index of each algorithm was reduced to
a certain extent due to the high judgment standard, the mAP of the improved algorithm
in this paper was improved by 1.6%, and all other indexes were improved significantly.
In a comprehensive view, the improved algorithm in this paper had a better performance
compared with that of the other algorithms.
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Table 8. Comparison of indicators of different algorithms.

Methods IOU Thresh Precision Recall F1 mAP

SSD
0.5 93.10% 96.92% 95.00% 97.64%

0.75 85.00% 84.32% 83.00% 82.67%

YOLOv3-tiny
0.5 95.00% 95.00% 95.00% 97.73%

0.75 80.00% 80.00% 80.00% 79.00%

YOLOv4-tiny
0.5 92.00% 97.00% 95.00% 98.23%

0.75 82.00% 87..00% 85.00% 86.00%

Our Methods
0.5 96.00% 97.00% 96.00% 98.85%

0.75 86.00% 87.00% 87.00% 87.60%

To better reflect the performance of the algorithm, we compared the detection results
of different algorithms in rainy and foggy weather and in a low-contrast environment with
four types of loaders, excavators, fine sand, and stones, as shown in Figure 10. From the
figure, we can see that the probability of object categories detected by other algorithms was
lower than that of the algorithm in this paper. In general, the algorithm in this paper had
the best overall performance and had a high recognition rate in each scene.

YOLOv3-Tiny

YOLOv4-Tiny

Our Methods

SSD

Figure 10. Comparison of detection results of different algorithms with low-contrast scenes.

4.4. Limitations of the Algorithm

The improved YOLOv4-tiny algorithm in this paper could achieve the detection and
classification of construction machinery and materials under complex working conditions,
and its detection accuracy and detection speed basically met the actual work requirements,
but there were some limitations, including the following: (1) The target detection method
based on deep learning needs a large quantity of labeled data for training, and the gen-
eralization of the algorithm is influenced by the data, so obtaining high-quality data is a
difficult task. (2) Deep learning algorithms may have some problems in detecting obscured
objects, as the obscured object will lead to changes in the original appearance of the target,
which is not conducive to an accurate detection of the target by the model. (3) Deep learning
models have different detection effects when dealing with targets of different scales because
targets of different scales have different feature information, which may make it difficult
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for the model to detect them accurately. Due to the above limitations, deep-learning-based
target detection algorithms still have a lot of room for improvement.

5. Summary

To sum up, this paper proposed an improved YOLOv4-tiny target detection method
based on an adaptive self-order piecewise enhancement and multiscale feature optimization,
aiming at the low accuracy of target recognition in low-contrast scenes. The algorithm first
used an adaptive self-order enhancement model to enhance the low-contrast image and
then improved the network structure of YOLOv4-tiny, added SPP structure and SE channel
attention mechanisms into the backbone network structure, and improved the feature fusion
method of FPN, so that different levels of features could be effectively used. Compared with
the original algorithm, the improved algorithm had better comprehensive performance in
various evaluation indicators, and the mAP reached 98.85%. In the experimental results on
various targets in different environments, the proposed algorithm achieved good detection
results. In a word, the improved target detection algorithm in this paper effectively
improved the target recognition accuracy under low-contrast conditions and provided a
good foundation for the intelligent development of construction machinery.
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