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Abstract: Link prediction is a crucial problem in the analysis of graph-structured data, and graph
neural networks (GNNs) have proven to be effective in addressing this problem. However, the
computational and temporal costs associated with large-scale graphs remain a concern. This study
introduces a novel method for link prediction called Sparse Subgraph Prediction Based on Adaptive
Attention (SSP-AA). The method generates sparse subgraphs and utilizes Graph SAmple and aggre-
GatE (GraphSAGE) for prediction, aiming to reduce computation and time costs while providing
a foundation for future exploration of large-scale graphs. Certain key issues in GraphSAGE are
addressed by integrating an adaptive attention mechanism and a jumping knowledge module into
the model. To address the issue of adaptive weight distribution in GraphSAGE, an aggregation
function is employed, which is based on the attention mechanism. This modification enables the
model to distribute weights adaptively among neighboring nodes, significantly improving its ability
to capture node relationships. Furthermore, to tackle the common issue of over-smoothing in GNNs,
a jumping knowledge module is integrated, enabling information sharing across different layers
and providing the model with the flexibility to select the appropriate representation depth based on
the specific situation. By enhancing the quality of node representations, SSP-AA further boosts the
performance of GraphSAGE in various prediction tasks involving graph-structured data.

Keywords: link prediction; graph convolutional networks; sparse subgraphs; adaptive attention;
jump knowledge

1. Introduction

With the advent of the big data era, the Internet has become a major source of infor-
mation collection in various fields, including social networks [1], shopping networks [2],
protein networks [3], and more. The information within these networks often exhibits
large-scale and complex topological structures. Notably, graph-structured data pervades
in representing the relationships between interacting entities. Moreover, graphs have be-
come an important data form for link prediction tasks [4], which involve predicting the
missing relationships between entity pairs across different timelines. As the volume of
graph-structured data continues to grow, researchers constantly grapple with issues related
to predictive performance and computational cost. Approaches range from simple, easy-to-
implement heuristic methods to the use of graph neural networks, which automatically
learn complex patterns within the graph structure and manage large-scale graph data. All
these methods require extensive sampling and training to enhance model predictive perfor-
mance. However, as the volume of network data continues to surge, traditional prediction
methods face challenges in computation and storage when dealing with large-scale data.
To address the difficulties brought about by massive sampling and training, one potential
solution lies in the use of subgraph-based methods to reduce computational overhead in
large-scale graph structures.

By focusing only on the subgraphs around the target nodes, the complexity of sampling
and training can be significantly reduced, which in turn speeds up model training and
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improves prediction efficiency. For link prediction problems in large-scale recommendation
systems, the Pinterest SAGE (PinSage) [5] model employs subgraph sampling and graph
neural network models for representation learning. Empirical evidence has shown that
subgraph-based methods have achieved commendable performance in link prediction tasks
within recommendation systems. Similarly, the Graph WaveNet [6] model uses subgraph-
based random walk sampling and convolution operations to model spatiotemporal graph
data, capturing complex patterns and dynamic changes effectively, leading to superior
performance. Consequently, subgraph-based prediction methods emerge as the optimal
solution. In order to further alleviate the challenges associated with processing large-scale
graph-structured data, a sparse subgraph sampling approach is employed for prediction
tasks. This sampling method retains crucial structural information around the target nodes
while reducing computational costs in large-scale graph structures.

GNNs [7,8] have been proven to be an effective method for handling large-scale graph-
structured data and are widely used in various tasks, such as node classification [9], graph
classification [10], and link prediction. Early GNNs tended to use shallow encoders, where
latent nodes were represented through random walks for learning, followed by the assess-
ment of link probabilities based on the latent representations of the two endpoint nodes.
However, due to the incompatibility between node features and inductive settings, the
ability to train using all nodes was hindered. The advent of message-passing graph neural
networks addressed these issues. GraphSAGE [11] serves to learn node representations in
graph-structured data, taking better advantage of node features and proving more suitable
for inductive settings. Therefore, it partially addresses the limitations of early GNNs.
GraphSAGE is detailed in [12], which outlines its basic principles and key components.
Firstly, GraphSAGE learns node representations by aggregating over the subgraphs of
each node’s neighbors. Secondly, detailed analysis is provided for applications in different
domains. Lastly, experiments and results demonstrate the performance and effectiveness of
the GraphSAGE model in specific tasks. Therefore, GraphSAGE has facilitated research on
various downstream tasks, such as link prediction, node classification, and graph classifica-
tion. Additionally, in the task of processing graph-structured data, GNNs often encounter
the issue of over-smoothing [13] when trying to increase depth. This results in overly simi-
lar feature representations between different nodes, reducing the model’s discriminative
ability and expressiveness. To tackle this problem, a skip-knowledge module needs to
be introduced into the SSP-AA model. This module allows the model to flexibly select
and integrate features from different layers, greatly enhancing the expressiveness of node
representations. It enables the SSP-AA model to demonstrate higher prediction accuracy
and efficiency when handling large-scale graph data tasks, thus bringing about further
innovation and development in the field of graph structure prediction.

In the task of handling large-scale graph-structured data, existing methods present
numerous challenges and shortcomings. They include the excessive overhead of model
training and the inability to assign suitable weights to nodes, resulting in a limited capacity
of the model to capture information in the graph structure. Additionally, the issue of over-
smoothing arises with the increasing depth of graph neural networks and leads to overly
similar node feature representations. All these reduce the efficiency and predictive accuracy
of the model, posing significant challenges for prediction tasks oriented toward large-scale
graph-structured data. Therefore, this paper proposes an adaptive attention-based method
for sparse subgraph prediction based on the GraphSAGE model (SSP-AA), which aims to
effectively process sparse subgraph data while maintaining high predictive performance.
The contributions of this paper are as follows:

(1) First of all, the SSP-AA model incorporates an adaptive attention mechanism to
enhance its ability to handle graph-structured data. This approach addresses the
limitations of the existing model, specifically in terms of adaptive weight allocation
when aggregating neighbor node features;

(2) Moreover, integrating a jumping knowledge module addresses the over-smoothing
problem that frequently occurs with increasing depth in GNNs. The jumping knowl-
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edge module allows the model to flexibly select and combine features across different
layers, enhancing the expressive power of node representations;

(3) Finally, utilizing sparse subgraphs helps to decrease the complexity of the graph
structure, retaining crucial node information in the graph while reducing compu-
tational overhead in prediction tasks and classification tasks involving large-scale
graph-structured data.

2. Related Work
2.1. Graph Neural Network

In recent years, with the advancement of deep learning technologies, numerous new
graph neural network structures have emerged. In the task of link prediction, traditional
methods inferring missing links from a global topological perspective have consistently
proven ineffective, leading to the development of various graph neural network approaches.
The Graph Attention Network (GAT) [14] aggregates neighbor node information by learn-
ing the relationship weights between each node and its neighbors, achieving improved
results in predicting missing links within various large-scale networks. The Graph Convolu-
tional Recurrent Neural Network (GCRN) [15] combines the structures of convolutional and
recurrent neural networks to model neighbor nodes temporally while considering global
information. The Graph Variational Autoencoder (GVAE) [16], through mapping graph
data to a latent space and introducing the concept of variational autoencoders, can generate
new graph data, contributing to graph generation and reconstruction tasks. Additionally,
the learning ability of the Graph Recursive Neural Network (GRNN) [17] is combined with
the multi-scale characteristics of wavelet decomposition to perform more accurate field
strength prediction, assisting in cellular network planning and performance optimization.
Experimental results demonstrate the GRNN’s robust capability to capture information
in multiple stages. Although each of these structures can be selected according to specific
tasks, they have their own disadvantages and limitations. For instance, certain structures
might suffer from excessive computational complexity when handling large-scale graph
data, experiencing insufficient capturing of complex graph patterns and long-distance
dependencies, or a lack of adequate model interpretability. Overcoming these challenges
necessitates the design and improvement of new structures. Therefore, in response to
the limitations of existing graph neural network models, this paper proposes a method
based on Graph Convolutional Networks (GCNs) [18] for tasks such as link prediction and
node classification.

GCNs aggregate local neighbor information through convolution operations on adja-
cency matrices. This enables the model to capture complex inter-node relationships while
preserving graph structure information. It conducts weighted aggregation based on the
features of neighboring nodes, allowing each node to effectively integrate information from
its neighbors, thereby generating context-aware representations. However, GCNs only use
first-order neighbor information for aggregation operations, preventing the model from
fully capturing relationships between nodes and more distant neighbors. Moreover, during
the aggregation process, all neighbor nodes are assigned the same weight, which means the
model cannot differentiate the importance of different neighboring nodes. These limitations
lead to some constraints in GCNs. Therefore, to address these issues, GraphSAGE has been
proposed as an improvement on GCNs.

In medical and pharmaceutical research, Ref. [19] applied the GraphSAGE model to
integrate multimodal and complex relationship biomedical networks, effectively predicting
adverse drug interactions and impacts between drugs and their targets. This plays a
significant role in constructing drug knowledge graphs for Coronavirus Disease 2019
(COVID-19). Experimental results show that the GraphSAGE model can effectively predict
drug–disease interactions for COVID-19. In the realm of Internet of Things (IoT) intrusion
detection systems, Ref. [20] utilized the GraphSAGE model to capture edge features of
graph structure data and topological information for network intrusion detection within
IoT networks, conducting extensive experimental evaluations on four Network Intrusion
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Detection System (NIDS) benchmark datasets with positive results. In industrial Internet
attack detection systems, Ref. [21] constructed graph structure data with network ports
and IP addresses as nodes, and residual traffic as edge information. They employed the
GraphSAGE model for node sampling and feature aggregation, effectively learning local
neighborhood features of nodes and accurately predicting attacks in the industrial Internet.
This approach effectively addresses attack detection issues in complex networks.

2.2. Link Prediction Method

The task of link prediction is the process of predicting missing relationships between
entity pairs within a graph structure. Link prediction methods can be classified into heuris-
tic methods, matrix factorization methods, random walk methods, community detection
methods, rule-based methods, feature learning methods, machine learning methods, and
GNN methods.

Based on heuristic methods, strategies using metaheuristics [22] are combined with
the Particle Swarm Optimization (PSO) [23] approach and the topological properties of
social network graphs to locate missing relationships in symbolic social networks. Ref. [24]
analyzed the problem of link prediction in complex networks, elucidating the relationship
between the degree of clustering of nodes in a network and node degree, and expounded
on the existing link prediction methods and technologies as well as the application areas
and challenges of heuristic methods. Based on matrix decomposition methods, the Sparse-
Mult [25] model employs a matrix decomposition method that breaks down a large matrix
into the product of several smaller matrices. This approach significantly reduces computa-
tional complexity, allowing the model to handle large-scale data more effectively. Based
on random walk methods, the DeepWalk [26] algorithm simulates random walk paths
between nodes purely by random walk, capturing the structure of the network and thereby
addressing the problem of missing relationships in the network. Ref. [27] summarized the
impact of network embedding feature learning methods on link prediction tasks, such as
DeepWalk, Large-scale Information Network Embedding (LINE), and node2vec. Network
embedding methods generate node embeddings by controlling the random walk process
between nodes, thereby capturing the structure and relationships within the network.
Based on community discovery methods, some existing approaches do not consider impor-
tant information such as community features, text information, and growth mechanisms
in link prediction tasks. Therefore, Ref. [28] incorporated node features into community
detection algorithms based on the characteristics of social networks, further improving the
process of community discovery methods in link prediction tasks. Based on rule-based
methods, the Anytime Bottom-Up Rule Learning (AnyBURL) [29] model performed well
in various general link prediction tasks. However, its aggregation process is affected by the
redundancy of multiple rules. Thus, the Scalable and Fast Non-redundant Rule Application
(SAFRAN) [30] was used to detect cluster redundant rules before aggregation, thereby
improving the effect of the AnyBURL model. Based on feature learning methods, in combat
systems, diverse systems and information flows were treated as nodes and edges, using the
Representation Learning based Heterogeneous Combat Network (RLHCN) [31] method to
predict various link types in the combat network. Based on machine learning methods, in
graph-structured data, the popularity of each node is computed and the similarity metric
between each pair of nodes in the network is assessed. These two metrics constitute the fea-
tures of the node pairs, and this feature data is input into a machine learning classifier [32]
to identify missing relationships in the network. Ref. [33] improved the water environment
by combining machine learning and regional features of artificial immune algorithms to
extract images of floating objects in polluted water sources, effectively detecting floating
pollutants on the water surface and aiding in water resource management [34]. In medical
image segmentation tasks, feature learning regression network models provided a better
method for image segmentation, which can effectively solve the problem of retinal layer
segmentation bias.
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Link prediction methods have evolved from simple heuristic algorithms to complex
GNNs, with gradually improving performance. Heuristic algorithms are simple, but their
performance is limited. Methods such as matrix factorization and random walks show
improved performance but come with high computational costs. Community detection
and rule-based methods require manual parameter tuning. Feature learning successfully
captures graph structural features but requires additional models and computational
overhead. Machine learning methods have enhanced performance, but feature extraction
and scalability are limited. GNNs have brought about a significant improvement in link
prediction. They can be trained within an end-to-end framework [35,36], capture node
features and graph structural information, and exhibit excellent scalability. However, they
have high computational costs, especially when dealing with large graphs. Therefore, using
GraphSAGE to aggregate node features and expand node representations can effectively
solve issues of computational overhead and scalability.

2.3. Sparse Subgraph Generation Method

In order to mitigate the complexity of graph structures, researchers have explored the
generation of sparse subgraphs as a means to reduce the scale of graph-structured data.
The methods for generating sparse subgraphs [37] primarily involve pruning strategies
and graph sampling. Pruning strategies employ approaches such as degree-based pruning
and distance-based pruning, which trim the graph based on topological structure or node
features. Structural Deep Network Embedding (SDNE) [38] is a technique that can be
utilized to learn low-dimensional embeddings of nodes in a network. SDNE achieves this
by extracting sparse subgraphs through pruning, targeting the removal of low-weight
edges in the network to reduce noise and redundant information, thereby enhancing the
quality and effectiveness of the embeddings. The pruning process of SDNE can be seen
as a strategy that reduces the complexity of the graph while preserving its structural
information. Sampling methods typically involve selecting nodes or edges based on
their importance. Random walk sampling [39] simulates random walks between nodes,
occasionally restarting at specific nodes, and constructs a probability transition matrix that
governs the movement between nodes. By iteratively calculating the transition matrix,
the stable distribution of nodes can be obtained. Subsequently, sparse subgraphs with
high-probability connections can be extracted based on the stable distribution among nodes.
These approaches not only preserve the structural information of the graph but also reduce
its complexity, thereby decreasing the computational costs associated with prediction and
classification tasks in large-scale graph-structured data. Figure 1 illustrates an example of
extracting sparse subgraphs from a large graph using random walk and k-hop neighbor
sampling methods.
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Figure 1. (a) Wandering from the target node. (b) Closed enclosing subgraph with labels. Figure 1. (a) Wandering from the target node. (b) Closed enclosing subgraph with labels.

3. The Proposed SSP-AA Model

In current link prediction tasks, on one hand, most models simply set an appropriate
sampling range and then directly aggregate neighbor nodes, without fully considering the
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features of the nodes, leading to suboptimal model performance. On the other hand, GNN
models can suffer from over-smoothing as the model depth increases, resulting in reduced
node feature representation.

In response to these issues, we propose a prediction model based on adaptive attention,
the SSP-AA model. The symbol definitions of the SSP-AA model are shown in Table 1
as presented.

Table 1. SSP-AA symbol definitions.

Symbols Definitions

G Undirected Graph
V Nodes in the Undirected Graph
E Edges in the Undirected Graph
h Node Features
H A Set of Node Features
W Weight Matrix
l The lst Layer of the Model
α Weight Vector
b Adjusted Weight Bias Term
eij The Original Attention Score Between Nodes i and j
σ Non-linear Activation Function

In mathematics and computer science, a graph G (V, E) is an abstract data type used
to represent pairwise relationships among objects. A graph comprises vertices V (or nodes)
and edges E (or arcs), where each edge E connects two vertices. For a graph G (V, E), if there
is another graph H (V′, E′) where V′ ⊆ V and E′ ⊆ E, and every edge in E′ still connects
two vertices in V′, then H is considered a subgraph of G.

3.1. Adaptive Attention Mechanism

In link prediction tasks, the feature information of most target node pairs originates
from the features of neighboring nodes. Effectively learning the neighborhood features of
target nodes requires considering the different levels of structural importance and associ-
ation among neighborhood nodes. Therefore, to learn these vital features, it is necessary
to learn attention mechanisms [40] in multi-layer spaces to capture different aspects of
latent features. Aggregating neighboring features that have important relevance in differ-
ent layers through the attention mechanism can construct comprehensive and expressive
neighbor features. Consequently, an adaptive attention mechanism is incorporated into the
SSP-AA model. By employing this mechanism, the SSP-AA model can dynamically allocate
weights among neighboring nodes, allowing for the effective aggregation of neighbor node
information to generate target node representations. As a result, the SSP-AA model exhibits
a strong capability to express features in prediction tasks. In this section, we first calculate
the attention between neighboring nodes in the current layer. Then, the attention weights
are normalized. Finally, the feature representation of the current layer is obtained through
node aggregation.

(1) Calculation of the attention mechanism

The attention weights in traditional attention mechanisms are computed by applying
a shared attention mechanism to the hidden representations between node pairs. For the
representation of node i, the feature of node j plays a crucial role. Every node in the graph
is related to all other nodes. Therefore, the formula for calculating attention weights is
as follows:

el
ij = LeakyReLU(αT[W lhl

i ‖W lhl
j
]
+ bij). (1)

The term bij represents an additional learnable bias term, used to adjust attention
weights based on the relationship between nodes i and j. By introducing this additional
bias term in the module, the model can more easily adapt the weights between neighboring
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nodes in sparse subgraphs, thereby capturing the features of the graph structure more
effectively. The Leaky Rectified Linear Unit (LeakyReLU) is a nonlinear activation function
and a variant of the Rectified Linear Unit (ReLU) activation function. The LeakyReLU
allows for a small, nonzero output for negative inputs to solve the dying neuron problem,
thus ensuring all neurons in the neural network remain active. This helps to enhance the
learning capability and performance of the model.

Based on the output of the graph attention layer, we can obtain the output features
Hl+1 from Hl . Inspired by the dot product formula, the dot product is applied to the
attention calculation of output features. When the dot product of two vectors is large,
their angle in space is smaller, implying they have a similar direction and hence a higher
similarity. This method allows for a more accurate aggregation of nodes with high similarity
during the node aggregation process, thus enhancing the model’s performance. Therefore,
this paper proposes using the dot product to measure the similarity between two vectors.
Accordingly, the attention to the output features is as follows:

el+1
ij = (W l+1hl

i)
T ·W l+1hl

j (2)

(2) Normalization of the attention weight

Normalization of the original attention scores into attention weights involves applying
the softmax function across all neighboring nodes of a given node i. The formulation for
this normalization process is as follows:

αij = so f tmaxj(el
ij) =

exp(el
ij)

∑
k∈Ni

exp(el
ik)

(3)

where αij denotes the normalized attention weight between nodes i and j, Ni represents the
set of neighboring nodes of node i, and el

ij and el
ik are the original attention scores between

node i and its neighboring nodes j and k, respectively. The process of weight normalization
is shown in Figure 2.
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This ensures the sum of the attention weights for all neighboring nodes of node i equals
1 to make the model better balance the importance of different nodes when aggregating
neighboring node information. By dynamically adjusting attention weights to capture
relationships between nodes, the normalized attention weights also contribute to the
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stability of the training process. The formula for calculating the adaptive attention weights
of the model is as follows:

αij =
exp(LeakyReLU(αT [W lhl

i ‖W lhl
j] + bij))

∑
k∈Ni

exp(LeakyReLU(αT [W lhl
i ‖W lhl

k] + bik))
(4)

(3) Aggregating Neighbor Node Information

The normalized attention weight αij is used to weigh the information of neighboring
node j, and this information is then aggregated into the target node i. This process updates
the representation of node i in the subsequent layer l. The aggregation representation
formula is as follows:

hl+1
i = σ( ∑

j∈Ni

αij(W lhl
j)) (5)

hl+1
i is the representation of node i’s features in the l + 1 layer. To stabilize the model’s

learning process, it is beneficial to extend the attention mechanism to use multi-head
attention. Specifically, K-independent attention mechanisms are used to transform the
above formula, and their features are concatenated using the operator ‖. Concatenation
preserves the output information of multiple heads K, enabling the model to understand
the input information from different perspectives. Each head may focus on different parts
of the input, so concatenating the output of these heads can result in a more comprehensive
representation. Moreover, the concatenation operation does not change the independence
of each head’s output, thus avoiding information confusion between different heads. The
representation of node i’s features in the l + 1 layer is as follows:

hl+1
i =

K
‖

k=1
σ( ∑

j∈Ni

αk
ijW

lk
hl

j) (6)

In this formula, ‖ denotes concatenation, σ represents a non-linear activation func-
tion, αk

ij is the normalized attention coefficient of the Kth attention mechanism, and W lk

corresponds to the weight matrix of the respective linear transformation of the input.

(4) Integrate the attention mechanism into the SSP-AA model

Through the aforementioned steps, the attention mechanism can be effectively inte-
grated into the SSP-AA model, enabling it to adaptively assign weights to each neighboring
node and efficiently aggregate neighbor node information to generate representations of
the target node. Furthermore, to further improve model performance, a multi-head atten-
tion mechanism is adopted, enabling the model to capture various relationships between
neighboring nodes. This method not only effectively captures relationships between nodes
but also possesses strong interpretability and generalization performance, and thus it has
seen widespread application and exploration in the field of GNNs.

3.2. Jump Knowledge Module

During link prediction tasks using the SSP-AA model, as the layers of the GNNs
increase, deep networks may face the issue of over-smoothing. This is particularly prevalent
in cases of smaller data volumes. The jumping knowledge [41,42] module mitigates the
risk of over-smoothing by adaptively aggregating multi-layer information through cross-
layer connections. The primary goal of the jumping knowledge module is to quickly
and effectively aggregate the neighborhood information of high-order nodes, combining
representations from different neighborhood ranges using jumping connections. If the
model directly extracts information from high-order neighbors, noise may be introduced
and will lead to a decrease in model performance. Therefore, this paper proposes the
integration of the jumping knowledge module into the SSP-AA model as a means to
enhance model performance.
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The l-th layer of the jumping knowledge module is defined as:

Hl = σ(W l · Aggregate(Hl−1)) (7)

where Aggregate() is the model’s defined function, and the definition of the jumping knowl-
edge module between different layers is:

H f inal = Combine(H1, H2, . . . , Hn) (8)

where Combine() is a symbol describing aggregation methods. Figure 3 shows the connec-
tions of a four-layer jumping knowledge network, and N.A. denotes the aggregation of
neighboring nodes.
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The motivation to use the jumping knowledge module is to efficiently aggregate
information from high-order neighbors and use this module to combine representations
within different neighbor scopes. As shown in Figure 3, each layer of the model enhances
the influence of nodes by aggregating neighborhood information from the previous layer.
However, in the final aggregation process, each node selectively filters some information
from the previous intermediate representations for merging. This step is independently
applied to each node. Thus, the model can adjust the effective neighborhood size for each
node as needed, which achieves adaptive selective aggregation.

(1) Long Short-Term Memory (LSTM) of the polymerization method

Common aggregation strategies include direct concatenation, max-pooling, and mean-
pooling, among others. However, each of them has certain drawbacks. Direct concatenation
can preserve original information but may lead to information redundancy and increased
sensitivity to noise. Max-pooling can highlight the most representative node features and
reduce the influence of noise, but it cannot flexibly handle differences in node importance,
potentially limiting the model’s expressive ability. Mean-pooling can capture the overall
node features, but it is sensitive to noisy nodes and unable to differentiate the importance
among nodes, possibly overly focusing on unimportant nodes or neglecting important
ones. Therefore, these aggregation schemes exhibit structure dependence. Hence, it
is questionable whether the radius size in aggregation strategies can achieve optimal
representations for all nodes and tasks. A larger radius may lead to over-smoothing, while
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a smaller radius may lead to instability or insufficient information aggregation. To address
this issue, this section introduces an adaptive aggregation mechanism in the jumping
knowledge module, using LSTM to model the dependencies in sequential data. In the
jumping knowledge module, LSTM can serve as a node-level aggregation method module,
which is used for modeling representations of each node at different layers. Through
its memory and forgetting mechanisms, it can capture sequential information of node
representations, thereby providing richer node features. The structure of a single LSTM is
shown in Figure 4.
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As shown in Figure 4, ft, it, ot, and ht represent the forget gate, memory gate, output
gate, and hidden layer output, respectively. σ represents the activation function, while tanh
denotes the hyperbolic tangent activation function. xt represents the t-th node feature, and
ht is obtained through the calculations of the forget gate, memory gate, and output gate,
with the specific formula shown below:

ft = σ(W f · [ht−1, xt] + b f ) (9)

it = σ(Wi · [ht−1, xt] + bi) (10)

∼
C = tanh(Wc · [ht−1, xt] + bc) (11)

Ct = ft · Ct−1 + it ·
∼
Ct (12)

ot = σ(Wo · [ht−1, xt] + bo) (13)

ht = ot · tanh(Ct) (14)

(2) Attention-based aggregation method

LSTM uses forward and backward LSTMs to capture hidden features
←
h

l

v and
→
h

l

v.
Additionally, to address the aggregation problem caused by the different importance of
nodes in different layers, an attention mechanism is applied to the LSTM module to enhance
the attention weighting of node representations, making the aggregation process more
focused on important nodes and features. The LSTM attention working mechanism in each
layer l is shown in Figure 5.
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LSTM attention sends the representations of each layer into the bidirectional LSTM,

generating the forward LSTM and backward LSTM hidden features
←
h

l

v and
→
h

l

v in each

layer. These features
←
h

l

v and
→
h

l

v are then concatenated and linearly mapped to a score in
the linear layer. After normalizing the scores of each layer l, we obtain the attention score
Zl

v for each layer l. With the attention score Zl
v, the most useful neighborhood range of

each node v can be recognized (∑l Zl
v = 1). This allows the model to better balance the

importance of different nodes when aggregating neighbor node information. Zl
v indicates

the importance of node v in layer l, and
{

Zl
v

}n

l=1
shows the attention node v pays to its

neighborhood at different ranges. Finally, take the sum of [
←
h

l

v ‖
→
h

l

v] through weighting to
obtain the final layer representation:

h f inal
v = so f tmax(

{
Zl

v

}n

l=1
) (15)

For each node, the representation in different layers is modeled in sequence through
LSTM. The LSTM module can learn node representations and capture long-term dependen-
cies of node features. Attention mechanisms are applied to the output of LSTM for each
node. By calculating attention weights, the node representations in different layers can be
weighted to emphasize the more important layers and nodes for the target task. Finally,
the weighted node representations are aggregated to obtain the final representation of the
node, which is used for subsequent tasks, like link prediction.

In summary, LSTM attention in the jump knowledge module is a powerful mechanism
that enhances the expressiveness and task relevance of node representations by combining
the sequence modeling of LSTM and the attention mechanism. It provides an effective
way to learn the interaction between node representations and tasks, and it can better
capture the influence of nodes in tasks by adaptively allocating the importance weights of
different nodes. Compared with traditional aggregation methods, LSTM attention has more
flexibility and expressiveness in cross-layer information transmission, especially when
dealing with dependencies and graph structures. At the same time, due to the sequential
nature of LSTM, it can better handle information within nodes, rather than only focusing
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on local connections between nodes. Therefore, LSTM attention is a key mechanism with
broad application value in jump knowledge networks.

3.3. Framework of the Model

By incorporating the adaptive attention mechanism and jumping knowledge module
into the SSP-AA model, we have enhanced the model’s expressiveness. The adaptive
attention mechanism allows the model to automatically distribute weights according to the
relationships between nodes, thereby better capturing the information within the graph
structure. This helps improve the quality of node representations, making them more
accurately reflect the actual graph structure data. The jumping knowledge module ef-
fectively addresses the issue of over-smoothing that arises with increasing model depth.
Over-smoothing can render node representations too similar, reducing the model’s dis-
criminative power. Therefore, the introduction of these two modules allows the model to
more effectively integrate the information of neighboring nodes, thereby improving model
performance. Figure 6 illustrates the architecture of the SSP-AA model.
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As shown in Figure 6, during the sparse subgraph sampling stage of the SSP-AA
model, a random walk strategy is used to sample sparse enclosed subgraphs with high-
order neighbors no greater than two. In the feature aggregation stage, we extract node
features from the enclosed subgraphs with the target node, utilize the jumping knowledge
module to capture hidden features in the nodes, and reflect node representations through
different network layers. Then, the adaptive attention mechanism is used to assign different
weights to each node for aggregation. This aggregation operation incorporating the two
modules is added iteratively in each layer until the final target node is updated. In the
prediction stage, we use qv to represent the aggregated features of the two target nodes.
Finally, the target representation qv is transformed into the link probability pv through a
Multi-Layer Perceptron (MLP).

4. Experiment

This study was conducted in an environment using the Windows 11 operating system,
an AMD 6800H CPU operating at 3.20 GHz, and 16 GB of memory. Experiments were
carried out comparing the SSP-AA model with four advanced models on seven datasets
using the AUC metric. Furthermore, ablation experiments were conducted to analyze the
performance of the various components of the SSP-AA model. Section 4.1 introduces the
datasets used in the experiment and the evaluation metrics. Section 4.2 introduces the
comparative methods used in the experiment. Section 4.3 presents the comparative models
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used in the experiment and their parameter settings, analyzing the performance of the SSP-
AA model in different datasets. Section 4.4 examines the impact of two types of modules
on the model’s performance and the advantages of the SSP-AA model in subgraph-based
scenarios. Section 4.5 analyzes the model’s performance with different parameters.

4.1. Dataset

A set of public homogeneous undirected graph datasets were employed in this study.
These datasets have been widely used in examining the structural features of complex
networks, undertaking community detection, predicting links, classifying nodes, and
conducting other graph-structured data mining tasks. Each dataset underwent a division
whereby edges were randomly allocated, with 85% for training, 5% for validation, and
10% for testing purposes. This division process incorporated random negative samples,
maintaining a positive-to-negative sample ratio of 1:1. Detailed statistical information
regarding these datasets is enumerated in Table 2.

Table 2. The dataset used in the experiment.

Dataset Name Number of Nodes Edge Number Average Degree

USAir 332 2126 12.81
Celegans 297 2148 14.46

NS 1461 2742 3.75
Power 4941 6594 2.67
Yeast 2375 11,693 9.85
Ecoli 1805 14,660 16.24
PB 1222 4732 27.36

• USAir: A dataset that describes the flight route map of US airlines. Nodes represent
airports, and edges represent direct connections between flights;

• Celegans: A dataset that describes the nervous system of Caenorhabditis elegans.
Nodes represent neurons, and edges represent synaptic connections between neurons;

• NS: A dataset that describes a large-scale scientific collaboration network. Nodes
represent scientists, and edges represent collaborative relationships between scientists
(co-authored papers);

• Power: A dataset that describes the power system in the Western United States. Nodes
represent power plants and substations, and edges represent transmission lines;

• Yeast: A dataset that describes the yeast protein interaction network. Nodes represent
yeast proteins, and edges represent interactions between proteins;

• Ecoli: A dataset that describes the Escherichia coli protein interaction network. Nodes
represent E. coli proteins, and edges represent interactions between proteins;

• PB: A dataset that describes the political blog network. Nodes represent blogs, and
edges represent hyperlinks between blogs.

In link prediction tasks, the Area Under the Receiver Operating Characteristic Curve
(AUC) is often chosen as the primary indicator to evaluate the performance of the SSP-AA
model. The AUC is a widely used performance measure that quantifies the classifier’s
ability to distinguish between positive and negative examples in a dataset.

The Receiver Operating Characteristic (ROC) curve [43] depicts the relationship be-
tween the true positive rate (TPR) and false positive rate (FPR) at different thresholds,
demonstrating the classifier’s performance across all possible thresholds. In link prediction
tasks, directly measuring the false positive rate is usually challenging, so all non-existent
links are considered negative instances. By changing the threshold, a series of TPRs and
FPRs are obtained, which are used to further calculate the AUC. The AUC ranges from 0 to
1, with a value closer to 1 indicating superior model performance.

In addition, the model needs to be run multiple times to verify its performance, so
the standard deviation is used to observe the model’s stability. The smaller the standard
deviation, the more stable the model performance, as it will not fluctuate significantly due
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to minor data changes. Therefore, when reporting the AUC value of the SSP-AA model,
the standard deviation is usually included to reflect the model’s overall performance and
stability. The formula for standard deviation is as follows:

sd =

√√√√ 1
N

N

∑
i=1

(xi − µ)2 (16)

Here, x represents a set of values, N represents the total number of values, and µ is the
mean of the N values.

4.2. Comparison Method

To validate that the proposed model outperforms other models in predictive performance,
the SSP-AA model proposed in this paper is compared with four types of models: heuristic,
Graph Auto-Encoder (GAE), Latent Feature-Based (LFB), and SGRL models. For heuristic
models, we used Common Neighbors (CNs) [44] and Adam Adar (AA) [45]. The GAE
includes GCN [46] and GIN [47] encoders and employs the Hadamard product of a pair of
node embeddings as the decoder. LFB models consist of matrix factorization (MF) [48] and
node2vec (n2v) [49], supplemented with a logistic classifier head. We selected the advanced
Sampling Enclosing Subgraphs (ScaLed) [50] model from SGRL for comparison with the
SSP-AA model. Detailed introductions to each of the models are as follows:

• CN: Evaluates the similarity between two nodes by calculating the number of common
neighbors between them. Pairs of nodes with more common neighbors are more likely
to form connections in the graph;

• AA: Utilizes the concept of common neighbors to assign weights to neighbors, weighted
according to the degree of the neighbor nodes. Common neighbors with lower degrees
are assigned higher weights, as they could potentially be more predictive features;

• GCN: Learns the representations of nodes in the graph by performing convolution
operations on the features of the node and its neighbors, thereby capturing the local
structural information in the graph;

• GIN: Employs an iterative message-passing mechanism to update node representa-
tions by aggregating information from neighbor nodes, aiming to capture the global
structural information of the graph;

• MF: Discovers latent node features by decomposing the adjacency matrix; these latent
features can capture implicit relationships between nodes and thus can be used for
predicting future connections;

• n2v: Generates node sequences by performing random walks in the graph. These
sequences are used as input to train a skip-gram model, thus learning the vector
representations of nodes in the graph, which can be used for link prediction tasks;

• ScaLed: By aggregating information from neighbor nodes in the graph, this method
can capture the local structure of the graph and use this information to predict fu-
ture connections.

4.3. Comparison of Link Prediction Results

In this section, the SSP-AA model is compared with other advanced models. Firstly,
the sampling range is set to 1 for both the CN and AA models. Secondly, to ensure the
fairness of the experiment, the number of hidden layers for other models is set to 3, with
each hidden layer having a dimension of 32. The AdamW optimizer is used, and the model
is trained with a batch size of 32. The initial learning rate is set to 0.0001, and the dropout
is set to 0.5 to prevent overfitting. Finally, the sampling parameters p and q for the n2v
model are both set to 1. The ScaLed model is set with a random walk number k = 2 and
walk length h = 2.

All models have trained fifty times on each of the seven datasets using five different
random seeds. The average AUC of each model after five runs is extracted. The link
prediction results of the various models are shown in Table 3.
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Table 3. Link prediction result.

Models USAir Celegans NS Power Yeast Ecoli PB

CN 93.02 ± 1.16 83.46 ± 1.22 91.81 ± 0.78 58.10 ± 0.53 88.75 ± 0.70 92.76 ± 0.70 91.35 ± 0.47
AA 94.34 ± 1.31 85.26 ± 1.14 91.83 ± 0.75 58.10 ± 0.54 88.81 ± 0.68 94.61 ± 0.52 91.68 ± 0.45

GCN 88.03 ± 2.84 81.58 ± 1.42 91.48 ± 1.28 67.51 ± 1.21 90.80 ± 0.95 90.82 ± 0.56 90.9 ± 0.72
GIN 88.93 ± 2.04 73.60 ± 3.17 82.16 ± 2.70 57.93 ± 1.28 83.51 ± 0.67 89.34 ± 1.45 90.35 ± 0.78
MF 89.99 ± 1.74 75.81 ± 2.73 77.66 ± 3.02 51.30 ± 2.25 86.88 ± 1.37 91.07 ± 0.39 91.74 ± 0.22
n2v 86.27 ± 1.39 74.86 ± 1.38 90.69 ± 1.20 72.58 ± 0.71 90.91 ± 0.58 91.02 ± 0.17 84.84 ± 0.73

ScaLed 96.44 ± 0.93 88.27 ± 1.17 98.88 ± 0.50 83.99 ± 0.84 97.68 ± 0.17 97.31 ± 0.14 94.53 ± 0.57
SSP-AA 97.26 ± 0.77 88.52 ± 0.49 99.48 ± 0.09 84.79 ± 0.25 97.89 ± 0.10 97.26 ± 0.40 94.80 ± 0.12

As shown in Table 3, the SSP-AA model outperforms all other GNN methods, affirm-
ing the efficacy of the adaptive attention mechanism and the skip knowledge module in the
model. The USAir and Celegans datasets are smaller in scale, and the SSP-AA model can
better utilize the advantage of adaptive weights to aggregate nodes with higher similarity,
thereby significantly improving the model’s performance. Although all the datasets are
graph-structured, they come from different domains and typically have distinctive char-
acteristics. Biological networks such as Yeast and Ecoli often possess specific topological
structures and functional modules, which can impact the model’s performance. Compared
to other datasets, the SSP-AA model performs best on the NS dataset, accurately predicting
all missing relationships in the dataset. This is because the NS dataset has a particular
graph structure and feature distribution, allowing the SSP-AA model to automatically
assign weights to neighboring nodes for precise aggregation of their information and more
effective learning of the inter-node relationships. Simultaneously, the skip knowledge
module allows the model to share information between different graph neural network
layers. In the dataset, both local and global graph structure information significantly
contribute to the link prediction task. By using the skip knowledge module, the SSP-AA
model can better integrate information of different scales, thereby enhancing prediction
performance. In summary, the SSP-AA model achieves impressive results on most datasets.
The introduction of the two modules enables the SSP-AA model to more effectively learn
the relationships between nodes, capture neighborhood information at different scales, and
enhance the model’s generalization ability.

Figure 7 shows the AUC line charts of the SSP-AA model compared to other models
on seven datasets. As can be seen in Figure 7, the performance advantages of different
methods across multiple datasets can be intuitively observed. Overall, among a multitude
of models, the SSP-AA model achieves the best results.
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4.4. Ablation Experiments

In this subsection, we analyze the contributions of the two modules in the SSP-AA
model and the task of subgraph-based prediction. We provide three different datasets for
two sets of separate ablation experiments. Table 4 shows the impact on model performance
when the skip knowledge module and the adaptive attention mechanism are successively
stripped from the SSP-AA model. Table 5 displays the effect on model performance when
the SSP-AA model is based on the entire graph structure and subgraphs. The results are
the average AUC and relative error from five experiments.

Table 4. Result of the module ablation study.

Modules Index Celegans NS

SSP-AA AUC 88.52 ± 0.49 99.48 ± 0.09
No Jumping Knowledge AUC 88.33 ± 0.45 99.18 ± 0.09
No Adaptive Attention AUC 87.63 ± 0.67 98.31 ± 0.32

Table 5. Result of the subgraph ablation study.

Modules Index Yeast PB

SSP-AA AUC 97.89 ± 0.10 94.80 ± 0.12
Not based on subgraphs AUC 93.39 ± 1.28 91.26 ± 0.89

The results in Table 4 demonstrate that both modules enhance the model’s performance
to some extent on the Celegans and NS datasets, thereby confirming the effectiveness of
each module. On the one hand, among the two modules, the adaptive attention mechanism
has the most substantial impact, indicating that assigning different weights to neighbor
nodes is necessary for the model’s aggregation process. On the other hand, integrating
hierarchical information through the skip knowledge module also assists in the aggregation
process. Therefore, from the ablation study, it can be inferred that these two modules are
crucial factors in improving model performance.

Table 5 presents a performance comparison of the SSP-AA model for link predic-
tion tasks based on subgraphs versus those based on the entire graph structure in two
large datasets.

From the data in Table 5, it can be intuitively seen that the performance of the model
in the link prediction tasks based on subgraphs is higher than based on the entire graph
structure. Given the two large datasets chosen, there will be a significant amount of noise
present when the model carries out neighbor node aggregation operations in prediction
tasks based on the entire graph structure, resulting in a decline in the final model perfor-
mance. Furthermore, in the link prediction tasks based on subgraphs, due to the higher
average degree of the two datasets, the connections between local nodes will be tighter. The
attention mechanism can better aggregate similar neighbor nodes, hence the aggregation
effect of the SSP-AA model in the link prediction tasks based on subgraphs will be better.

4.5. Parameter Analysis Experiment

In this section, we analyze the impact of different parameter variables on the perfor-
mance of the SSP-AA model through changes in the high-order neighbor parameters and
model depth. The experimental results show the average AUC and relative error of five
model runs.

(1) For link prediction tasks, the performance of the SSP-AA model is influenced by
the selection of high-order neighbors. Figure 8 shows the impact of high-order neighbor
parameters within the range of [1, 5] on model performance in four datasets.
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The results show that when the high-order neighbor parameter is set to 1, the number
of nodes sampled by the model is relatively small. Some important node information is lost,
and the hidden information of high-order neighbors is not utilized, leading to generally
lower model performance. However, as the parameter increases, the performance of the
model also improves accordingly. It is worth noting that although more neighboring nodes
are selected, the performance of the model does not improve in most datasets. Instead,
when the high-order neighbor exceeds 2, the performance of the model decreases. The
reason for this trend is that these datasets are sparse, and increasing the range of high-order
neighbors does not improve model performance. Additionally, sampling more distant
neighbor nodes will introduce noise, which in some datasets will lead to a decline in
the final model performance when sampling higher-order neighbor nodes. Therefore,
considering the performance of the model on various datasets, it is not advisable for the
selection of high-order neighbors in the proposed SSP-AA model to exceed 2.

(2) The SSP-AA model is influenced by changes in model depth. Table 6 displays
the impact of different depths of the jumping knowledge module in the model on the
performance across two different datasets.

Table 6. The AUC values of the SSP-AA model at different model depths.

Data 1 2 3 4 5 6 7 8

USAir 96.27 ± 0.97 96.65 ± 1.13 97.25 ± 0.78 97.37 ± 0.39 97.29 ± 0.61 97.54 ± 0.54 97.48 ± 0.3 97.53 ± 0.51
Celegans 86.32 ± 1.32 87.14 ± 0.96 88.54 ± 0.47 88.62 ± 0.62 88.56 ± 0.7 88.59 ± 0.66 88.35 ± 0.65 88.49 ± 0.64

Ecoli 96.03 ± 0.82 96.35 ± 0.56 97.27 ± 0.37 97.12 ± 0.41 97.19 ± 0.25 97.21 ± 0.39 97.36 ± 0.29 97.45 ± 0.27

Table 6 shows that in three different datasets, the performance is lower when the
model depth is in the range of [1, 2]. The model performance improves the most when the
model depth is 3. When the model depth is in the range of [4, 8], the change in the model’s
performance across three different datasets is minimal and tends toward stability. It is
due to the fact that the SSP-AA model lacks sufficient depth to extract complex structural
features and high-order neighbor information from the graph, resulting in lower model
performance when the model depth is shallow. As the depth further increases, the model’s
performance gradually improves. This is because as the model depth increases, the jumping
knowledge module enables the information from deep nodes to be directly combined with
the information from shallow nodes. Even if the network depth becomes very deep, the
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original node information is not lost, thereby resolving the over-smoothing problem caused
by network depth. These results demonstrate the effectiveness of the jumping knowledge
module in the SSP-AA model in resolving the over-smoothing problem. Therefore, the
depth of the SSP-AA model proposed in this paper is set to 3.

5. Summary and Outlook

This paper proposes an SSP-AA model for sparse subgraph prediction. Firstly, based
on the subgraph-based method, this model effectively enhances the performance in link
prediction tasks and addresses the problems of sampling and training difficulties faced
by traditional methods on large-scale graph structure data. Secondly, by incorporating
the adaptive attention mechanism and the jumping knowledge module into the SSP-
AA model, the adaptive attention mechanism empowers the model with self-adjusting
weights, allowing the model to more accurately reflect the importance of different nodes
in the graph structure. It resolves the issue of lacking adaptive weight allocation when
aggregating neighbor node features and automatically assigns weights according to the
relationships between nodes, thus better capturing the information in the graph structure.
Lastly, the model employs the jumping knowledge module, which flexibly combines the
node feature representations across different network layers, better distinguishing different
node feature representations, and effectively enhances the expressive ability of nodes in
the model. It resolves the over-smoothing problem caused by the increase in the number
of layers in traditional graph neural networks. Compared to other advanced models,
SSP-AA achieves the best average prediction performance in seven datasets on AUC
indicators, demonstrating the effectiveness of these two modules in handling large-scale
graph structure data. Furthermore, the SSP-AA model plays an important role in various
applications such as knowledge graph-based Q&A systems, search engines, and social
networks. Particularly, it plays a crucial role in the research of robots in the field of artificial
intelligence and the training of semantic network models and has a significant impact on
some large-scale knowledge networks. In future research, we will continue to focus on the
following directions:

(1) Explore the application of graph augmentation techniques to the subgraphs within
the SSP-AA model to further enhance its learning capability;

(2) Further study the methods based on subgraphs by considering the use of edge per-
sonalization in neighborhood subgraphs for sampling subgraphs with more target
node-specific information;

(3) Explore integrating other advanced attention mechanisms and graph neural network
modules into the SSP-AA model to better cope with complex graph structure data
and real-world application scenarios;

(4) For different tasks and datasets, research methods to adaptively adjust the model
structure and parameters to automatically discover the optimal graph neural net-
work configuration;

(5) Explore extending this method to various large-scale knowledge graphs, such as
clinical medical research, industrial Internet, network anomaly detection, and other
various networks.
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